Skip to main content

Fracture Analysis and Flow Simulations in the Roselend Fractured Granite

  • Chapter
geoENV VI – Geostatistics for Environmental Applications

Part of the book series: Quantitative Geology and Geostatistics ((QGAG,volume 15))

  • 1245 Accesses

Abstract

Understanding of flow and transport in fractured media requires a good knowledge of fractures and fracture networks, which are privileged pathways for water and solutes. The Roselend underground laboratory (French Alps) gives the opportunity to fully investigate flow and solute transport through such a medium. Fracture traces and water fluxes have been determined along the Roselend tunnel.

The major objectives of this work are to derive a three dimensional fracture network consistent with the observations to calculate its percolation properties, and the macroscopic permeability of the medium.

In the tunnel, fractures can be classified into two families of large and small fractures. While large fractures intersect entirely the tunnel, small fractures partially intersect it. Variograms of both trace length and fracture orientation do not show any significant correlation with distance along the tunnel axis or with distance between fractures.

A stereological analysis of the trace length probability densities of the small fractures provides the fracture diameter probability density distribution which is best described by a power law. The large fractures are assumed monodisperse, with a radius equal to 5 m. Numerical simulations show that the networks obtained by combining large and small fractures do percolate while networks constituted of small fractures only do not percolate.

For three different sections along the gallery reflecting the major contrasts in dripping water fluxes, fracture networks are repeatedly generated according to the observed fracture densities. The permeability of these networks is systematically calculated. Results compare well to conductivity properties of similar media and show good consistency with observed water fluxes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler PM (1992) Porous media: Geometry and Transports. Butterworth-Heinemann, Boston

    Google Scholar 

  • Balberg I, Anderson CH, Alexander S, Wagner N (1984) Excluded volume and its relation to the onset of percolation. Phys Rev B 30(7):3933–3943

    Article  Google Scholar 

  • Berkowitz B (1994) Modelling flow and contaminant transport in fractured media. Adv Porous Media 2:397–451

    Google Scholar 

  • Berkowitz B, Adler PM (1998) Stereological analysis of fracture network structure in geological formations. J Geophys Res-Solid Earth 103(B7):15339–15360

    Article  Google Scholar 

  • Bogdanov II, Mourzenko VV, Thovert JF Adler PM (2003) Effective permeability of fractured porous media in steady state flow. Water Resour Res 39(1):1023 DOI: 10.1029/2001WR000756

    Article  Google Scholar 

  • Dezayes C, Villemin T (2002) Etat de la fracturation dans la galerie CEA de Roselend et analyse de la dèformation cassante dans le massif du Méraillet, Technical report CEA contract n 46 000 32745: Université de Savoie LGCA

    Google Scholar 

  • Domenico PA, Schwartz FW (1998) Physical and chemical hydrology. John Wiley and sons, New York

    Google Scholar 

  • Gonzalez-Garcia R, Huseby O, Thovert JF, Ledesert B, Adler PM (2000) Three-dimensional characterization of a fractured granite and transport properties. J Geophys Res 105(B9):21387–21401

    Article  Google Scholar 

  • Gudmundsson A, Berg SS, Lyslo KB Skurtveit E (2001) Fracture networks and fluid transport in active fault zones. J Struct Geol 23(2–3):343–353

    Article  Google Scholar 

  • Gupta AK, Adler PM (2006) Stereological analysis of fracture networks along cylindrical galleries. Math Geol 38(3) DOI: 10.1007/s11004-005-9018-4

    Google Scholar 

  • Huseby O, Thovert JF Adler PM (1997) Geometry and topology of fracture systems. J Phys A-Math Gen 30(5):1415–1444

    Article  Google Scholar 

  • Johnston JD, McCaffrey KJW (1996) Fractal geometries of vein systems and the variation of scaling relationships with mechanism. J Struct Geol 18(2-3):349–358

    Article  Google Scholar 

  • Koudina N, Garcia RG, Thovert JF, Adler PM (1998) Permeability of three-dimensional fracture networks. Phys Rev E 57(4):4466–4479

    Article  Google Scholar 

  • Mauldon M, Mauldon JG (1997) Fracture sampling on a cylinder: From scanlines to boreholes and tunnels. Rock Mech Rock Eng 30(3): 129–144

    Article  Google Scholar 

  • Mourzenko VV, Thovert JF, Adler PM (2005) Percolation of three-dimensional fracture networks with power-law size distribution. Phys Rev E 72:036103 DOI: 10.1103/PhysRevE.72.036103

    Article  Google Scholar 

  • Peacock DCP, Harris SD, Mauldon M (2003) Use of curved scanlines and boreholes to predict fracture frequencies. J Struct Geol 25(1): 109–119

    Article  Google Scholar 

  • Piggott AR (1997) Fractal relations for the diameter and trace length of disc-shaped fractures. J Geophys Res-Solid Earth 102(B8): 18121–18125

    Article  Google Scholar 

  • Pili E, Perrier F, Richon P (2004) Dual porosity mechanism for transient groundwater and gas anomalies induced by external forcing. Earth Planet Sci Lett 227(3-4):473-480 DOI: 10.1016/j.epsl.2004.07.043

    Article  Google Scholar 

  • Provost A-S, Richon P, Pili E, Perrier F, Bureau S (2004) Fractured porous media under influence: the Roselend experiment. Eos Trans AGU 85:113

    Article  Google Scholar 

  • Sisavath S, Mourzenko V, Genthon P, Thovert JF, Adler PM (2004) Geometry, percolation and transport properties of fracture networks derived from line data. Geophys J Int 157(2):917–934 DOI: 10.1111/j.1365-246X.2004.02185.x

    Article  Google Scholar 

  • Thovert JF, Adler PM (2004) Trace analysis for fracture networks of any convex shape. Geophys Res Lett 31(22):L22502 DOI: 10.1029/2004GL021317

    Article  Google Scholar 

  • Thovert JF, Salles J, Adler PM (1993) Computerized characterization of the geometry of real porous-media - Their discretization, analysis and interpretation. J Microsc-Oxf 170: 65–79

    Google Scholar 

  • Vermilye JM, Scholz CH (1995) Relation between vein length and aperture. J Struct Geol 17(3): 423–434

    Article  Google Scholar 

  • Walmann T, Malthe-Sorenssen A, Feder J, Jossang T, Meakin P, Hardy HH (1996) Scaling relations for the lengths and widths of fractures. Phys Rev Lett 77(27): 5393–5396

    Article  Google Scholar 

  • Warburton PM (1980a) A stereological interpretation of joint trace data. Int J Rock Mech Min Sci 17(4): 181–190

    Article  Google Scholar 

  • Warburton PM (1980b) Stereological interpretation of joint trace data - Influence of joint shape and implications for geological surveys. Int J Rock Mech Min Sci 17(6): 305–316

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Patriarche, D., Pili, E., Adler, P., Thovert, JF. (2008). Fracture Analysis and Flow Simulations in the Roselend Fractured Granite. In: Soares, A., Pereira, M.J., Dimitrakopoulos, R. (eds) geoENV VI – Geostatistics for Environmental Applications. Quantitative Geology and Geostatistics, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6448-7_15

Download citation

Publish with us

Policies and ethics