Skip to main content

Multi-angular Thermal Infrared Observations of Terrestrial Vegetation

  • Chapter
Advances in Land Remote Sensing

This chapter reviews the experimental evidence on the anisotropy of emittance by the soilvegetation system and describes the interpretation of this signal in terms of the thermal heterogeneity and geometry of the canopy space. Observations of the dependence of exitance on view angle by means of ground-based goniometers, airborne and space-borne imaging radiometers are reviewed first to conclude that under most conditions a two-components, i.e., soil and foliage, model of observed Top Of Canopy (TOC) brightness temperature is adequate to interpret observations. Particularly, airborne observations by means of the Airborne Multi-angle TIR/VNIR Imaging System (AMTIS) and space-borne observations by means of the Along Track Scanning Radiometers (ATSR-s) are described and examples presented. Modeling approaches to describe radiative transfer in the soil- vegetation-atmosphere system, with emphasis on the thermal infrared region, are reviewed. Given the dependence of observed TOC brightness temperature on leaflevel radiation and heat balance, energy and water transfer in the soil-vegetation- atmosphere system must be included to construct a realistic model of exitance by soil-vegetation systems. A detailed modeling approach of radiation, heat and water transfer is first described then applied to generate realistic, multi-angular image data of terrestrial landscapes. Finally, a generic algorithm to retrieve soil and foliage component temperatures from Top Of Atmosphere (TOA) radiometric data is described. Column water vapor and aerosols optical depth are estimated first, to obtain TOC radiometric data from the TOA multi-angular and multi-spectral observations.

Then vegetation fractional cover and soil and foliage component temperatures are determined by inverting a simple two-components mixture model. The accuracy of all elements of the algorithm is evaluated by using a combination of actual measurements and synthetic radiometric data. Although applicable to multi-angular radiometric data irrespective of spatial resolution, the approach presented would be particularly relevant if space-borne observations with a footprint of 100×100m or better would be available. Observing systems, presently at the design stage, with this capability are briefly described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertson J, Katul G, Wiberg P (2001) Relative importance of local and regional controls on coupled water, carbon, and energy fluxes. Adv. Water Resour. 24:1103–1118

    Google Scholar 

  • Alishouse JC, Snyder SA, Vongsathorn J, Ferraro RR (1990) Determination of oceanic total precipitable water from the SSM/I. IEEE Trans. Geosci. Remote Sens. 28:811–816

    Google Scholar 

  • Avissar R, Pielke RA (1989) A parameterization of heterogeneous land-surface for atmospheric numerical models and its impact on regional meteorology. Month. Weather Rev. 117:2113-2136

    Google Scholar 

  • Balick LK, Hutchison BA, Smith JA, McGuire MJ (1987) Directional thermal exitance distributions of a deciduous forest in summer. IEEE Trans. Geosci. Remote Sens. 25:410–412

    Google Scholar 

  • Baret F, Clevers JPW, Stevens MD (1995) The robustness of canopy gap fraction estimates from the red and near infrared reflectance: a comparison between approaches for sugar beet canopies. Remote Sens. Environ. 54:141–151

    Google Scholar 

  • Beck A, Anderson GP, Acharya, PK, et al (1999) MODTRAN4 User’s Manual, Air Force Research Laboratory, Hanscom AFB, MA

    Google Scholar 

  • Becker F, Li Z-L (1990) Towards a local split window method over land surfaces. Int. J. Remote Sens. 11(3):369–393

    Google Scholar 

  • Becker F, Li Z-L (1995) Surface temperature and emissivity at various scales: definition, measurement and related problems. Remote Sens. Rev. 12:225–253

    Google Scholar 

  • Becker F (1987) The impact of spectral emissivity on the measurement of land surface temperature from a satellite. Int. J. Remote Sens. 8:1509–1522

    Google Scholar 

  • Becker F, Ramanantsizehena P, Stoll M-P (1985) Angular variation of the bidirectional reflectance of bare soils in the thermal infrared band. Appl. Opt. 24(3):363–375

    Google Scholar 

  • Beljaars ACM, Holtslag AAM (1991) Flux parameterization over land surface for atmospheric models. J. Appl. Meteorol. 30:327–341

