Skip to main content

Terrestrial Applications of Multiangle Remote Sensing

  • Chapter
Advances in Land Remote Sensing

Multiangle remote sensing is an emerging technology that enables important applications of terrestrial (land) remote sensing, in ecology and land cover mapping as well as in a variety of disciplines in the Earth Sciences. Advances have been realized in three major areas: the measurement or characterization of canopy structure and surface roughness; the separation of the contributions of the upper canopy and the background in forest and shrub-dominated environments; and improvements in the accuracy of classifications of land cover in environments as dissimilar as deserts and ice sheets. The focus of the chapter is on land surface applications of solar wavelength multiangular data acquired from the air and space; it avoids discussion of methods for retrieval of essentially radiometric quantities such as shortwave albedo, bidirectional and hemispheric reflectance factors (Chapter 9), retrieval of land surface temperature (Chapter 4), theoretical radiative transfer modeling studies, and those based uniquely on field measurements. The chapter introduces existing instruments providing multiangle data; a review of work performed under the broad headings Empirical and Synergistic Approaches, Radiative Transfer, The RAMI Exercise, Canopy Openness, Clumping Index, Structural Scattering Index, Geometric-Optical and Hybrid Models, Direction and Wavelength, The Background in Canopy Reflectance Modeling, Land Cover and Community Type Mapping, Snow and Ice, and Dust Emissions; and finally, brief discussions under the headings Near-Simultaneous and Accumulated Sampling, Angular Sampling, and Scale and Multiangle Observation. The emphasis is on the added value that existing solar wavelength multiangular data can provide to applications. There has been a wide array of approaches, all of which have resulted in studies demonstrating progress and many of which show the advantages possible over the use of purely nadir-spectral techniques, particularly for accessing measures of canopy structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abuelgasim AA, Gopal S, Irons JR, Strahler AH (1996) Classification of ASAS multi-angle and multispectral measurements using artificial neural networks. Remote Sens. Environ. 57 (2):79–87

    Article  Google Scholar 

  • Asner GP (2000) Contributions of multi-view angle remote sensing to land surface and biogeo-chemical research. Remote Sens. Rev. 18:137–162

    Google Scholar 

  • Bach H, Begiebing S, Verhoef W (2005) Analyses of hyperspectral and directional CHRIS data for monitoring of agricultural crops using the canopy reflectance model SLC. Proc. 9th Int. Symp. on Physical Measurements and Signature in Remote Sens. (ISPMSRS 2005), vol. I, Int. Soc. Photogrammetry and Remote Sens., 53–55

    Google Scholar 

  • Bacour C, Br éon F-M (2005) Variability of biome reflectance directional signatures as seen by POLDER. Remote Sens. Environ. 98:80–95

    Article  Google Scholar 

  • Bacour C, Jacquemoud S, Leroy M, Hautecoeur O, Weiss M, Prévot L, Bruguier N, Chauki H (2002) Reliability of the estimation of vegetation characteristics by inversion of three canopy reflectance models on airborne POLDER data. Agronomie 22:555–565

    Article  Google Scholar 

  • Barnsley MJ, Settle JJ, Cutter MA, Lobb DR, Teston F (2004) The PROBA/CHRIS mission: a low-cost smallsat for hyperspectral multiangle observations of the Earth surface and atmosphere. IEEE Trans. Geosci. Remote Sens. 42(7):1512–1520

    Article  Google Scholar 

  • Bicheron P, Leroy M, Hautecoeur O, Bréon F-M (1997) Enhanced discrimination of boreal forest covers with directional reflectances from the airborne POLDER instrument. J. Geophys. Res. 102 (D24):29517–29528

    Article  Google Scholar 

  • Bréon F-M, Maignan F, Leroy M, Grant I (2002) Analysis of hot spot directional signatures measured from space. J. Geophys. Res. 107(D16):10.029/2001JD001094

    Article  Google Scholar 

  • Bruegge CJ, Chrien NL, Ando RR, Diner DJ, Abdou WA, Helmlinger MC, Pilorz SH, Thome KJ (2002) Early validation of the Multi-angle Imaging SpectroRadiometer (MISR) radiometric scale. IEEE Trans. Geosci. Remote Sens. 40(7):1477–1492

