How Spatial Analysis Can Help in Predicting the Level of Radioactive Contamination of Cereals

  • C. Mercat-Rommens
  • J.-M. Metivier
  • B. Briand
  • V. Durand
Part of the Quantitative Geology and Geostatistics book series (QGAG, volume 15)


The study was devoted to the identification of the spatial parameters that contribute mainly to the assessment of the vulnerability of cereals in the context of accidental discharges of radioactivity into the environment. Linking an agronomical model and a radioecological model highlighted first that the flowering date was the main parameter, since it determines the beginning of an exponential transfer of contaminants from the leaves of cereal plants to the edible part, the grain. Secondly, yield also appeared to be an important parameter as it allows the quantification of the number of contaminated products. The spatial statistical analysis performed on the yield data allowed the creation of vulnerability maps with clear spatial trends, which can facilitate the management of risks associated with radioactive contamination of cereals during the post-accidental phase.


Winter Wheat Chernobyl Accident Cereal Production Radioactive Contamination Spatial Statistical Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agreste (1988) Recensement général de l’agriculture. Agreste(ed), FranceGoogle Scholar
  2. Agreste (2000) CD ROM Recensement agricole 2000 - La fiche comparative., Eds Agreste FranceGoogle Scholar
  3. Angeletti L, Levi E (1997) Etudes comparatives des facteurs de transfert de l’eau, de l’iode et du strontium sur le ray-grass et le tréfle. Rapport CEA-R-4960, Commissariat á l’Energie Atomique, Saclay, FranceGoogle Scholar
  4. Anselin L (1995) Local Indicators of Spatial Association — LISA, Geographical Analysis Vol 27. pp 93–115CrossRefGoogle Scholar
  5. Brisson N, Mary B, Ripoche D, Jeuffroy MH, Ruget F, Nicoullaud B, Gate P, Devienne F, Antonioletti R, Dürr C, Richard G, Beaudoin N, Recous S, Tayot X, Plénet D, Cellier P, Machet JM, Meynard JM, Delécolle R (1998) STICS: a generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie, 18: 311–346CrossRefGoogle Scholar
  6. Brisson N, Mary B (2002) STICS : Notice concepts et formalismes. Version 5.0. (eds) INRA, FranceGoogle Scholar
  7. Chamberlain AC (1970) Interception and retention of radioactive aerosols by vegetation. Atmos Environ 4: 57–78CrossRefGoogle Scholar
  8. Hoffman FO (1989) Pasture grass interception and retention of 131I, 7Be and insoluble microspheres deposited in rain. OAK-RIDGE Laboratory, Environmental Sciences Division.Google Scholar
  9. Jacquez GM, Goovaerts P, Rogerson P (2005) Space-Time intelligence Systems: Technology, applications and methods. J Geo Syst 7: 1–5CrossRefGoogle Scholar
  10. Mercat-Rommens C, Renaud P (2005) From radioecological sensitivity to risk management: the SENSIB project, second international conference radioactivity in the environment, nice.Google Scholar
  11. Moran PAP (1950) Notes on continuous stochastic phenomena, Biometrika 37: 17–23Google Scholar
  12. Mourlon C, Calmon P (2002) ASTRAL: a code for assessing situations after a nuclear accident. 12th annual meeting of SETAC Europe, Vienna 37: pp 12–16Google Scholar
  13. Müller H, Pröhl G (1993) ECOSYS-87: a dynamic Model for assessing radiological consequences of nuclear accidents. Health Phy 64(3): 232–252CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • C. Mercat-Rommens
    • 1
  • J.-M. Metivier
  • B. Briand
  • V. Durand
  1. 1.Laboratory of radioecological studies for marine and terrestrial ecosystemsInstitute for Radioprotection and Nuclear Safety (IRSN), DEI/SESURE/LERCMCadaracheFrance

Personalised recommendations