    Google Scholar 

  • Blad BL, Rosenberg NJ (1976) Evaluation of resistance and mass transport evapotranspiration models requiring canopy temperature data. Agron. J. 68:764–769

    Google Scholar 

  • Borel CC, Gerstl SA, Powers BJ (1991) The radiosity method in optical remote sensing of structured 3-D surfaces. Remote Sens. Environ. 36:13–44

    Google Scholar 

  • Bowen IS (1926) The ratio of heat losses by conduction and by evaporation from any water surface. Phys. Rev. 27:779–787

    Google Scholar 

  • Caselles V, Sobrino JA, Coll C (1992) A physical model for interpreting the land surface temperature obtained by remote sensors over incomplete canopies. Remote Sens. Environ. 39:203–211

    Google Scholar 

  • CESBIO, 2006, DART User Manual v1.1.

    Google Scholar 

  • Chen JM, Leblanc S (1997) A 4-scale bidirectional reflection model based on canopy architecture. IEEE Trans. Geosci. Remote Sens. 35:1316–1337

    Google Scholar 

  • Chesters D, Uccellini LW, Robinson P (1983) Low-level water vapor fields from the VISSR atmospheric sounder (VAS) split-window channels. J. Appl. Meteorol. 22:725–743

    Google Scholar 

  • Choudhury BJ, Reginato RJ, Idso SB (1986) An analysis of infrared temperature observations over wheat and calculation of the latent heat flux. Agric. Forest Meteorol. 37:75–88

    Google Scholar 

  • Colton AL (1996) Effective thermal parameters for a heterogeneous land surface. Remote Sens. Environ. 57:143–160

    Google Scholar 

  • De Bruin HAR, Jacobs CMJ (1989) Forest and regional scale processes. Phil. Trans. R. Met Soc. B (324):393-406

    Google Scholar 

  • Feddes RA (1971) Water, heat and crop growth. Ph.D. thesis, Wageningen, Agricultural University, The Netherlands. H. Veenman, Zonen, Wageningen, The Netherlands, 184pp

    Google Scholar 

  • Field CB, Mooney HA (1986) The photosynthesis - nitrogen relationship in wild plants. In: TJ Givnish (ed) On the economy of plant form and function. Cambridge University Press, New York, pp 25–55

    Google Scholar 

  • Flowerdew RJ, Haigh JD (1997) Retrieving land surface reflectances using the ATSR-2: a theoretical study. J. Geophys. Res. 102(D14):17163–17171

    Google Scholar 

  • Francois C (2002) The potential of directional radiometric temperatures for monitoring soil and leaf temperature and soil moisture status. Remote Sens. Environ. 80:122–133

    Google Scholar 

  • François C, Ottlè C (1994) Estimation of the angular variation of the sea surface emissivity with the ATSR/ERS-1 data, Remote Sensing of Environment, 48:302–308

    Google Scholar 

  • Francois C, Ottle C (1996) Atmospheric corrections in the thermal infrared: global and water vapor dependent split-window algorithms-applications to ATSR and AVHRR data. IEEE Trans. Geosci. Remote Sens. 34(2):457–470

    Google Scholar 

  • Francois C, Ottle C, Prevot L (1997) Analytical parameterization of canopy directional emissivity and directional radiance in thermal infrared. Application on the retrieval of soil and foliage temperatures using two directional measurements. Int. J. Remote Sens. 18(12):2587–2612

    Google Scholar 

  • Frouin R, Deschamps P-Y, Lecomte P (1990) Determination from space of atmospheric total water vapor amounts by differential absorption near 940 nm: theory and airborne verification. J. Appl. Meteorol. 29:448–460

    Google Scholar 

  • Galeazzi C, Gamache M, Hollinger A, De Cosmo V, Menenti M, Staenz K, Beck J, Bergeron M, Ananasso C, Loizzo R, Maszkiewicz M (2006) ASI-CSA joint development phase for a hyperspectral mission. In: I. Reusen and J. Cools (eds.) Imaging Spectroscopy: Innovation in Environmental Research. EARSEL, Paris:1–11