    Article  Google Scholar 

  • Camacho-de Coca F, García-Haro FJ, Martínez B, Meliá J (2002) An operational strategy for retrieval of vegetation products from SEVIRI and AVHRR-3 data. Proc. LSA SAF Training Workshop, Ed. EUMETSAT, Darmstadt, Lisbon, July 8–10, pp 1–10

    Google Scholar 

  • Camacho-de Coca F, Bréon FM, Leroy M, Garcia-Haro FJ (2004) Airborne measurement of hot spot reflectance signatures. Remote Sens. Environ. 90:63–75

    Article  Google Scholar 

  • Canisius F, and Chen JM (2007) Retrieving vegetation background reflectance from Multi-angle Imaging SpectroRadiometer (MISR) data. Remote Sens. Environ. 107(1-2):312–321

    Article  Google Scholar 

  • Casa R, Jones HG (2005) LAI retrieval from multiangular image classification and inversion of a ray tracing model. Remote Sens. Environ. 98:414–428

    Article  Google Scholar 

  • Chen JM, Liu J, Leblanc SG, Lacaze R, Roujean J-L (2003) Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption. Remote Sens. Environ. 84:516–525

    Article  Google Scholar 

  • Chen JM, Menges CH, Leblanc SG (2005) Global mapping of foliage clumping index using multi-angular satellite data. Remote Sens. Environ. 97:447–457

    Article  Google Scholar 

  • Chopping MJ (2006) Progress in retrieving canopy structure parameters from NASA multi-angle remote sensing. Proc. Int. Geosci. Remote Sens. Symp. 2006 and 27th Canadian Remote Sens. Symp., Denver, CO, July 31-August 4, 2006

    Google Scholar 

  • Chopping M, Diner D (2005) Workshop on Ecological Modeling using NASA Multi-angle Remote Sensing. The Earth Observer, NASA/GSFC, November-December 2005, 17(6):32–34

    Google Scholar 

  • Chopping MJ, Rango A, Ritchie JC (2002) Improved semi-arid community type differentiation with the NOAA AVHRR via exploitation of the directional signal. IEEE Trans. Geosci. Remote Sens. 40(5):1132–1149

    Article  Google Scholar 

  • Chopping MJ, Rango A, Havstad KM, Schiebe FR, Ritchie JC, Schmugge TJ, French A, Su L, McKee L, Davis RM (2003) Canopy attributes of Chihuahuan Desert grassland and transition communities derived from multi-angular airborne imagery. Remote Sens. Environ. 85 (3):339–354

    Article  Google Scholar 

  • Chopping M, Martonchik JVM, Rango A, Peters DPC, Su L, Laliberte A (2005) Geometricoptical modeling of desert grassland canopy structure with MISR. Proc. 9th Int. Symp. on Physical Measurements and Signature in Remote Sens. (ISPMSRS 2005), vol. I, Int. Soc. Photogrammetry and Remote Sens. 141–143

    Google Scholar 

  • Chopping M, Su L, Rango A, Martonchik JV, Peters DPC, Laliberte A (2006a) Remote sensing of woody shrub cover in desert grasslands using MISR with a geometric-optical canopy re-flectance model, ISPMSRS’05. Special Issue of Remote Sens. Environ.

    Google Scholar 

  • Chopping M, Su L, Laliberte A, Rango A, Peters DPC, Kollikathara N (2006b) Mapping shrub abundance in desert grasslands using geometric-optical modeling and multiangle remote sensing with CHRIS/Proba. Remote Sens. Environ. 104(1):62–73

    Article  Google Scholar 

  • Chopping MJ, Su L, Laliberte A, Rango A, Peters DPC, Martonchik JV (2006c) Mapping woody plant cover in desert grasslands using canopy reflectance modeling and MISR data. Geophys. Res. Lett., 33, L17402, doi:10.1029/2006GL027148

    Article  Google Scholar 

  • Chopping M, Moisen G, Su L, Laliberte A, Rango A, Martonchik JV, and Peters DPC (2007) Large area mapping of southwestern forest crown cover, canopy height, and biomass using the NASA Multiangle Imaging SpectroRadiometer, Remote Sens. Environ, in press.

