Skip to main content

Remote Sensing of Terrestrial Primary Production and Carbon Cycle

  • Chapter
Advances in Land Remote Sensing

The objective of this chapter is to review the historical development of and the recent advances in the application of satellite remote sensing data for estimating terrestrial gross and net primary production (GPP and NPP), while also monitoring carbon cycle related ecosystem dynamics and changes.We achieve this objective by separating the topic into five sections:

  1. 1.

    A review of the history of using satellite data to study the carbon cycle, concentrating on using the Normalized Difference Vegetation Index (NDVI) and its derived Fraction of Photosynthetically Active Radiation (FPAR) and Leaf Area Index (LAI) for biomass and NPP estimations

  2. 2.

    A description of recent advances in the application of Moderate Resolution Imaging Spectroradiometer (MODIS) data to estimates of GPP and NPP, along with related findings using MODIS Land Surface Temperature (LST) and the Enhanced Vegetation Index (EVI)

  3. 3.

    A discussion of the application of long-term satellite data to the study of terrestrial ecosystems, including phenology monitoring, changes in regional carbon storage resulting from land use change, carbon flux changes induced by climate change, disturbance detection, and validation of ecosystem models

  4. 4.

    A proposed general scheme for applying satellite data to terrestrial ecosystem studies, highlighting the role of modeling

  5. 5.

    A summary that emphasizes the continuity of vegetation monitoring with satellites

The use of remote sensing information for studying terrestrial primary production and the global carbon cycle is significant both for an increased understanding of the earth system and improved management of land and natural resources.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arora VK (2003) Decreased heterotrophic respiration reduced growth in atmospheric CO2 concentration. IGBP Global Change Newsletter 54:21–22

    Google Scholar 

  • Asrar G, Fuchs M, Kanemasu ET, Hatfield JL (1984) Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agron. J. 76:300–306

    Article  Google Scholar 

  • Cao M, Prince SD, Small J, Goetz SJ (2004) Remotely sensed interannual variations and trends in terrestrial net primary productivity 1981-2000. Ecosystems 7:233–242

    Article  Google Scholar 

  • Canadell JG, Mooney HA, Baldocchi DD, Berry JA, Ehleringer JR, Field CB, Gower ST, Hollinger DY, Hunt JE, Jackson RB, Running SW, Shaver GR, Steffen W, Trumbore SE, Valentini R, Bond BY (2000) Carbon metabolism of the terrestrial biosphere: a multi-technique approach for improved understanding. Ecosystems 3:115–130

    Article  Google Scholar 

  • Cihlar J, Chen JM, Li Z, Huang F, Latifovic R, Dixon R (1998) Can interannual land surface signal be discerned in composite AVHRR data? J. Geophys. Res. 103(D18):23163–23172, doi: 10.1029/98JD00050

    Article  Google Scholar 

  • DeFries RS, Houghton RA, Hansen M, Field CB, Skole DL, Townshend J (2002) Carbon emissions from tropical deforestation and regrowth based on satellite observations for the 1980s and 90s. Proc. Natl. Acad. Sci. USA 99(22):14256–14261

    Article  Google Scholar 

  • Fan S, Gloor M, Mahlman J, Pacala S, Sarmiento J, Takahashi T, Tans P (1998) A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 282:442–446

    Article  Google Scholar 

  • Fang J, Piao S, Field CB, Pan Y, Guo Q, Zhou L, Peng C, Tao S (2003) Increasing net primary production in China from 1982 to 1999. Front. Ecol. Environ. 1:293–297

    Google Scholar 

  • Folland CK, Karl TR, Christy JR, Clarke RA, Gruza GV, Jouzel J, Mann ME, Oerlemans J, Salinger MJ, Wang S-W (2001) Observed climate variability and change. In: JT Houghton,Y Ding, DJ Griggs, M Noguer, PJ van der Linden, X Dai, K Maskell, CA Johnson (eds), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA, pp 182–237

    Google Scholar 

  • Fung I, Tucker CJ, Prentice K (1987) Application of advanced very high resolution radiometer vegetation index to study atmosphere-biosphere exchange of CO. J. Geophys. Res. 92(D3):2999–3015

    Article  Google Scholar 

  • Goward SN, Tucker CJ, Dye DG (1985) North American vegetation patterns observed with the NOAA-7 Advanced Very High Resolution Radiometer. Vegetatio 64:3–14