    Google Scholar 

  • Gastellu-Etchegorry JP, Martin E, Gascon F (2004) DART: a 3D model for simulating satellite images and studying surface radiation budget. Int. J. Remote Sens. 25(2):73–96

    Google Scholar 

  • Gerstl SAW, Borel CC (1992) Principles of the radiosity method versus radiative transfer for canopy reflectance modelling. IEEE Trans. Geosci. Remote Sens. 30(2):271–275

    Google Scholar 

  • Gerstl SAW, Borel CC, Powers BJ (1991) The radiosity method in optical remote sensing of structured 3D surfaces. Remote Sens. Environ. 36:13–44

    Google Scholar 

  • Guillevic P, Gastellu-Etchegorry JP, Demarty J, Prévot L (2002)Thermal infrared radiative transfer within three-dimensional vegetation. J. Geophys. Res. (Atmos.) 108(D8):ACL 6-1, CiteID 4248, doi:10.1029/2002JD002247

    Google Scholar 

  • Hall AE, Canell GH, Lawton HW (1979) Agriculture in semi-arid environments. Springer, Berlin-Heidelberg, New York, 340pp

    Google Scholar 

  • Hapke B (1981) Bidirectional reflectance spectroscopy. 1. Theory. J. Geophys. Res. 86:3039–3054

    Google Scholar 

  • Hatfield JL, Reginato RJ, Idso SB (1984) Evaluation of canopy temperature – evapotranspiration models over various crops. Agric. Meteorol. 32:41–53

    Google Scholar 

  • Hatfield JL (1991) Development of agricultural crops and practices adapted to arid land conditions, 1991. Proc. SCS Multiconference on AI simulation: Agricultural Crops and Practices Adapted to Arid Lands. University of New Mexico Press, Albuquerque, pp 39–60

    Google Scholar 

  • Huband NDS, Monteith JL (1986) Radiative surface temperature and energy balance of a wheat canopy. Bound.-Lay. Meteorol. 36:1–17

    Google Scholar 

  • Hurk BJJM, Jia L, Jacobs C, Menenti M, Li Z-L (2002) Assimilation of land surface temperature data from ATSR in an NWP environment - a case study. Int. J. Remote Sens. 23(24):5193–5210

    Google Scholar 

  • Iwasaki H (1994) Estimation of precipitable water over land using the split-window data from the NOAA satellite. J. Meteorol. Soc. Jpn. 72(2):223–233

    Google Scholar 

  • Jedlovec GJ (1990) Precipitable water estimation from high-resolution split window radiance measurements. J. Appl. Meteorol. 29:863–876

    Google Scholar 

  • Jia L, Menenti M, Su ZB, Djepa V, Li Z-L, Wang J (2000) Modeling sensible heat flux using estimates of soil and vegetation temperatures: the HEIFE and IMGRASS experiments. In: M Beniston, M Verstraete (eds), Satellite remote sensing and climate simulations. Kluwer, Dordrecht, The Netherlands

    Google Scholar 

  • Jia L, Menenti M, Su ZB, Djepa V, Li Z-L, Wang J (2001) Modeling sensible heat flux using estimates of soil and foliage temperatures: the HEIFE and IMGRASS experiments, in “Remote sensing and climate modeling: Synergies and Limitations”, M Beniston and M Verstraete (eds) Kluwer, Dordrecht, 23–49

    Google Scholar 

  • Jia L, Li Z-L, Menenti M, Su Z-B, Verhoef W, Wan Z-M (2003) A practical algorithm to infer soil and foliage component temperatures from bi-angular ATSR-2 data. Int. J. Remote Sens. 24 (23):4739–4760

    Google Scholar 

  • Jia L (2004) Modeling heat exchanges at the land-atmosphere interface using multi-angular thermal infrared measurements. Wageningen University, The Netherlands, ISBN 90-8504-041-8, 199pp

    Google Scholar 

  • Jia L, Li Z-L, Menenti M (2005) Simulation of directional thermal infrared radiance images using soil-vegetation-atmosphere heat and radiation transfer models. Proc. 9th Int. Symp. on Physical Measurements and Signatures in Remote Sens. (ISPMSRS), ISSN 1682-1750 ISPRS, XXXVI (7/W20):331-333

