Skip to main content

Part of the book series: Quantitative Geology and Geostatistics ((QGAG,volume 15))

abstract

The electromagnetic environment in urban areas is growing increasingly complex. Sources of electromagnetic exposure like TV, FM, GSM, Wifi and others are spreading continuously and in the case of Wifi their geographical locations cannot be cataloged exhaustively anymore. Furthermore, the complexity of any highly urbanized environment and the lack of information about the dielectric properties of buildings lead to complex configuration so that a precise deterministic modeling of the electromagnetic exposure at any a given location of interest is probably out-of-reach.

On the other hand there is a growing demand to assess the human exposure induced by these wireless communications. In a project between France Télécom R & D, Ecole des Mines and Supélec the application of geostatistical methods in this context is being explored.

Geostatistics provides the right framework for setting up such exposure maps and its spatial statistical model yields an estimate of exposure as well as an associated error (De Doncker et al., 2006).

The project consists of three phases: geostatistical evaluation of data generated by the numerical model EMF Visual (both in free space and with the addition of obstacles), statistical analysis of measurements performed in the area of the Quartier Latin in Paris and, finally, joint evaluation of an urban area both by statistical and deterministic numerical modeling.

The paper reports about the third phase of this ongoing project, in which the spatial variation is modeled using the variogram, followed by a spatial regression known as kriging. The paper presents results about using a kriging algorithm that integrates numerical model output as an external drift.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • ANFR (2004) Panorama du rayonnement électromagnétique en France. Technical report, Agence Nationale des Fréquences, Maisons-Alfort. Available on: www.anfr.fr

    Google Scholar 

  • Daley R (1991) Atmospheric Data Analysis. Cambridge University Press, Cambridge

    Google Scholar 

  • De Doncker P, Dricot JM, Meys R, Hélier M, Tabbara W (2006) Electromagnetic fields estimation using spatial statistics. Electromagnetics 26:111–122

    Article  Google Scholar 

  • Chilèes JP, Delfiner P (1999) Geostatistics: Modeling Spatial Uncertainty. Wiley, New York

    Google Scholar 

  • ICNIRP (1998) Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz). Health Phys, 74(4):494–522

    Google Scholar 

  • Larchevêque E., Dale C., Wong M-F, Wiart J. (2005) Analysis of electric field averaging for in situ radiofrequency exposure assessment. IEEE Trans on Vehicular Tech 54(4): 1245–1250

    Article  Google Scholar 

  • Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35:293–302

    Article  Google Scholar 

  • Wackernagel H (2003) Multivariate Geostatistics: an Introduction with Applications, 3rd edn Springer-Verlag, Berlin

    Google Scholar 

  • Wackernagel H, Lajaunie C, Blond N, Roth C, Vautard R (2004) Geostatistical risk mapping with chemical transport model output and ozone station data. Ecological Model 179:177–185

    Article  Google Scholar 

  • Wiart J., Dale C., Bosisio A. V., Le Cornec A (2000) Analysis of the influence of the power control and discontinuous transmission on RF exposure with GSM mobile phones. IEEE Trans on EMC 42(4):376–385

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Isselmou, Y.O., Wackernagel, H., Tabbara, W., Wiart, J. (2008). Geostatistical Estimation of Electromagnetic Exposure. In: Soares, A., Pereira, M.J., Dimitrakopoulos, R. (eds) geoENV VI – Geostatistics for Environmental Applications. Quantitative Geology and Geostatistics, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6448-7_5

Download citation

Publish with us

Policies and ethics