    Google Scholar 

  • Combal B, Baret F, Weiss M (2002) Improving canopy variables estimation from remote sensing data by exploiting ancillary information. Case study on sugar beet canopies. Agronomie 22:205–215

    Google Scholar 

  • Di Girolamo L, Wilson MJ (2003) A first look at band-differenced angular signatures for cloud detection from MISR. IEEE Trans. Geosci. Remote Sens. 41(7):1730–1734

    Article  Google Scholar 

  • Diner DJ, Beckert JC, Reilly TH, Bruegge CJ, Conel JE, Kahn RA, Martonchik JV, Ackerman TP, Davies R, Gerstl SAW, Gordon HR, Muller J-P, Myneni RB, Sellers PJ, Pinty B, Verstraete MM (1998) Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview. IEEE Trans. Geosci. Remote Sens. 36(4):1072–1087

    Article  Google Scholar 

  • Diner DJ, Asner GP, Davies R, Knyazikhin Y, Muller J-P, Nolin AW, Pinty B, Schaaf CB, Stroeve J (1999) New directions in Earth observing: scientific applications of multi-angle remote sensing. Bull. Am. Meteorol. Soc. 80(11):2209–2229

    Article  Google Scholar 

  • Diner DJ, Braswell BH, Davies R, Gobron N, Hu J, Jin Y, Kahn RA, Knyazikhin Y, Loeb N, Muller J-P, Nolin AW, Pinty B, Schaaf CB, Seiz G, Stroeve J (2005) The value of multiangle measurements for retrieving structurally and radiatively consistent properties of clouds, aerosols, and surfaces. Remote Sens. Environ. 97:495–518

    Article  Google Scholar 

  • Disney M, Lewis P, Saich P (2006) 3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave domains. Remote Sens. Environ. 100:114–132

    Article  Google Scholar 

  • Engelsen O, Pinty B, Verstraete MM, Martonchik JV (1996) Parametric bidirectional reflectance factor models: evaluation improvements and applications. Report EUR16426EN European Commission Joint Research Centre Space Applications Institute, Ispra, Italy, 120pp

    Google Scholar 

  • European Space Agency (1999) Exploitation of CHRIS data from the Proba mission for science and applications. Experimenters’ Handbook Issue 4: Baseline Programme, Scientific Campaign Unit, ESA-ESTEC European Space Agency (2006) Achievements of the Proba mission: projects and publications at: http://earth.esa.int/pub/ESA DOC/PROBA/ProjectsandPublications.html

  • Gao F, Schaaf CB, Strahler AH, Jin Y, Li X (2003) Detecting vegetation structure using a kernel-based BRDF model. Remote Sens. Environ. 86:198–205

    Article  Google Scholar 

  • García-Haro FJ, Camacho-de Coca F, Meliá J (2006) A directional spectral mixture analysis method. Application to multiangular airborne measurements. IEEE Trans. Geosci. Remote Sens. 44:365–377

    Article  Google Scholar 

  • Gemmell F (2000) Testing the utility of multi-angle spectral data for reducing the effects of background spectral variations in forest reflectance model inversion. Remote Sens. Environ. 72:46–63

    Article  Google Scholar 

  • Gobron N, Pinty B, Verstraete MM, Govaerts Y (1997) A semi-discrete model for the scattering of light by vegetation. J. Geophys. Res. 102:9431–9446

    Article  Google Scholar 

  • Gobron N, Pinty B, Verstraete MM, Martonchik JV, Knyazikhin Y, Diner DJ (2000) Potential of multiangular spectral measurements to characterize land surfaces: conceptual approach and exploratory application. J. Geophys. Res. 105(D13):17539–17549, 10.1029/2000JD900154

    Article  Google Scholar 

  • Gobron N, Pinty B, Verstraete MM, Widlowski J-L, Diner DJ (2002) Uniqueness of multiangular measurements part 2: joint retrieval of vegetation structure and photosynthetic activity from MISR. IEEE Trans. Geosci. Remote Sens. 40:1574–1592