    Google Scholar 

  • Jackson RD, Idso SB (1975) Surface albedo and desertification. Science 189:1012–1013

    Google Scholar 

  • Jackson RD, Idso SB, Reginato RJ, Pinter PJ (1981) Canopy temperature as a crop water stress indicator. Water Resour. Res. 17(4):1133–1138

    Google Scholar 

  • Jackson RD (1985)  Evaluating  evapotranspiration  at  local  and  regional  scales.  Proc. IEEE 73:1086–1095

    Google Scholar 

  • Kaufman YJ, Gao B-C (1992) Remote sensing of water vapor in the near IR from EOS/MODIS. IEEE Trans. Geosci. Remote Sens. 30(5):871–884

    Google Scholar 

  • Kimes DS (1980) Effects of vegetation canopy structure on remotely sensed canopy temperatures. Remote Sens. Environ. 10:165–174

    Google Scholar 

  • Kimes DS (1981) Remote sensing of temperature profiles in vegetation canopies using multiple view angles and inversion techniques. IEEE Trans. Geosci. Remote Sens. 19(2):85–90

    Google Scholar 

  • Kimes DS (1983) Remote sensing of row crop structure and component temperatures using directional radiometric temperatures and inversion techniques. Remote Sens. Environ. 13:33–55

    Google Scholar 

  • Kimes DS, Smith JA, Link LE (1981) Thermal IR exitance model of a plant canopy. Appl. Opt. 20(4):623–632

    Google Scholar 

  • Kimes DS, Kirchner JA (1982) Radiative transfer model for heterogeneous 3-D scenes. Appl. Opt. 21(22):4119–4129

    Google Scholar 

  • Kimes DS, Kirchner JA (1983) Directional radiometric measurements of row-crop temperatures. Int. J. Remote Sens. 4(2):299–311

    Google Scholar 

  • Kleespies TJ, McMillin LM (1990) Retrieval of precipitable water from observations in the split window over varying surface temperature. J. Appl. Meteorol. 29:851–862

    Google Scholar 

  • Labed J, Stoll MP (1991) Spatial variability of land surface emissivity in the thermal infrared band: spectral signature and effective surface temperature. Remote Sens. Environ. 38:1–17

    Google Scholar 

  • Lagouarde JP, Kerr YH, Brunet Y (1995) An experimental study of angular effects on surface temperature for various plant canopies and bare soils. Agric. Forest Meteorol. 77:167–190

    Google Scholar 

  • Lei SA (2004) Leaf temperatures of Blackbrush: relationships with air and soil surface temperatures. USDA Forest Service Proc. RMRS-P-31

    Google Scholar 

  • Li Z-L, Jia L, Su Z, Wan Z, Zhang R-H (2003) A new approach for retrieving precipitable water vapour from ATSR2 split-window channel data over land area. Int. J. Remote Sens. 24:5095–5117

    Google Scholar 

  • Li X-W, Strahler AH (1985) Geometric-optical modeling of a conifer forest canopy. IEEE Trans. Geosci. Remote Sens. GE-23(5):705–721

    Google Scholar 

  • Li Z-L, Stoll MP, Zhang RH, Jia L, Su Z (2001) On the separate retrieval of soil and vegetation temperatures from ATSR2 data. Science in China, Series D 44(2):97–111

    Google Scholar 

  • Li Z-L, Zhang R-H, Sun X-M, Su H-B, Tang X-Z, Zhu Z-L, Sobrino JA (2004) Experiment system for the study of the directional thermal emission of natural surfaces. Int. J. Remote Sens. 25 (1):195–204

    Google Scholar 

  • Liu Q (2002) Study on Component Temperature Inversion Algorithm and the Scale Structure for Remote Sensing Pixel. Ph.D. dissertation of Chinese Academy of Sciences, 111p

    Google Scholar 

  • Liu QH, Li XW, Chen LF (2002). Field campaign for quantitative remote sensing. In: Beijing. Proc. IEEE 2002 Int. Geosci. Remote Sens. Symp. (IGARSS’02) vol VI, pp 3133-3135

    Google Scholar 

  • Lhomme J-P, Monteny B, Chehbouni A, Troufleau D (1994) Determination of sensible heat flux over Sahelian fallow savannah using infra-red thermometry. Agric. Forest Meteorol. 68:93–105