    Article  Google Scholar 

  • Gu L, Baldocchi DD, Wofsy SC, Munger JW, Michalsky JJ, Urbanski SP, Boden TA (2003) Response of a deciduous forest to the Mount Pinatubo eruption: enhanced photosynthesis. Science 299:2035–2038

    Article  Google Scholar 

  • Guenther B, Xiong X, Salomonson VV, Barnes WL, Young J (2002) On-orbit performance of the earth observing system moderate resolution imaging spectroradiometer; first year of data. Remote Sens. Environ. 83:16–30

    Article  Google Scholar 

  • Heinsch FA, Reeves M, Votava P, et al. (2003) User’s Guide: GPP and NPP (MOD17A2/A3) Products, NASA MODIS Land Algorithm, pp 1-57

    Google Scholar 

  • Heinsch FA, Zhao M, Running SW, et al. (2006) Evaluation of remote sensing based terrestrial productivity from MODIS using regional tower eddy flux network observations. IEEE Trans. Geosci. Remote Sens. 44(7):1908–1925

    Article  Google Scholar 

  • Hicke JA, Asner GP, Randerson JT, Tucker C, Los S, Birdsey R, Jenkins JC, Field CB (2002a) Trends in North American net primary productivity derived from satellite observations, 1982-1998. Global Biogeochem. Cycles 16(2), doi:10.1029/2001GB001550

    Google Scholar 

  • Hicke JA, Randerson J, Asner G, Randerson J, Tucker C, Los S, Birdsey R, Jenkins J, Field C, Holland E (2002b) Satellite-derived increases in net primary productivity across North America, 1982-1998, Geophys. Res. Lett. 29(10), doi:10.1029/2001GL013578

    Google Scholar 

  • Houghton RA, Hobbie JE, Melillo JM, et al. (1983) Changes in the carbon content of terrestrial biota and soils between 1860 and 1980: a net release of CO2 to the atmosphere. Ecol. Monogr. 53:235–262

    Article  Google Scholar 

  • Huete AR, Didan K, Shimabukuro YE, Ratana R, Saleska SR, Hutyra LR, Yang W, Nemani RR, Myneni R (2006) Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. 33, L06405, doi: 10.1029/2005GL025583

    Article  Google Scholar 

  • Ichii K, Matsui Y, Yamaguchi Y, Ogawa K (2001) Comparison of global net primary production trends obtained from satellite-based normalized difference vegetation index and carbon cycle model. Global Biogeochem. Cycles 15(2):351–364, doi: 10.1029/2000GB001296

    Article  Google Scholar 

  • Imhoff ML, Bounoua L, Richetts T, Loucks C, Harriss R, Lawrence WT (2004) Global pattern in human consumption of net primary production. Nature 429:870–873

    Article  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2001) IPCC (Intergovernmental Panel on Climate Change). In: JT Houghton, Y Ding, DJ Griggs, M Noguer, PJ van der Linden, X Dai X (eds), Climate Change 2001: The Scientific Basis Contribution of Working Group I to the Third Assessment Report of the IPCC. Cambridge University Press, Cambridge, United Kingdom

    Google Scholar 

  • Justice CO, Townshend JRG, Holben BN, Tucker CJ (1985) Analysis of the phenology of global vegetation using meteorological satellite data. Int. J. Remote Sens. 6:1271–1318

    Article  Google Scholar 

  • Justice CO, Townshend JRG, Vermote EF, Masuoka E, Wolfe RE, Saleous N, Roy DP, Morisette JT (2002) An overview of MODIS land data processing and product status. Remote Sens. Environ. 83:3–15

    Article  Google Scholar 

  • Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382:146–149

    Article  Google Scholar 

  • Keeling CD (1998) Rewards and penalties of monitoring the earth. Annu. Rev. Energy Environ. 23:25–82

    Article  Google Scholar 

  • Keeling CD, Piper SC, Bacastow RB, Wahlen M, Whorf TP, Heimann M, Meijer HA (2001) Exchange of atmospheric CO2 and 13 CO2 with the terrestrial biosphere and oceans from 1978 to 2000, I. Global aspects. SIO Ref. Ser. 01-06, Scripps Institute of Oceanography, La Jolla, CA

    Google Scholar 

  • Kindermann J, W ürth G, Kohlmaier GH, Badeck F-W (1996) Interannual variation of carbon exchange fluxes in terrestrial ecosystems. Global Biogeochem. Cycles 10(4):737–756, doi: 10.1029/96GB02349

    Article  Google Scholar 

  • Krakauer NY, Randerson JT (2003) Do volcanic eruptions enhance or diminish net primary production. Evidence from tree rings. Global Biogeochem. Cycles 17(4):1118, doi:10.1029/2003GB002076

    Article  Google Scholar 

  • Kumar M, Monteith JL (1982) Remote sensing of crop growth. In H Smith (ed), Plants and daylight spectrum. Academic Press, London, pp 133–144.