    Article  Google Scholar 

  • Hansen MC, DeFries RS, Townshend JRG, Sohlberg RA, Dimiceli C, Carroll M (2002) Towards an operational MODIS continuous field of percent tree cover algorithm: examples using AVHRR and MODIS data. Remote Sens. Environ. 83:303–319

    Article  Google Scholar 

  • Heiskanen J (2006) Tree cover and height estimation in the Fennoscandian tundra-taiga transition zone using multiangular MISR data. Remote Sens. Environ. doi:10.1016/j.rse.2006.03.015

    Google Scholar 

  • Hendriks JPM, Pellikka P (2004) Multiangular reflectance of a glacier surface. Presentation at the 2004 Joint Assembly (CGU, AGU, SEG & EEGS), Montréal, Canada, May 17–23, 2004

    Google Scholar 

  • Hese S, Lucht W, Schmullius C, Barnsley M, Dubayah R, Knorr D, Neumann K, Riedel T, Schröter K (2005) Global biomass mapping for an improved understanding of the CO2 balance - the Earth observation mission Carbon-3D. Remote Sens. Environ. 94:94–104

    Article  Google Scholar 

  • Hu J, Tan B, Shabanov N, Crean KA, Martonchik JV, Diner DJ, Knyazikhin Y, Myneni RB (2003) Performance of the MISR LAI and FPAR algorithm: a case study in Africa. Remote Sens. Environ. 88:324–340

    Article  Google Scholar 

  • Hyman AH, and Barnsley MJ (1997) On the potential for land cover mapping from multiple view angle (MVA) remotely-sensed images. In: Observations and Interactions: Proc. 23rd Annu. Conf. Exhibition Remote Sens. Soc., 135–140

    Google Scholar 

  • Jenkins J, Ollinger S, Braswell R, Martin M, Plourde L, Smith M-L, et al. (2004) Detecting patterns of canopy structure and carbon uptake with multi-angle remote sensing. Presentation at MISR Science Team Meeting, Pasadena, CA, December 9, 2004

    Google Scholar 

  • Kimes DS, Ranson KJ, Sun G, Blair JB (2006) Predicting lidar measured forest vertical structure from multi-angle spectral data. Remote Sens. Environ. 100(4):503–511

    Article  Google Scholar 

  • King MD, Kaufman YJ, Tanré D, Nakajima T (1999) Remote sensing of tropospheric aerosols from space: past, present, and future. Bull. Am. Meteorol. Soc. 80(11):2229–2260

    Article  Google Scholar 

  • Knyazikhin Y, Kranigk J, Myneni RB, Panferov O, Gravenhorst G (1998a). Influence of small-scale structure on radiative transfer and photosynthesis in vegetation cover. J. Geophys. Res., D: Atmospheres 103:6133–6144

    Article  Google Scholar 

  • Knyazikhin Y, Martonchik JV, Myneni RB, Diner DJ, Running SW (1998b) Synergistic algorithm for estimating vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from MODIS and MISR data. J. Geophys. Res. 103(D24):32257–32276

    Article  Google Scholar 

  • Knyazikhin Y, Martonchik JV, Diner DJ, Myneni RB, Verstraete M, Pinty B, Gobron N (1998c) Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere-corrected MISR data. J. Geophys. Res. 103(D24):32239–32256

    Article  Google Scholar 

  • Koetz B, Kneub ühler M, Widlowski J-L, Morsdorf F, Schaepman M, Itten K (2005a) Assessment of canopy structure and heterogeneity from multi-angular CHRIS-PROBA data. 9th Int. Symp.on Physical Measurements and Signatures in Remote Sens. (ISPMSRS), Beijing, China, 2005,76–78

    Google Scholar 

  • Koetz B, Kneub ühler M, Schopfer J, Schaepman M, Itten K (2005b) Influence of changing back-ground on CHRIS/Proba data over an heterogeneous canopy. Proc. EARSeL 4th Workshop on Imaging Spectroscopy, Warsaw, Poland, 1–9

    Google Scholar 

  • Lacaze R, Chen JM, Roujean J-L, Leblanc SG (2002) Retrieval of vegetation clumping index using hot spot signatures measured by POLDER instrument. Remote Sens. Environ. 79:84–95