    Google Scholar 

  • Luquet D, Bégué A, Vidal A, Clouvel A, Dauzat J, Olioso A, Gu X-F, Tao Y (2003) Using multidirectional thermography to characterize water status of cotton. Remote Sens. Environ. 84:411–421

    Google Scholar 

  • Mackay G, Steven MD (1998) An atmospheric correction procedure for the ATSR-2 visible and near infrared land surface data. Int. J. Remote Sens. 19(15):2949–2968

    Google Scholar 

  • Mahfouf JF, Richard E, Mascart P (1987) The influence of soil and vegetation on the development of mesoscale circulations. J. Clim. Appl. Meteor. 26:1483–1495

    Google Scholar 

  • Masuda K, Takashima T, Takayama Y (1988) Emissivity of pure and sea waters for the model sea surface in the infrared window regions. Remote Sens. Environ. 313-329

    Google Scholar 

  • Matteucci G, Dore S, Stivanello S, Rebmann C, Buchmann N (2000) Soil respiration in beech and spruce forests in Europe: trends, controlling factors, annual budgets and implications for the ecosystem carbon balance. In: ED Schulze (ed), Carbon and Nitrogen Cycling in European Forest Ecosystems, vol 142. Springer, Berlin, pp 217–236

    Google Scholar 

  • McGuire MJ, Smith JA, Balick LK, Hutchison BA (1989) Modeling directional thermal radiance from a forest canopy. Remote Sens. Environ. 27:169–186

    Google Scholar 

  • Medlyn BE, Dreyer E, Ellsworth DS, Forstreuter M, Harley PC, Kirshbaum MUF, Le Roux X, Montpied P, Strassemeyer J, Walcroft A, Wang K, Loustau D (2002) Temperature response of parameters of a biochemically-based model of photosynthesis. II: A review of experimental data. Plant, Cell Environ. 25:1167–1179

    Google Scholar 

  • Menenti M, Choudhury BJ (1993) Parameterization of land surface evapotranspiration using a location-dependent potential evapotranspiration and surface temperature range. In: HJ Bolle, et al. (eds), Exchange processes at the land surface for a range of space and time scales, IAHS, Oxfordshire, vol 212, pp 561–568

    Google Scholar 

  • Menenti M, Jia L, Li Z-L, Djepa V, Wang J, Stoll MP, Su ZB, Rast M (2001) Estimation of soil and vegetation temperatures from directional thermal infrared observations: the HEIHE, SGP’97, IMGRASS experiments. J. Geophys. Res. 106:11997–12010

    Google Scholar 

  • Menenti M, Rast M, Baret F, Hurk B, Knorr W, Mauser W, Miller J, Moreno J, Schaepman M, Verstraete M (2005) Understanding vegetation response to climate variability from space: recent advances towards the SPECTRA Mission. Riv. Ital. Teleril. Special Issue Hyperspectral Observation of Terrestrial Environments. 33/34:193–206

    Google Scholar 

  • Monteith JL (1965) Evaporation and environment. In: GE Fogg (ed), The state and movement of water in living organisms, Sympos. Soc. Exp. Biol. Academic, New York, 19:205–234

    Google Scholar 

  • Moran MS, Clarke TR, Inoue Y, Vidal A (1994) Estimating crop water deficit using the relation be tween surface air temperature and spectral vegetation index. Remote Sens. Environ. 49(3):246–263

    Google Scholar 

  • Mutlow CT, Z ávody AM, Barton IJ, Llewellyn-Jones DT (1994) Sea surface temperature measurements by the along-track scanning radiometer on the ERS 1 satellite: early results. J. Geophys. Res. 99(C11):22575–22588

    Google Scholar 

  • Mutlow C, Murray J, Bailey P, Birks A, Smith D (1999) ATSR-1/2 User Guide, http://www.atsr.rl. ac.uk/documentation/docs/userguide/atsr user guide rev 3.pdf

  • Nerry F, Labed J, Stoll M-P (1988) Emissivity signatures in the thermal IR band for remote sensing: calibration procedure and method of measurement. Appl. Opt. 27(4):758–764

