Skip to main content

The incremental influx of cosmic material on the Earth shows few maxima in the dependence on the size of falling meteoroids (citeauthorch04:ceplecha1992 citeyearch04:ceplecha1992). The largest one corresponds to the impact of asteroid-sized bodies—about 3 km in size and mass of about 1014 kg. The second maximum reaches almost the same value and corresponds to the bodies with masses of 104–106kg (i.e., with diameters about 1–10 m). The information about these meteoroids is scarce. These bodies create the appearance of very bright meteors in the Earth’s atmosphere (bolides and superbolides). Sizes of these bodies are one to two orders of magnitude smaller than the sizes of meteoroids, which create asteroid hazards. It is possible to observe bolides and superbolides on a regular basis

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abstract

  • Adushkin VV, Nemchinov IV (1994) Consequences of impacts of cosmic bodies on the surface of the Earth. In: Gehrels T (ed) Hazards due to comets and asteroids, University Arizona Press, Tucson, pp 721–778

    Google Scholar 

  • Adushkin VV, Popova OP, Rybnov YuS et al (2004) Geophysical effects of the Vitim bolide. Doklady Earth Sciences (Translated from Doklady Akademii Nayk V. 397) 397A(6):861–864

    Google Scholar 

  • Antipin VS, Yazev SA, Kuz’min MI, Perepelov AB, Efremov SA, Mitichkin MA, Ivanov AV (2004) Natural phenomena and the substance in the ablation trail of the Vitim meteoroid (September 25, 2002). Doklady Physics 49(10):573–577

    Article  ADS  Google Scholar 

  • Artem’eva NA, Shuvalov VV (1996) Interaction of shock waves during passage of disrupted meteoroid through atmosphere. Shock Waves 5(6):359–367

    Article  MATH  ADS  Google Scholar 

  • Artemieva NA, Shuvalov VV (2001) Motion of a fragmented meteoroid through the planetary atmosphere. J Geophys Res 106(E2):3297–3309

    Article  ADS  Google Scholar 

  • Babadzhanov PB (1986) Astronomy in Tadjikiustan. IAU, Asian-Pacific Regional Meeting, 3rd, Kyoto, Japan, Sept 30–Oct 5, 1984. Astrophys Space Sci (ISSN 0004–640X)

    Google Scholar 

  • Bland PA, Artemieva NA (2003) Efficient disruption of small asteroids by Earth’s atmosphere. Nature 424:288–291

    Article  ADS  Google Scholar 

  • Bland PA, Spurny P, Bevan AWR et al (2006) First light for the desert fireball network. Proceedings of 69th Annual Meeting of the Meteoritical Society, August 6–11. Switzerland, Zurich. Meteoritics Planetary Sci 41:5197

    Google Scholar 

  • Borovička J, Kalenda P (2003) The Morávka meteorite fall: 4. Meteoroid dynamics and fragmentation in the atmosphere. Meteoritics Planetary Sci 38(7):1023–1043

    Google Scholar 

  • Borovička J, Popova OP, Golub’ AP et al (1998b) Bolides produced by impacts of large meteoroids into the Earth’s atmosphere: comparison of theory with observations. II. Benešov bolide spectra. Astronom Astrophys 337:591–602

    ADS  Google Scholar 

  • Borovička J, Popova OP, Nemtchinov IV et al (1998a) Bolides produced by impacts of large meteoroids into the Earth’s atmosphere: comparison of theory with observations. I Benešov bolide dynamics and fragmentation. Astronom Astrophys 334:713–728

    ADS  Google Scholar 

  • Borovička J, Spurný P (1996) Radiation study of two very bright terrestrial bolides. Icarus 121:484–510

    Article  ADS  Google Scholar 

  • Borovička J, Spurný P, Ceplecha Z (2001) The Mor´vka meteorite fall: fireball trajectory orbit and fragmentation from video records. Meteoritics Planetary Sci Suppl 36:A25

    ADS  Google Scholar 

  • Brown P, Ceplecha Z, Hawkes RL et al (1994) The orbit and atmospheric trajectory of the Peekskill meteorite from videorecords. Nature 367:624–626