    Article  Google Scholar 

  • Laurent B, Marticorena B, Bergametti G, Chazette P, Maignan F, Schmechtig C (2005) Simulation of the mineral dust emission frequencies from desert areas of China and Mongolia using an aerodynamic roughness length map derived from the POLDER/ADEOS 1 surface products. J. Geophys. Res. 110(D18):D18S04, doi:10.1029/2004JD005013

    Article  Google Scholar 

  • Lavergne T, Kaminski T, Pinty B, Taberner M, Gobron N, Verstraete M, Vossbeck M, Widlowski J-L, Giering R (2007) Application to MISR land products of an RPV model inversion package using adjoint and Hessian codes. Remote Sens. Environ. 107(1-2):362–375

    Article  Google Scholar 

  • Li X, Strahler AH (1985) Geometric-optical modeling of a conifer forest canopy. IEEE Trans. Geosci. Remote Sens. 23:705–721

    Article  Google Scholar 

  • Li X, Strahler AH (1992) Geometric-optical bidirectional reflectance modeling of the discrete crown vegetation canopy: effect of crown shape and mutual shadowing. IEEE Trans. Geosci. Remote Sens. 30(2):276–291

    Article  Google Scholar 

  • Li X, Strahler AH, Woodcock CE (1995) A hybrid geometric optical-radiative transfer approach for modeling albedo and directional reflectance of discontinuous canopies. IEEE Trans. Geosci. Remote Sens. 33:466–480

    Article  Google Scholar 

  • Liang S (2004) Quantitative Remote Sensing of Land Surfaces. Wiley, Hoboken, NJ, 534 pp

    Google Scholar 

  • Liang S, Strahler AH, Barnsley MJ, Borel CC, Gerstl SAW, Diner DJ, Prata AJ, Walthall CL (2000) Multiangle remote sensing: past, present and future. In:, Liang S and Strahler AH (eds), The Special Issue on Land Surface Bidirectional Reflectance Distribution Function (BRDF); Recent Advances and Future Prospects, Remote Sens. Rev. 18:83–102

    Google Scholar 

  • Liu X, Kafatos M (2007) MISR multi-angular spectral remote sensing for temperate forest mapping at 1.1-km resolution. International Journal of Remote Sensing 28(2):459–464

    Article  Google Scholar 

  • Maignan F, Bréon F-M, and Lacaze R (2004) Bidirectional reflectance of Earth targets: evaluation of analytical models using a large set of spaceborne measurements with emphasis on the hot spot. Remote Sens. Environ. 90:210–220

    Article  Google Scholar 

  • Marticorena B, Chazette P, Bergametti G, Dulac F, Legrand M (2004) Mapping the aerodynamic roughness length of desert surfaces from the POLDER/ADEOS bi-directional reflectance product. Int. J. Remote Sens. 25:603–626

    Article  Google Scholar 

  • Martonchik JV, Bruegge CJ, Strahler A (2000) A review of reflectance nomenclature used in remote sensing. Remote Sens. Rev. 19:9–20

    Google Scholar 

  • NASA (2000) NASA Earth Science Enterprise Research Strategy for 2000–2010

    Google Scholar 

  • Ni W, Li X (2000) A coupled vegetation - soil bidirectional reflectance model for a semi-arid landscape. Remote Sens. Environ. 74:113–124

    Article  Google Scholar 

  • Ni-Meister W (2005) 3D vegetation structure extraction from lidar remote sensing. Proc. 9th Int. Symp. on Physical Measurements and Signature in Remote Sens. (ISPMSRS 2005), vol. I, Int. Soc. Photogrammetry and Remote Sens. 47–49

    Google Scholar 

  • Nicodemus FE, Richmond JC, Hsia JJ, Ginsberg IW, Limperis T (1977) Geometrical Considerations and Nomenclature for Reflectance. In: National Bureau of Standards, US Department of Commerce, Washington, DC

    Google Scholar 

  • Nolin AW (2004) Towards retrieval of forest cover density over snow from the Multi-angle Imaging SpectroRadiometer (MISR). Hydrol. Process. 18:3623–3636