    Google Scholar 

  • Nielsen DC, Clawson KL, Blad BL (1984) Effect of solar azimuth and infrared thermometer view direction on measured soybean canopy temperature. Agron. J. 76:607–610

    Google Scholar 

  • Nilson T (1971) A theoretical analysis of the frequency of gaps in plant stands. Agric. Meteorol. 8:25–38

    Google Scholar 

  • Norman JM (1979) Modeling the complete crop canopy. In: BJ Barfield, JF Gerber (eds) Modification of the Aerial Environment of Plants. ASAE Monogr. Am. Soc. Agric. Engr., St. Joseph, MI, pp 249–277

    Google Scholar 

  • Norman JM, Campbell G (1983) Application of a plant-environment model to problems in irrigation. In: D Hillel (ed) Advanced in irrigation, vol 2. Academic, New York, pp 155–188

    Google Scholar 

  • Norman JM, Chen JL (1990) Thermal emissivity and infrared temperatures dependence on plant canopy architecture and view angle. In: Proc. Int. Geosci. Remote Sens. Symp. (IGARSS’90, IEEE Geosci. Remote Sens. Soc., New York), pp 1747–1750

    Google Scholar 

  • North PRJ, Briggs SA, Plummer SE, Settle JJ (1999) Retrieval of land surface bi-directional reflectance and aerosol opacity from ATSR-2 multiangle imagery. IEEE Trans. Geosci. Remote Sens. 37(1):526–537

    Google Scholar 

  • Otterman J (1990) Inferring parameters for canopies non uniform in azimuth by model inversion. Remote Sens. Environ. 33:41–53

    Google Scholar 

  • Otterman J, Brakke TW, Susskind J (1992) A model for inferring canopy and underlying soil temperatures from multi-directional measurements. Bound.-Lay. Meteorol. 61:81–97

    Google Scholar 

  • Otterman J, Susskind J, Brakke T, Kimes D, Pielke R, Lee TJ (1995) Inferring the thermal-infrared hemispheric emission from a sparsely-vegetation surface by directional measurement. Bound.- Lay. Meteorol. 74:163–180

    Google Scholar 

  • Ottermann J, Brakke TW, Fuchs M, Lakshmi V, Cadeddu M (1999) Longwave emission from a plant/soil surface as a function of the view direction: dependence on the canopy architecture. Int. J. Remote Sens. 20(11):2195–2201

    Google Scholar 

  • Ottl é C, Outalha S, Francois C, Le Maguer S (1997) Estimation of total atmospheric water vapor content from split-window radiance measurements. Remote Sens. Environ. 61:410–418

    Google Scholar 

  • Paw UKT, Ustin SL, Zhang CA (1989) Anisotropy of thermal infrared exitance in sunflower canopies. Agric. Forest Meteorol. 48:45–58

    Google Scholar 

  • Peng XD, Cheng LS (1993) Numerical simulations of the PBL mean structure and fluxed in HEIHE region. Proc. Int. Symp. HEIFE. Kyoto University, Kyoto, Japan, pp 437–442

    Google Scholar 

  • Petitcolin F, Nerry F, Stoll MP (2002) Mapping temperature independent spectral indice of emissivity and directional emissivity in AVHRR channels 4 and 5. Int. J. Remote Sens. 23(17):3473–3491

    Google Scholar 

  • Pielke RA, Dalu G, Snook JS, et al. (1991) Nonlinear influence of mesoscale land use on weather and climate. J. Climate 4:1053–1069

    Google Scholar 

  • Prabhakara C, Chang HD, Chang ATC (1985) Remote sensing of precipitable water over the oceans from NIMBUS 7 microwave measurements. J. Appl. Meteorol. 21:59–68

    Google Scholar 

  • Price JC (1982) On the use of satellite data to infer surface fluxes at meteorological scales. J. Appl. Meteorol. 21:1111–1122

    Google Scholar 

  • Qualls RJ, Yates DN (2001) Directional radiometric temperature profiles within a grass canopy. Adv. Water Resour. 24:145–155

    Google Scholar 

  • Rahman H, Dedieu G (1994) SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum. Int. J. Remote Sens. 15:123–143