    Google Scholar 

  • Landsberg JJ, Waring RH (1997) A generalized model of forest productivity using simplified concepts of radiation use efficiency, carbon balance and partitioning. Forest Ecol. Manag. 95:209–228

    Article  Google Scholar 

  • Lucht W, Prentice IC, Myneni RB, Sitch S, Friedlingstein P, Cramer W, Bousquet P, Buermann W, Smith B (2002) Climatic control of the high-latitude vegetation greening trend and Pinatubo effect. Science 296:1687–1689

    Article  Google Scholar 

  • Matthews E (2001) Understanding the FRA 2000: Forest Briefing No. 1. World Resource Institute, Washington, DC, p 12

    Google Scholar 

  • McGuire AD III, Prentice IC, Ramankutty N, Reichenau T, Schloss A, Tian H, Williams LJ, Wittenberg U (2001) Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2 , climate and land use effects with four process-based ecosystem models. Global Biogeochem. Cycles 15(1):183–206

    Article  Google Scholar 

  • Mildrexler D, Zhao M, Heinsch FA, Running SW (2007) A new satellite based methodology for continental scale disturbance detection. Ecol. Appl. 17(1):235–250

    Article  Google Scholar 

  • Milesi C, Hashimoto H, Running SW, Nemani RR (2005) Climate variability, vegetation productivity and people at risk. Global Planet Change 47:221–231

    Article  Google Scholar 

  • Monteith JL (1972) Solar radiation and productivity in tropical ecosystems. J. Appl. Ecol. 9:747–766

    Article  Google Scholar 

  • Monteith JL (1977) Climate and efficiency of crop production in Britain. Phil. Trans. Royal Soc. Lond. B 281:277–294

    Article  Google Scholar 

  • Mu Q, Zhao M, Heinsch FA, Liu M, Tian H, Running SW (2007) Evaluating water stress controls on primary production in biogeochemical and remote sensing based models. J. Geophys. Res. 112,G01012

    Article  Google Scholar 

  • Myneni RB, Hall FG, Sellers PJ, Marshak AL (1995) The interpretation of spectral vegetation indexes. IEEE Trans. Geosci. Remote Sens. 33:481–486

    Article  Google Scholar 

  • Myneni RB, Nemani RR, Running SW (1997a) Estimation of global leaf area index and absorbed par using radiative transfer models. IEEE Trans. Geosci. Remote Sens. 35:1380–1393

    Article  Google Scholar 

  • Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997b) Increase plant growth in the northern high latitudes from 1981-1991. Nature 386:698–702

    Article  Google Scholar 

  • Myneni RB, Dong J, Tucker CJ, Kaufmann RK, Kauppi PE, Liski J, Zhou L, Alexeyev V, Hughes MK (2001) A large carbon sink in the woody biomass of northern forests. Proc. Natl. Acad. Sci. USA 98(26):14784–14789

    Article  Google Scholar 

  • Nemani RR, Running SW (1989) Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. J. Appl. Meteorol. 28:276–284

    Article  Google Scholar 

  • Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003a) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563

    Article  Google Scholar 

  • Nemani RR, White MA, Pierce L, Votava P, Coughlan J, Running SW (2003b) Biospheric monitoring and ecological forecasting. Earth Observ. Mag. 12(2):6–8

    Google Scholar 

  • Potter CS, Randerson JT, Field CB, Matson PA, Vitousek PM, Mooney HA, Klooster SA (1993) Terrestrial ecosystem production: a process model based on global satellite and surface data. Global Biogeochem. Cycles 7:811–841

    Article  Google Scholar 

  • Potter CS, Klooster S, Myneni R, Genovese V, Tan P, Kumar V (2003a) Continental scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982-98. Global Planet. Change 39:201–213

    Article  Google Scholar 

  • Potter CS, Tan P, Steinbach M, Klooster S, Kumar V, Myneni R, Genovese V (2003b) Major disturbance events in terrestrial ecosystems detected using global satellite data sets. Global Change Biol. 9(7):1005–1021

    Article  Google Scholar 

  • Prentice IC, Heimann M, Sitch S (2000) The carbon balance of the terrestrial biosphere: ecosystem models and atmospheric observations. Ecol. Appl. 10:1553–1573