    Article  ADS  Google Scholar 

  • Brown P, Hilderband AR, Green DWE et al (1996) The fall of the St.Robert meteorite. Meteoritics Planetary Sci 31:502–517

    ADS  Google Scholar 

  • Brown P, Pack D, Edwards WN et al (2004) The orbit, atmospheric dynamics, and initial mass of the Park Forest meteorite. Meteoritics Planetary Sci 39(11):1781–1796

    Article  ADS  Google Scholar 

  • Brown PG, Hildebrand AR, Zolensky ME et al (2000) The fall, recovery, orbit, and composition of the Tagish Lake meteorite: a new type of carbonaceous chondrite. Science 290(5490) :320–325

    Article  ADS  Google Scholar 

  • Brown PG, ReVelle DO, Tagliaferri E, Hildebrand AR (2001) The Tagish Lake meteorite fall: interpretation of physical and orbital data. Proceedings Meteoroids 2001-Conference, pp 497–505

    Google Scholar 

  • Brown PG, ReVelle DO, Tagliaferri E, Hildebrand AR (2002a) An entry model for the Tagish Lake fireball using seismic, satellite and infrasound records. Meteoritics Planetary Sci 37:661–675

    Article  ADS  Google Scholar 

  • Brown PG, Spalding RE, ReVelle DO et al (2002b) The flux of small near-Earth objects colliding with the Earth. Nature 420(6913) :294–296

    Article  ADS  Google Scholar 

  • Campo Bagatin A, Cellino A, Davis DR et al (1994a) Wavy size distributions for collisional systems with a small-size cutoff. Planet Space Sci 42(12):1079–1092

    Article  ADS  Google Scholar 

  • Ceplecha Z (1961) Multiple fall of Pribram meteorites photographed. BAICz 12:21–46

    ADS  Google Scholar 

  • Ceplecha Z (1992) Influx of interplanetary bodies onto Earth. Astronom Astrophys 263:361–366

    ADS  Google Scholar 

  • Ceplecha Z (1993) Meteoroid impacts into the Earth’s atmosphere: 1 to 10 m size range. In: Gehrels T (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 25

    Google Scholar 

  • Ceplecha Z (1994) Impacts of meteoroids larger than 1 m into the Earth’s atmosphere. Astronom Astrophys 286:967–970

    ADS  Google Scholar 

  • Ceplecha Z (1996) Luminous efficiencies based on photographic observations of Lost-City fireball and implications to the influx of interplanetary bodies onto Earth. Astronom Astrophys 311:329–332

    ADS  Google Scholar 

  • Ceplecha Z, Borovička J, Elford WG et al (1998) Meteor phenomena and bodies. Space Sci Rev 84:327–471

    Article  ADS  Google Scholar 

  • Ceplecha Z, ReVelle DO (2005) Fragmentation model of meteoroid motion, mass loss, and radiation in the atmosphere. Meteoritics Planetary Sci 40(1):35–54

    Article  ADS  Google Scholar 

  • Ceplecha Z, Spurný P, Borovička J, Keclíková J (1993) Atmospheric fragmentation of meteoroids. Astronom Astrophys 279(2):615–626

    ADS  Google Scholar 

  • Chernyi GG (1959) Gas flows with a high supersonic speed. Fizmatgiz, Moscow (in Russian)

    Google Scholar 

  • Chyba CF, Thomas PJ, Zahnle KJ (1993) The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid. Nature 361(6407) :40–44

    Article  ADS  Google Scholar 

  • Consolmagno GSJ, Britt DT (2004) Meteoritical evidence and constraints on asteroid impacts and disruption. Planet Space Sci 52:1119–1128

    Article  ADS  Google Scholar 

  • Dohnanyi JS (1969) Collisional model of asteroids and their debris. J Geophys Res 74:2531–2554

    Article  ADS  Google Scholar 

  • Durda DD, Dermott SF (1997) The collisional evolution of the asteroid belt and its contribution to the zodiacal cloud. Icarus 130:140–164