    Google Scholar 

  • Schulz J, Schluessel P, Grassl H (1993) Water vapor in the atmospheric boundary layer over oceans from SSM/I measurements. Int. J. Remote Sens. 14:2773–2789

    Google Scholar 

  • Segal R, Avissar M, McCumber C, Pielke RA (1988) Evaluations of vegetation effects on the generation and modification of mesoscale circulations. J. Atmos. Sci. 45:2268–2292

    Google Scholar 

  • Seguin B, Assad E, Freteaud JP, Imbernon J, Kerr YH, Lagouarde JP (1989) Use of meteorological satellite for water balance monitoring in Sahelian regions. Int. J. Remote Sens. 10:1001–1017

    Google Scholar 

  • Sellers PJ, Heiser MD, Hall FG, Goetz SJ, Strebel DE, Verma SB, Desjardins RL, Schuepp PM, McPherson JI (1995) Effects of spatial variability in topography, vegetation cover and soil moisture on area-averaged surface fluxes: A case study using the FIFE 1989 data. J. Geophys. Res. Vol. 100(D12):25607–25630

    Google Scholar 

  • Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Colleli GD, Bounoua L (1996) A revised land surface parameterization (SIB2) for atmospheric GCMS. Part 1: model formulation. J. Climate 9(4):676–705

    Google Scholar 

  • Smith JA, Goltz SM (1995) A thermal exitance and energy balance model for forest canopies. IEEE Trans. Geosci. Remote Sens. 32(5):1060–1066

    Google Scholar 

  • Smith JA, Chauchan NS, Ballard J (1996) Remote sensing of land surface temperature: the directional viewing effect. IEEE Trans. Geosci. Remote Sens. 13(4):2146–2148

    Google Scholar 

  • Snyder WC, Wan Z-M, Zhang Y, Feng Y-Z (1997) Thermal Infrared (3-14  µm) bidirectional reflectance measurements of sands and soils. Remote Sens. Environ. 60(1):101–109

    Google Scholar 

  • Sobrino JA, Caselles V (1990) Thermal infrared model for interpreting the directional radiometric temperature of a vegetative surface. Remote Sens. Environ. 33:193–199

    Google Scholar 

  • Sobrino J, Li Z-L, Stoll MP, and Becker F, 1994. Improvements in the split-window technique for land surface temperature determination. IEEE Trans. Geosc. and Rem. Sens. Vol. 32(2):243–253

    Google Scholar 

  • Sobrino J, Li Z-L, Stoll MP, Becker F (1994) Improvements in the split-window technique for land surface temperature determination. IEEE Trans. Geosci. Remote Sens. 32(2):243–253

    Google Scholar 

  • Sobrino JA, Raissouni N, Simarro J, Nerry F, Petitcolin F (1999) Atmospheric water vapor content over land surfaces derived from AVHRR data: application to the Iberian Peninsula. IEEE Trans.Geosci. Remote Sens. 37(3):1425–1434

    Google Scholar 

  • Sobrino JC, Cuenca J (1999) Angular variation of thermal infrared emissivity for some natural surfaces from experimental measurements. Appl. Opt. 38(18):3931–3936

    Google Scholar 

  • Su H-B, Zhang R-H, Tang X-Z, Sun X-M, Zhu Z-L, Li Z-L (2003) An alternative method to compute the component fractions in the geometrical optical model: visual computing method. IEEE Trans. Geosci. Remote Sens. 41(3):719–724

    Google Scholar 

  • Susskind J, Rosenfield J, Renter D, et al. (1984) Remote sensing of weather and climate parameters from HIRS2/MSU on TIROS-N. J. Geophys. Res. 89:4677–4697

    Google Scholar 

  • Sutherland RA, Bartholic JF (1977) Significance of vegetation in interpreting thermal radiation from a terrestrial surface. J. Appl. Meteorol. 18:759–763

    Google Scholar 

  • Valentini R, Dolman AJ, Ciais P, Schulze ED, Freibauer A, Schimel DS, Heimann M (2000) Accounting for carbon sinks in the biosphere, European perspective. CARBOEUROPE European Office. Max-Planck Institute for Biogeochemistry, P.O. Box 100164. 07700 Jena, Germany, 17p