    Article  Google Scholar 

  • Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heimann M, Jaramillo VJ, Kheshgi HS, Le Qu ér é C, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide. In: JT Houghton,Y Ding, DJ Griggs, M Noguer, PJ van der Linden, X Dai, K Maskell, CA Johnson (eds), Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, USA, pp 182–237

    Google Scholar 

  • Prince SD (1991) A model of regional primary production for use with coarse resolution satellite data. Int. J. Remote Sens. 12:1313–1330

    Article  Google Scholar 

  • Prince SD, Goward SN (1995) Global primary production: a remote sensing approach. J. Biogeogr. 22:815–835

    Article  Google Scholar 

  • Rahman AF, Sims DA, Cordova VD, El-Masri BZ (2005) Potential of MODIS EVI and surface temperature for directly estimating per-pixel ecosystem C fluxes. Geophys. Res. Lett. 32, L19404, doi:10.1029/2005GL024127

    Article  Google Scholar 

  • Randerson JT, Field CB, Fung IY, Tans PP (1999) Increases in early season ecosystem uptake explain recent changes in the seasonal cycle of atmospheric CO2 at high northern latitudes. Geophys. Res. Lett. 26:2765–2768, doi: 10.1029/1999GL900500

    Article  Google Scholar 

  • Randerson JT, van der Werf GR, Collatz GJ, Giglio L, Still CJ, Kasibhatla P, Miller JB, White JWC, DeFries RS, Kasischke ES (2005) Fire emissions from C3 and C4 vegetation and their influence on interannual variability of atmospheric CO2 and d13 CO2 . Global Biogeochem. Cycles 19:GB2019

    Article  Google Scholar 

  • Reeves MC, Zhao M, Running SW (2006) Applying improved estimates of MODIS productivity to characterize grassland vegetation dynamics. Rangeland Ecol. Manag. 59:1–10

    Article  Google Scholar 

  • Roy DP, Jin Y, Lewis PE, Justice CO (2005) Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sens. Environ. 97:137–162

    Article  Google Scholar 

  • Ruimy A, Saugier B, Dedieu G (1994) Methodology for the estimation of terrestrial net primary production from remotely sensed data. J. Geophys. Res. 99:5263–5283

    Article  Google Scholar 

  • Ruimy A, Dedieu G, Saugier B (1996) TURC: a diagnostic model of continental gross primary productivity and net primary productivity. Global Biogeochem. Cycles 10:269–286, doi: 10.1029/96GB00349

    Article  Google Scholar 

  • Running SW, Nemani RR (1988) Relating seasonal patterns of the AVHRR vegetation index to simulated photosynthesis and transpiration of forests in different climates. Remote Sens. Environ. 24:347–367

    Article  Google Scholar 

  • Running SW, Nemani RR, Peterson DL, Band LE, Potts DF, Pierce LL, Spanner MA (1989) Mapping regional forest evapotranspiration and photosynthesis by coupling satellite data with ecosystem simulation. Ecology 70:1090–1101

    Article  Google Scholar 

  • Running SW, Hunt ER (1993) Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models. In JR Ehleringer, CB Field (ed), Scaling physiological processes: leaf to globe. Academic, San Diego, CA, pp 141–158

    Google Scholar 

  • Running SW, Baldocchi DD, Turner DP, Gower ST, Bakwin PS, Hibbard KA (1999) A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sens. Environ. 70:108–128

    Article  Google Scholar 

  • Running SW, Thornton PE, Nemani RR, Glassy JM (2000) Global terrestrial gross and net primary productivity from the earth observing system. In O Sala, R Jackson, H Mooney (eds), Methods in ecosystem science. Springer, New York, pp 44–57

    Google Scholar 

  • Running SW, Nemani RR, Heinsch FA, Zhao M, Reeves M, Hashimoto H (2004) A continuous satellite-derived measure of global terrestrial primary productivity: future science and applications. Bioscience 54:547–560

    Article  Google Scholar 

  • Running SW, Nemani RR, Townshend J, Baldocchi D (2006) Next generation terrestrial carbon monitoring. American Geophysical Union Monography XX. A tribute to the career of Charles David Keeling

    Google Scholar 

  • Schimel DS, House JI, Hibbard KA, Bousquet P, Ciais P, Peylin P, Braswell BH, Apps MJ, et al. (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414:169–172

    Article  Google Scholar 

  • Sellers PJ (1985) Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens. 6:1335–1372