    Article  ADS  Google Scholar 

  • Edwards WN, Hildebrand AR (2004) SUPRACENTER: Locating fireball terminal bursts in the atmosphere using seismic arrivals. Meteoritics Planetary Sci 39(9):1449–1460

    Article  ADS  Google Scholar 

  • Farinella P, Paolicchi P, Zappala V (1982) The asteroids as the outcomes of catastrophic collisions. Icarus 52:409–433

    Article  ADS  Google Scholar 

  • Frost MJ (1969) Size and spacial distribution in meteoritic showers. Meteoritics 4(3):217–232

    ADS  Google Scholar 

  • Glasstone S, Dolan PJ (1977) The effects of nuclear weapons. US Department of Defense and US Department of Energy, US Government Printing Office, Washington, DC, p 653

    Google Scholar 

  • Golitsyn GS, Grigoryev GI, Dokuchaev VP (1977) Generation of acoustic-gravity waves at motion of meteors in the atmosphere. Atmos Oceanic Phys 13(9):633–639 (English translation)

    Google Scholar 

  • Golub’ AP, Kosarev IB, Nemtchinov IV, Popova OP (1997) Emission spectra of bright bolides. Solar System Res 31(2):85–97

    ADS  Google Scholar 

  • Golub’ AP, Kosarev IB, Nemchinov IV, Shuvalov VV (1996) Emission and ablation of a large meteoroid in the course of its motion through the Earth’s atmosphere. Solar System Res 30(3):183–197

    ADS  Google Scholar 

  • Grigoryan SS (1979) On the motion and disruption of meteorites in planetary atmospheres. Kosm Issled 17(6):875–893

    ADS  Google Scholar 

  • Halliday I, Griffin AA, Blackwell AT (1981) The Innisfree meteorite fall: a photographic analysis of fragmentation, dynamics and luminosity. Meteoritics 16(2):153–170

    ADS  Google Scholar 

  • Halliday I, Griffin AA, Blackwell AT (1996) Detailed data for 259 fireballs from the Canadian camera network and inferences concerning the influx of large meteoroids. Meteoritics Planetary Sci 31: 185–217

    ADS  Google Scholar 

  • Hayes WD, Probstein RF (1959) Hypersonic flow theory. Academic, New York

    Google Scholar 

  • Hildebrand AR, Brown PG, Zolensky ME et al (2000) The fireball and strewnfield of the Tagish Lake meteorites, fell January 18, 2000, In northern British Columbia. Meteoritics Planetary Sci 35(5):A73

    ADS  Google Scholar 

  • Hills JG, Goda MP (1993) The fragmentation of small asteroids in the atmosphere. Astronom J 105(3):1114–1144

    Article  ADS  Google Scholar 

  • Ivanov BA (2001) Mars/Moon cratering rate ratio estimates. Space Sci Rev 96(1/4):87–104

    Article  ADS  Google Scholar 

  • Ivanov BA, Neukum G, Bottke WF Jr, Hartmann WK (2002) The comparison of size-frequency distributions of impact craters and asteroids and the planetary cratering rate. In: Bottke WF, Cellino A, Paolicchi P, Binzel RP (eds) Asteroids III. University of Arizona Press, Tucson, pp 89–101

    Google Scholar 

  • Jenniskens P, Betlem H, Betlem J et al (1994) The Mbale meteorite shower. Meteoritics 29(2):246–254

    ADS  Google Scholar 

  • Kiselev Yu N, Nemchinov IV, Shuvalov VV (1991) Mathematical modeling of the propagation of intensely radiating shock waves. Comput Math Mathemat Phys 31(6):87–101

    Google Scholar 

  • Kuzmitcheva MY, Ivanov BA (2004) Modelling of shock evolution of the population of main belt asteroids and the population of remnants of Earth accumulation. Dynamics of Interacting Geospheres IDG RAS. Moscow, pp 209–216 (in Russian)

