The Challenge of Real-Time Automatic Mapping for Environmental Monitoring Network Management

  • E.J. Pebesma
  • G. Dubois
  • D. Cornford
Part of the Quantitative Geology and Geostatistics book series (QGAG, volume 15)

Abstract

The automatic interpolation of environmental monitoring network data such as air quality or radiation levels in real-time setting poses a number of practical and theoretical questions. Among the problems found are (i) dealing and communicating uncertainty of predictions, (ii) automatic (hyper)parameter estimation, (iii) monitoring network heterogeneity, (iv) dealing with outlying extremes, and (v) quality control. In this paper we discuss these issues, in light of the spatial interpolation comparison exercise held in 2004.

Keywords

Europe Covariance Ozone Assimilation Smoke 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cornford D (2005) Are comparative studies a waste of time? SIC2004 examined. In: Dubois G, Luxembourg (ed) EUR, 2005. Automatic mapping algorithms for routine and emergency monitoring data. Office for official publications of the European Communities. EUR 21595 EN – Scientific and technical research series, ISBN 92-894-9400-XGoogle Scholar
  2. Diggle PJ, Tawn JA, Moyeed RA (1998) Model-based geostatistics. Appl Stat 47(3): 299–350Google Scholar
  3. Dubois G, Galmarini S (2005) Introduction to the spatial interpolation comparison (SIC) 2004 exercise and presentation of the datasets. Appl GIS 1(2): 09_1–09_11Google Scholar
  4. EUR (2005) Automatic mapping algorithms for routine and emergency monitoring data. In: Dubois G, Luxembourg (ed) Office for official publications of the European communities. EUR 21595 EN – Scientific and technical research series, ISBN 92-894-9400-XGoogle Scholar
  5. Myers DE (2004) Spatial interpolation comparison exercise 2004: a real problem or an academic exercise. In: Dubois G, Luxembourg (ed) EUR, 2005. Automatic mapping algorithms for routine and emergency monitoring data. Office for official publications of the European communities. EUR 21595 EN – Scientific and technical research series; ISBN 92-894-9400-XGoogle Scholar
  6. Palaseanu-Lovejoy M (2005)Bayesian automating fitting functions for spatial predictions. Appl GIS 1(2): 14.1–14.14Google Scholar
  7. Pebesma EJ (2005) Mapping radioactivity from monitoring data: automating the classical statistical approach. Appl GIS 1(2): 11.1–11.17Google Scholar
  8. Pebesma EJ, Duin RNM (2005) Spatio-temporal mapping of sea floor sediment pollution in the North Sea. In: Renard PH, Froidevaux R (eds) Proceedings GeoENV 2004–Fifth European conference on geostatistics for environmental applications, SpringerGoogle Scholar
  9. Pebesma EJ, de Jong K, Briggs D (2007) Interactive visualization of uncertain spatial and spatio-temporal data under different scenarios: an air quality example. Int J GIS 21(5): 515–527Google Scholar
  10. R development core team (2006) The R project. \tt http://www.r-project.orgGoogle Scholar
  11. Van den Boogaart KG (2005) The comparison of one-click mapping procedures for emergency. In: Dubois G, Luxembourg (ed) EUR, 2005. Automatic mapping algorithms for routine and emergency monitoring data. Office for official publications of the European communities. EUR 21595 EN – Scientific and technical research series, ISBN 92-894-9400-XGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  • E.J. Pebesma
    • 1
  • G. Dubois
  • D. Cornford
  1. 1.Geosciences FacultyUtrecht UniversityThe Netherlands

Personalised recommendations