    Article  Google Scholar 

  • Sellers PJ (1987) Canopy reflectance, photosynthesis and transpiration. II. The role of biophysics in the linearity of their interdependence. Remote Sens. Environ. 21:143–183

    Google Scholar 

  • Townshend JRG, Justice CO (1986) Analysis of the dynamics of African vegetation using the normalized difference vegetation index. Int. J. Remote Sens. 7:1435–1445

    Article  Google Scholar 

  • Tucker CJ (1979) Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 8:127–150

    Article  Google Scholar 

  • Tucker CJ (1980) A spectral method for determining the percentage of green herbage material in clipped samples. Remote Sens. Environ. 9:175–181

    Article  Google Scholar 

  • Tucker CJ, Vanpraet C, Boerwinkel E, Gaston A (1983) Satellite remote sensing of total dry matter production in the Senegalese Sahel. Remote Sens. Environ. 13:461–474

    Article  Google Scholar 

  • Tucker CJ, Townshend JRG, Goff TE (1985) African land-cover classification using satellite data. Science 227:369–375

    Article  Google Scholar 

  • Tucker CJ, Fung I, Keeling C, Gammon R (1986) Relationship between atmospheric CO2 variations and satellite-derived vegetation index. Nature 319:195–199

    Article  Google Scholar 

  • Turner DP, Ritts WD, Cohen WB, Gower ST, Running SW, Zhao M, Costa MH, Kirschbaum A, Ham J, Saleska S, Ahl D (2006) Evaluation of MODIS NPP and GPP products across multiple biomes. Remote Sens. Environ. 102:282–292

    Article  Google Scholar 

  • Van der Werf GR, Randersonm JT, Collatz GJ, Giglio L, Kasibhatla P, Arellano A, Olsen S, Kasischke ES (2004) Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period. Science 303:73–76

    Article  Google Scholar 

  • Walther G-R, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Guldberg OH, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  Google Scholar 

  • Wolfe RE, Nishihama M, Fleig AJ, Kuyper JA, Roy DP, Storey JC, Patt FS (2002) Achieving subpixel geolocation accuracy in support of MODIS land science. Remote Sens. Environ. 83:31–49

    Article  Google Scholar 

  • Xiao X, Hollinger D, Aber J, Goltz M, Davidson EA, Zhang Q, Moore III B (2004) Satellite-based modeling of gross primary production in an evergreen needleleaf forest. Remote Sens. Environ. 89:519–534

    Article  Google Scholar 

  • Xiao X, Hagen S, Zhang Q, Keller M, Moore III B (2006) Detecting leaf phenology of seasonally moist tropical forests in South America with multi-temporal MODIS images. Remote Sens. Environ. 103:465–473

    Article  Google Scholar 

  • Zhao M, Neilson R, Yan X, Dong W (2002) Modelling the vegetation of China under changing climate. Acta Geographica Sinica 57(1):28–38

    Google Scholar 

  • Zhao M, Heinsch FA, Nemani RR, Running SW (2005) Improvements of the MODIS terrestrial gross and net primary production global dataset. Remote Sens. Environ. 95:164–176

    Article  Google Scholar 

  • Zhao M, Running SW, Nemani RR (2006a) Sensitivity of Moderate Resolution Imaging Spectrora diometer (MODIS) terrestrial primary production to the accuracy of meteorological reanalyses. J. Geophys. Res. 111:G01002, doi:10.1029/2004JG000004

    Article  Google Scholar 

  • Zhao M, Running SW, Heinsh FA, Nemani RR (2006b) Variations of global terrestrial primary production observed by Moderate Resolution Imaging Spectroradiometer (MODIS) from 2000 to 2005. (in preparation)

    Google Scholar 

  • Zhou L, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in northern vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J. Geophys. Res. 106:20069–20083

    Article  Google Scholar 

  • Zhuang Q, McGuire AD, Melillo JM, Clein JS, Dargaville RJ, Kicklighter DW, Myneni RB, Dong J, Romanovsky VE, Harden J, Hobbie JE (2003) Carbon cycling in extratropical terrestrial ecosystems of the Northern Hemisphere during the 20th Century: a modeling analysis of the influences of soil thermal dynamics. Tellus B 55:751–776

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V

About this chapter

Cite this chapter

Zhao, M., Running, S.W. (2008). Remote Sensing of Terrestrial Primary Production and Carbon Cycle. In: Liang, S. (eds) Advances in Land Remote Sensing. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6450-0_16

Download citation

Publish with us

Policies and ethics