    Google Scholar 

  • Levin, B. Yu (1956) Fizicheskaya teoriya meteorov i meteornoe veshchestro v Solnechnoi sisteme (Physical Theory of Meteors and Meteoric Matter in the Solar System) Nauka, Moscow, 294 (in Russian)

    Google Scholar 

  • Llorca J, Trigo-Rodríguez JM, Ortiz JL et al (2005) The Villalbeto de la Peña meteorite fall: I. Fireball energy, meteorite recovery, strewn field, and petrography. Meteoritics Planetary Sci 40:795

    Article  ADS  Google Scholar 

  • Loseva TV, Kosarev IB, Nemtchinov IV (1998) Thermal ablation of large cosmic bodies. Solar System Res 32(2):149–156

    ADS  Google Scholar 

  • McCrosky RE, Shao C.-Y, Posen A (1976) Prairie network fireball data I: summary and orbits. Center Astrophys Prepr Ser 665

    Google Scholar 

  • McCrosky RE, Shao C.-Y, Posen A (1977) Prairie network fireball data II: trajectories and light curves. Center Astrophys Prepr Ser 721

    Google Scholar 

  • McCord TB, Morris J, Persing D et al (1995) Detection of a meteoroid entry into the Earth’s atmosphere on February 1, 1994. J Geophys Res 100(E2):3245–3249

    Article  ADS  Google Scholar 

  • Melosh HJ (1981) Atmospheric breakup of terrestrial impactors. In: Schultz PH, Merrill RB (eds) Multi-ring basins. Pergamon Press, New York, pp 29–35

    Google Scholar 

  • Melosh HJ (1989) Impact cratering: a geologic process (Oxford Monographs on Geology and Geophysics, No. 11). Oxford University Press, New York, p 245

    Google Scholar 

  • Nemchinov IV (1994) Intensely radiating shock waves. Sov J Chem Rhys 12(3):438–458

    Google Scholar 

  • Nemtchinov IV, Jacobs C, Tagliaferri E (1997b) Analysis of satellite observations of large meteoroid impacts. In: Remo J (ed) Near-Earth Objects. Ann NY Acad Sci 822:303–317

    Google Scholar 

  • Nemtchinov IV, Kuzmicheva M Yu, Shuvalov VV et al (1999) Šumava meteoroid: was it a small comet? Evolution and source regions of asteroids and comets. Proceedings of the IAU Colloquium 173 Svoren J, Pittich EM, Rickman H (eds) Astronom Inst Slovak Acad Sci Tatranska Lomnica, pp51–56

    Google Scholar 

  • Nemtchinov IV, Popova OP (1997) An analysis of the 1947 Sikhote-Alin event and a comparison with the phenomenon of February 1, 1994. Solar System Res 31(5):408–420

    ADS  Google Scholar 

  • Nemtchinov IV, Popova OP, Shuvalov VV, Svettsov VV (1994) Radiation emitted during the flight of asteroids and comets through atmosphere. Planet Space Sci 42(6):491–506

    Article  ADS  Google Scholar 

  • Nemtchinov IV, Popova OP, Svettsov VV, Shuvalov VV (1995) On the photometric masses and radiation sizes of large meteoroids. Solar System Res 29(2):133–150

    ADS  Google Scholar 

  • Nemtchinov IV, Svetsov VV, Kosarev IB et al (1997a) Assessment of kinetic energy of meteoroids detected by satellite-based light sensors. Icarus 130(2):259–274

    Article  ADS  Google Scholar 

  • Neukum G, Ivanov BA (1994) Crater size distributions and impact probabilities on Earth from Lunar, terrestrial-planet, and asteroid cratering data. In: Gehrels T (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 359–416

    Google Scholar 

  • Oberst J, Molau S, Heinlein D et al (1998) The “European Fireball Network”: current status and future prospects. Meteoritics Planetary Sci 33:49–56

    Article  ADS  Google Scholar 

  • Pack DW, Tagliaferri E, Yoo BB et al (1999) Recent satellite observations of large meteor events. Asteroids, comets, meteors 1999. Cornell University, Ithaca, NY, pp 48

