Skip to main content

Passive Microwave Remote Sensing for Land Applications

  • Chapter
Advances in Land Remote Sensing

Land applications, in particular soil moisture retrieval, have been hampered by the lack of low frequency passive microwave observations and the coarse spatial resolution of existing sensors. The next decade could see several improved operational and exploratory missions using new technologies as well as innovative disaggregation and data fusion approaches that could lead the way to an order of magnitude improvement in spatial resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Basist A, Grody NC, Peterson TC, Williams CN (1998) Using the Special Sensor Microwave/Imager to monitor surface temperatures, wetness, and snow cover. J. Appl. Met. 37:888–911

    Article  Google Scholar 

  • Becker F, Choudhury BJ (1988) Relative sensitivity of NDVI and microwave polarization difference index (MPDI) for vegetation and desertification monitoring. Remote Sens. nviron. 24:297–311

    Article  Google Scholar 

  • Bindlish R, Jackson TJ, Wood E, Gao H, Starks P, Bosch D, Lakshmi V (2003) Soil moisture estimates from TRMM Microwave Imager observations over the Southern United States. Remote Sens. Environ. 85:507–515

    Article  Google Scholar 

  • Chauhan NS, Miller S, Ardanuy P (2003) Spaceborne soil moisture estimation at high resolution: a microwave-optical/IR synergistic approach. Int. J. Remote Sens. 24:4599–4622

    Article  Google Scholar 

  • Entekhabi D, Njoku E, Houser P, Spencer M, Doiron T, Belair S, Crow W, Jackson T, Kerr Y, Kimball J, Koster R, McDonald K, O’Neill P, Pultz T, Running S, Shi JC, Wood E, van Zyl J (2004) The hydrosphere state (Hydros) mission concept: an Earth System Pathfinder for global mapping of soil moisture and land freeze/thaw. IEEE Trans. Geosci. Remote Sens. 42:2184–2195

    Article  Google Scholar 

  • Gaiser PW, St. Germain KM, Twarog EM, Poe GA, Purdy W, Richardson D, Grossman W, Jones WL, Spencer D, Golba G, Cleveland J, Choy L, Bevilacqua RM, Chang PS (2004) The WindSat spaceborne polarimetric microwave radiometer: sensor description and early orbit performance. IEEE Trans. Geosci. Remote Sens. 42:2347–2361

    Article  Google Scholar 

  • Jackson TJ (1997) Soil moisture estimation using special Satellite Microwave/Imager satellite data over a grassland region. Water Resour. Res. 33:1475–1484

    Article  Google Scholar 

  • Jackson TJ, Schmugge TJ (1991) Vegetation effects on the microwave emission from soils. Remote Sens. Environ. 36:203–212

    Article  Google Scholar 

  • Jackson TJ, Levine DM, Swift CT, Schmugge TJ, Schiebe FR (1995) Large-area mMapping of soil-moisture using the ESTAR passive microwave radiometer in Washita92. Remote Sens. Environ. 54:27–37

    Article  Google Scholar 

  • Kerr YH, Waldteufel P, Wigneron JP, Font J, Berger M (2001) Soil moisture retrieval from space: the Soil Moisture Ocean Salinity (SMOS) mission. IEEE Trans. Geosci. Remote Sens. 39:1729–1735

    Article  Google Scholar 

  • Koblinsky CJ, Hildebrand P, LeVine D, Pellerano F, Chao Y, Wilson W, Yueh S, Lagerloef G (2003) Sea surface salinity from space: science goals and measurement approach. Radio Sci. 38 (4):8064doi:10.1029/2001RS002584

    Article  Google Scholar 

  • Le Vine DM, Griffis A, Swift CT, Jackson TJ (1994) ESTAR: a synthetic microwave radiometer for remote sensing applications. Proc. IEEE. 82:1787–1801

    Article  Google Scholar 

  • Li L, Njoku EG, Im E, Chang P, St. Germain K (2004) A preliminary survey of radio-frequency interference over the U.S. in Aqua AMSR-E data. IEEE Trans. Geosci. Remote Sens. 42:380–390

    Article  Google Scholar 

  • Merlin O, Chehbouni AG, Kerr YH, Njoku EG, Entekhabi D (2005) A combined modeling and multi-spectral/multi-resolution remote sensing approach for disaggregation of surface soil moisture: application to SMOS configuration. IEEE Trans. Geosci. Remoteens. 43:2036–2050

    Article  Google Scholar 

  • Narayan U, Lakshmi V, Jackson TJ (2006) High-resolution change estimation of soil moisture using L-band radiometer and radar observations made during the SMEX02 experiments. IEEE Trans. Geosci. Remote Sens. 44:1545–1554

    Article  Google Scholar 

  • Narvekar PS, Jackson TJ, Bindlish R, Li L, Heygster G, Gaiser P (2007) Observations of land surface passive polarimetry with the WindSat Instrument. IEEE Trans. Geosci. Remote Sens. 45:2019–2028

    Article  Google Scholar 

  • Neale CMU, McFarland MJ, Chang K (1990) Land-surface type classification using microwave brightness temperatures from the Special Sensor Microwave/Imager. IEEE Trans. Geosci. Re mote Sens. 28:829–838

    Article  Google Scholar 

  • Njoku E, Koike T, Jackson T, Paloscia S (2000) Retrieval of soil moisture from AMSR data. In: P. Pampaloni, S. Paloscia (eds), Microwave Radiometry and Remote Sensing of the Earth’s Surface and Atmosphere. VSP, Zeist, The Netherlands, pp 525–533

    Google Scholar 

  • Njoku EG, Jackson TJ, Lakshmi V, Chan TK, Ngheim SV (2003) Soil moisture retrieval from AMSR-E. IEEE Trans. Geosci. Remote Sens. 41:215–229

    Article  Google Scholar 

  • Njoku EG, Ashcroft P, Chan T, Li L (2005) Global survey and statistics of radio frequency interference in AMSR-E land observations. IEEE Trans. Geosci. Remote Sens. 43:938–947

    Article  Google Scholar 

  • Owe M, van de Griend AA, Chang AT (1992) Surface moisture and satellite microwave observations in semiarid Southern Africa. Water Resour Res. 28:829–839

    Article  Google Scholar 

  • Owe M, de Jeu R, Walker J (2001) A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans. Geosci. Remote Sens. 39:1643–1654

    Article  Google Scholar 

  • Paloscia S, Macelloni G, Santi E, Koike T (2001) A multifrequency algorithm for the retrieval of soil moisture on a large scale using microwave data from SMMR and SSM/I. IEEE Trans. Geosci. Remote Sens. 39:1655–1661

    Article  Google Scholar 

  • Pellenq J, Kalma JD, Boulet G, Saulnier G, Wooldridge S, Kerr Y, Chehbouni A (2003) A scheme for disaggregation of soil moisture along topography and soil depth. J. Hydrology. 276:112–127

    Article  Google Scholar 

  • Ulaby F, Moore R, Fung A (1982) Microwave Remote Sensing: Active and Passive, vol. II, Addison-Wesley, Reading, MA

    Google Scholar 

  • Wigneron JP, Waldteufel P, Chanzy A, Calvet JC, Kerr Y (2000) Two-dimensional microwave interferometer retrieval capabilities over land surfaces (SMOS mission). Remote Sens. Environ. 73:270–282

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Jackson, T.J. (2008). Passive Microwave Remote Sensing for Land Applications. In: Liang, S. (eds) Advances in Land Remote Sensing. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6450-0_2

Download citation

Publish with us

Policies and ethics