    Article  Google Scholar 

  • Nolin AW, Payne M (2006) Classification of glacier zones in Western Greenland using albedo and surface roughness from the Multi-angle Imaging SpectroRadiometer (MISR). Remote Sens. Environ. 107(1-2):264–275

    Article  Google Scholar 

  • Nolin AW, Fetterer FM, Scambos TA (2002) Surface roughness characterizations of sea ice and ice sheets: case studies with MISR data. IEEE Trans. Geosci. Remote Sens. 40(7):1605–1615

    Article  Google Scholar 

  • Phinn S, Franklin J, Hope A, Stow D, Huenneke L (1996) Biomass distribution mapping using airborne digital video imagery and spatial statistics in a semi-arid environment. J. Environ. Manage. 47:139–164

    Article  Google Scholar 

  • Pinty B, Gobron N, Widlowski J-L, Gerstl SAW, Verstraete MM, Antunes M, Bacour C, Gascon F, Gastellu J-P, Goel N, Jacquemoud S, North P, Qin W, Thompson R (2001) Radiation Transfer Model Intercomparison (RAMI) exercise. J. Geophys. Res. 106:11937–11956

    Article  Google Scholar 

  • Pinty B, Widlowski J-L, Gobron N, Verstraete MM, Diner DJ (2002) Uniqueness of multiangular measurements - Part I: an indicator of subpixel surface heterogeneity from MISR. IEEE Trans. Geosci. Remote Sens. 40(7):1560–1573

    Article  Google Scholar 

  • Pinty B, Widlowski J-L, Taberner M, Gobron N, Verstraete MM, Disney M, Gascon F, Gastellu J-P, Jiang L, Kuusk A, Lewis P, Li X, Ni-Meister W, Nilson T, North P, Qin W, Su L, Tang S, Thompson R, Verhoef W, Wang H, Wang J, Yan G, Zang H (2004a) RAdiation transfer Model Intercomparison (RAMI) exercise: results from the second phase. J. Geophys. Res. 109, D06210 101029/2003JD004252

    Article  Google Scholar 

  • Pinty B, Gobron N, Widlowski J-L, Lavergne T, Verstraete MM (2004b) Synergy between 1-D and 3-D radiation transfer models to retrieve vegetation canopy properties from remote sensing data. J. Geophys. Res. 109, D21205

    Article  Google Scholar 

  • Privette JL, Deering D, Wickland D (1997) Report on the workshop on multiangular remote sensing for environmental applications. NASA Technical Memorandum 113202, 54pp.

    Google Scholar 

  • Rahman H, Pinty B, Verstraete MM (1993) Coupled surface-atmosphere reflectance (CSAR) model. 2. Semiempirical surface model usable with NOAA Advanced Very High Resolution Radiometer data. J. Geophys. Res. 98:20791–20801

    Google Scholar 

  • Roujean J-L, Leroy M, Deschamps P-Y (1992) A bidirectional reflectance model of the Earth’s surface for the correction of remote sensing data. J. Geophys. Res. 97:20455–20468

    Google Scholar 

  • Roujean J-L, Tanré D, Bréon F-M, Deuzé J-L (1997) Retrieval of land surface parameters from air- borne POLDER bidirectional reflectance distribution function during HAPEX-Sahel. J. Geophys. Res. 102:11201–11218

    Article  Google Scholar 

  • Sandmeier S, Deering DW (1999) Structure analysis and classification of boreal forests using air-borne hyperspectral BRDF data from ASAS. Remote Sens. Environ. 69(3):281–295

    Article  Google Scholar 

  • Scarth P, Phinn S (2000) Determining forest structural attributes using an inverted geometric-optical model in mixed eucalypt forests, Southeast Queensland, Australia. Remote Sens. Environ. 71:141–157

    Article  Google Scholar 

  • Schaepman M (2006) Spectrodirectional remote sensing: from pixels to processes. Int. J. Appl. Earth Obs. Geoinformation 6(3-4):271–282