    Google Scholar 

  • Verhoef W, Menenti M (1998) Final Report of Spatial and Spectral Scales of Spaceborne Imaging Spectro-radiometers (SASSSIS). Contract Report 12072/96/NL/CN, ESA. Final Report, NLR-CR-98213, National Aerospace Lab. NLR, Amsterdam, The Netherlands, 314pp

    Google Scholar 

  • (1998) Theory of radiative transfer models applied in optical remote sensing of vegeta tion canopies. Ph.D. thesis, Wageningen University, The Netherlands, 311pp

    Google Scholar 

  • Verhoef W, Bach H (2003) Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models. Remote Sens. Environ. 87:23–41

    Google Scholar 

  • Verma SB, Rosenberg NJ, Blad BL, Baradas NW (1976) Resistance-energy balance method for predicting evapotranspiration, determination of boundary layer resistance, and evaluation of error effects. Agron. J. 68:776–782

    Google Scholar 

  • Vermote EF, Tanre D, Deuze JL, Herman M, Morcrette JJ (1997) Second simulation of the satellite signal in the solar spectrum, 6S: an overview. IEEE Trans. Geosci. Remote Sens. 35:675–686

    Google Scholar 

  • Wang J, Mitsuta Y (1992) An observation study of turbulent study of turbulent structure and transfer characteristics in Heihe oasis. J. Meteor. Soc. Jpn. 70:1147–1154

    Google Scholar 

  • Wang J, Yan F, Xiao J, Wei T, Wang J (2002) Development of an airborne multi-angle TIR/VNIR imaging system. IEEE 2002 Int. Geosci. Remote Sens. Symp. (IGARSS’02), vol IV, pp 2245–2248

    Google Scholar 

  • Weiss M, Baret F, Myneni R, Pragn ère A, Knyazikhin Y (1999) Investigation of a model inversion technique for the estimation of crop characteristics from spectral and directional reflectance data. Agronomie 20:3–22

    Google Scholar 

  • Welles JM, Norman JM (1991) Photon transport in discontinuous canopies: a weighted random approach. In: RB Myneni, J Ross (eds), Photon-vegetation interactions. applications in optical remote sensing and plant ecology. Springer, Heidelberg, Germany, pp 389–414

    Google Scholar 

  • Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C, Grelle A, Ibrom A, Law BE, Kowalski A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R,Verma S (2002) Energy balance closure at FLUXNET sites. Agric. Forest Meteorol. 113(1-4):223–243

    Google Scholar 

  • Wilson TB, Norman JM, Bland WL, Kucharik CJ (2003) Evaluation of the importance of Lagrangian canopy turbulence formulations in a soil-plant-atmosphere model. Agric. Forest Meteorol. 115:51–69

    Google Scholar 

  • Xu X, Chen L, Zhuang J (2000) The passive measurements of object’s directional emissivity in laboratory. Science in China 43:55–61

    Google Scholar 

  • Xue Y, Shukla J (1993) The influence of land surface properties on Sahel climate. Part I: desertification. J. Climate 6:2232–2245

    Google Scholar 

  • Yan Y (1999) Numerical simulation of land surface process on heterogeneous surface. Ph.D. dissertation. Lanzhou Institute of Plateau Atmospheric Physics. Chinese Academy of Sciences, Lanzhou, China, 90pp

    Google Scholar 

  • Yu T, Gu X-F, Tian G-L, Legrand M, Baret F, Hanocq J-F, Bosseno R, Zhang Y (2004) Modeling directional brightness temperature over a maize canopy in row structure. IEEE Trans. Geosci. Remote Sens. 42(10):2290–2304

    Google Scholar 

  • Zhang R-H, Sun X-M, Su H-B, Zhu Z-L, Tang X-Z (2002) A new design for measuring directional radiant temperature and data analysis. Proc. IEEE 2002 Int. Geosci. Remote Sens. Symp. (IGARSS’02), vol V, pp 2768-2770

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Menenti, M., Jia, L., Li, ZL. (2008). Multi-angular Thermal Infrared Observations of Terrestrial Vegetation. In: Liang, S. (eds) Advances in Land Remote Sensing. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6450-0_4

Download citation

Publish with us

Policies and ethics