    Google Scholar 

  • Passey QR, Melosh HJ (1980) Effects of atmospheric breakup on crater field formation. Icarus 42(2): 211–233

    Google Scholar 

  • Pedersen H, Spalding RE, Tagliaferri E et al (2001) Greenland superbolide event of 1997 December 9. Meteoritics Planetary Sci 36:549–558

    Article  ADS  Google Scholar 

  • Popova O, Hartmann WK, Borovička J, Spurný P, Trigo-Rodriguez J, Gnos E, Nemtchinov I (2007) Very low strengths of interplanetary meteoroids and small asteroids. Submitted to Icarus

    Google Scholar 

  • Popova OP, Nemtchinov IV (1996) Estimates of PN bolide characteristics based on the light curves. Meteoritics Planetary Sci (Suppl 31):A110

    ADS  Google Scholar 

  • Popova OP, Nemtchinov IV (2002) Strength of large meteoroids entering Earth atmosphere. Proceedings Conference of Asteroids, Comets, Meteors (ACM 2002), Technical University Berlin, pp 281–284

    Google Scholar 

  • Popova O, Nemtchinov I, Hartmann WK (2003) Bolides in the present and past Martian atmosphere and effects on cratering processes. Meteoritics Planetary Sci 38(6):905–925

    Article  ADS  Google Scholar 

  • Reimold WU, Buchanan PC, Ambrose D, Koeberl C (2003) The H4/5 Thuathe meteorite fall of 21 July 2002, Lesotho: history of the fall, strewn field determination, and mineralogical and geochemical characterization. Meteoritics Planetary Sci (Suppl 38) 5015

    ADS  Google Scholar 

  • ReVelle DO (1976) On meteor generated infrasound. J Geophys Res 81:1217–1240

    Article  ADS  Google Scholar 

  • ReVelle DO (1995) Historical detection of atmospheric impacts by large bolides using acoustic-gravity waves. Int Conf Near-Earth Objects. April 24–26, 1995. The Explorers Club and United Nations Office for Outer Space Affairs. New York, book of abstracts

    Google Scholar 

  • ReVelle DO (1997) Historical detection of atmospheric impacts by large bolides using acoustic gravity waves. In: Remo J (ed) Near-Earth Objects. Ann NY Acad Sci 822:284–302

    Article  ADS  Google Scholar 

  • ReVelle DO (2001) Global infrasonic monitoring of large bolides. Proceedings of the Meteoroids 2001-Conference, Swedish Institute of Space Physics, Kiruna, Sweden, 6–10 August 2001 (ESA SP-495, November 2001), pp 483–489

    Google Scholar 

  • ReVelle DO, Ceplecha Z (2001) Bolide physical theory with application to PN and EN fireballs. Proceedings of the Meteoroids 2001-Conference, Swedish Institute of Space Physics, Kiruna, Sweden, 6–10 August 2001 (ESA SP-495, November 2001), pp 507–512

    Google Scholar 

  • ReVelle DO, Whitaker RW (1996) Acoustic efficiency analysis using infrasound from NEOs. Proceedings of the Comet Day II (5th International Conference Space-96). June 1–6, 1996. Albuquerque, NM

    Google Scholar 

  • ReVelle DO, Brown PG, Spurný P (2004) Entry dynamics and acoustics/infrasonic/seismic analysis for the Neuschwanstein meteorite fall. Meteoritics Planetary Sci 39(10):1605–1626

    Article  ADS  Google Scholar 

  • Reynolds DA (1992) Fireball observation via satellite. Proceedings of the Near-Earth-Object Interception Workshop Canavan GH, Solem JC, Rather JDG (eds) Los Alamos National Lab, Los Alamos, NM, pp 221–226

    Google Scholar 

  • Shoemaker EM (1983) Asteroid and comet bombardment of the Earth. Ann Rev Earth Planet Sci 11:461–494

    Article  ADS  Google Scholar 

  • Simon SB, Grossman L, Clayton RN et al (2004) The fall, recovery, and classification of the Park Forest meteorite. Meteoritics Planetary Sci 39(4):625–634