    Article  Google Scholar 

  • Schaepman-Strub G, Schaepman M, Painter T, Dangel S, Martonchik J (2006) Reflectance quantities in optical remote sensing - definitions and case studies. Remote Sens. Environ. 103 (1):27–42

    Article  Google Scholar 

  • Smolander S, Stenberg P (2005) Simple parameterizations of the radiation budget of uniform broadleaved and coniferous canopies. Remote Sens. Environ. 94(3):355–363

    Article  Google Scholar 

  • Strahler AH, Jupp DLB, Woodcock CE, Li X (2005) The discrete-object scene model and its application in remote sensing. Proc. 9th International Symp. on Physical Measurements and Signatures in Remote Sens. 1:166–168

    Google Scholar 

  • Su L, Chopping MJ, Rango A, Martonchik JV, Peters DPC (2007) Support vector machines for recognition of semi-arid vegetation types using MISR multi-angle imagery. Remote Sens. Environ. 107(1-2):299–311

    Article  Google Scholar 

  • Verhoef W (2005) Earth observation model sensitivity analysis to assess mission performances in terms of geo-biophysical variable retrieval accuracies. Proc. 9th Int. Symp. on Physical Measurements and Signature in Remote Sens. (ISPMSRS 2005), Beijing, October 17–19, 2005, vol. I, Int. Soc. Photogrammetry and Remote Sens. 324–327

    Google Scholar 

  • Wanner W, Li X, Strahler AH (1995) On the derivation of kernels for kernel-driven models of bidirectional reflectance. J. Geophys. Res. 100:21077–21090

    Article  Google Scholar 

  • Weiss M, Baret F, Myneni R, Pragnere A, Knyazikhin Y (2000) Investigation of a model inversion technique for the estimation of crop characteristics from spectral and directional reflectance data. Agronomie 20:3–22

    Article  Google Scholar 

  • Widlowski J-L, Pinty B, Gobron N, Verstraete MM, Davis AB (2001) Characterization of surface heterogeneity detected at the MISR/TERRA subpixel scale. Geophys. Res. Lett. 28 (24):4639–4642

    Article  Google Scholar 

  • Widlowski J-L, Pinty B, Gobron N, Verstraete M, Diner DJ, Davis B (2004) Canopy structure parameters derived from multi-angular remote sensing data for terrestrial carbon studies. Climatic Change 67:403–415

    Article  Google Scholar 

  • Widlowski J-L, Pinty B, Lavergne T, Verstraete MM, Gobron N (2005) Using 1-D models to interpret the reflectance anisotropy of 3-D canopy targets: issues and caveats. IEEE Trans.Geosci. Remote Sens. 43:2008–2017, doi10.1109/TGRS.2005.853718

    Article  Google Scholar 

  • Widlowski J-L, Taberner M, Pinty B, Bruniquel-Pinel V, Disney M, Fernandes R, Gastellu-Etchegorry J-P, Gobron N, Kuusk A, Lavergne T, Leblanc S, Lewis P, Martin E, Mottus M, North PJR, Qin W, Robustelli M, Rochdi N, Ruiloba R, Soler C, Thompson R, Verhoef W, Verstraete MM, Xie D (2006) The third RAdiation transfer Model Intercomparison (RAMI) exercise: documenting progress in canopy reflectance modelling. J. Geophys. Res. 112 (D9):D09111. doi:10.1029/2006JD007821

    Article  Google Scholar 

  • Wiscombe W (2000) Formation Flying, Leonardo, Balloon-ERB and Triana: Forays to the Frontier, NASA/NIAC workshop presentation, November 7, 2000, online at http://www.niac.usra edu/files/library/meetings/misc/nov00 wks/wwiscombe.pdf, last access 06/14/06.

  • Zhang X, Schaaf CB, Gao F, Friedl MA, Strahler AH, Hodges JCF (2000) Mapping land cover and green vegetation abundance using MODIS-like data: a case study of New England. Proc. Int. Geosci. Remote Sens. Symp. 2000: vol 5, pp 2005–2007

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Chopping, M.J. (2008). Terrestrial Applications of Multiangle Remote Sensing. In: Liang, S. (eds) Advances in Land Remote Sensing. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6450-0_5

Download citation

Publish with us

Policies and ethics