    Article  ADS  Google Scholar 

  • Spurný P, Porubčan V (2002) The EN171101 bolide—the deepest ever photographed fireball. Proc Asteroids, Comets, Meteors—ACM 2002 Barbara Warmbein (ed) Int Conf 29 July–2 August 2002. Germany, Berlin, pp 269–272

    Google Scholar 

  • Spurný P, Oberst J, Heinlein D (2003) Photographic observations of Neuschwanstein, a second meteorite from the orbit of the Pribram chondrite. Nature 423:151–153

    Article  ADS  Google Scholar 

  • Svetsov VV (1994a) Radiation emitted during the flight: application to assessment of bolide parameters from the satellite recorded light flashes. Lunar Planet Sci XXV. LPSI, Houston, pp 1365–1366

    Google Scholar 

  • Svetsov VV, Nemtchinov IV, Teterev AV (1995) Disintegration of large meteoroids in Earth’s atmosphere: theoretical models. Icarus 116:131–153. Errata: Icarus. 1996 120(2):443

    Article  ADS  Google Scholar 

  • Tagliaferri E (1993) Asteroid detection by space based sensors. Presented at the Erice International Seminar on Planetary Emergencies. The Collision of an Asteroid or Comet with the Earth

    Google Scholar 

  • Tagliaferri E (1996) Satellite observations of large meteoroid impacts. Meteoroid Impact Workshop. Sandia National Laboratories, Albuquerque, NM, June 4–7.

    Google Scholar 

  • Tagliaferri E, Spalding R, Jacobs C et al (1994) Detection of meteoroid impacts by optical sensors in Earth orbit. In: T Gehrels (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, pp 199–220

    Google Scholar 

  • Trigo-Rodríguez JM, Llorca J, Ortiz JL et al (2004) The “Villalbeto de la Peña” meteorite fall: bolide description, recovery, and classification. Meteoritics Planetary Sci (Suppl 39):A106

    Google Scholar 

  • Trigo-Rodríguez JM, B´orovička, Spurný, JL, Ortiz JA, Docobo AJ, Castro-Tirado, Llorca J (2006) The Villalbeto de la Peña meteorite fall: II. Determination of the atmospheric trajectory and orbit, Meteoritics & Planetary Science 41:505–517

    Article  ADS  Google Scholar 

  • Tsvetkov VI (1987) Sikhote Alin meteorite shower: fragmentation, scattering, trajectory and orbit. Meteoritika 46:3–10 (in Russian)

    ADS  Google Scholar 

  • Wacker JF, Hildebrand AR, Brown P et al (1998) The Juancheng and El Paso superbolides February 15, 1997, and October 9, 1997: preatmospheric meteoroid sizes. Meteoritics Planetary Sci 33(4):160

    ADS  Google Scholar 

  • Walsh JB, Zhu W (2004) Sliding of a rough surface under oblique loading. J Geophys Res 109. B05208, doi:10.1029/2004JB003027

    Google Scholar 

  • Weibull W (1951) A statistical distribution function of wide applicability. J Apple Mech 10:140–147

    Google Scholar 

  • Williams DR, Wetherill GW (1994) Size distribution of collisionally evolved asteroidal populations—analytical solution for self-similar collision cascades. Icarus 107:117–128

    Article  ADS  Google Scholar 

  • Zahnle K (1992) Airburst origin of dark shadows on Venus. J Geophys Res 97(E8):10243–10255

    Article  ADS  Google Scholar 

  • Zel’dovitch Ya B, Raiser Yu P (1967) Physics of shock waves and high-temperature hydrodynamic phenomena. Academic Press, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 springer

About this chapter

Cite this chapter

Popova, O., Nemchinov, I. (2008). Bolides in the Earth Atmosphere. In: Adushkin, V., Nemchinov, I. (eds) Catastrophic Events Caused by Cosmic Objects. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6452-4_4

Download citation

Publish with us

Policies and ethics