Mechanosensitive Channels Gated by Membrane Tension

Bacteria and Beyond
  • Paul Blount
  • Li Yuezhou
  • Paul C. Moe
  • Irene Iscla
Part of the Mechanosensitivity in Cells and Tissues book series (MECT, volume 1)


What are the stimuli that are sensed by mechanoreceptors? Researchers have now begun to address this question and determine the molecular mechanisms underlying channels that are gated by mechanical forces. Two quite different models now exist. The first is that the channels are ‘tethered’ to cytoskeleton and or extracellular components, which thus exert forces on the channel that lead to gating. The second model predicts that the channel protein directly senses biophysical changes that occur within the membrane when it is under tension. Several lines of evidence indicate that many putative mechanosensitive channels are indeed tethered by other proteins, however in many instances the exact role this tethering plays in mechanosensing has yet to be fully clarified. On the other hand, the cloning and study of bacterial mechanosensitive channels demonstrated that channels can directly sense tension within the membrane. Evidence obtained from several of the more complex eukaryotic mechanosensory systems suggests that a number of eukaryotic channels from divergent families similarly sense tension within the membrane.


Stretch-activated channels Mechanosensitive channels Membrane tension Amphipaths MscL MscS K2P channels TRP channels Channel reconstitution 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akitake, B., Anishkin, A., and Sukharev, S. (2005) The “dashpot” mechanism of stretch-dependent gating in MscS. J Gen Physiol 125 :143–154.PubMedGoogle Scholar
  2. Allard, B., Couble, M. L., Magloire, H., and Bleicher, F. (2000) Characterization and gene expression of high conductance calcium-activated potassium channels displaying mechanosensitivity in human odontoblasts. J Biol Chem 275: 25556–25561.PubMedGoogle Scholar
  3. Anishkin, A., Chiang, C. S., and Sukharev, S. (2005) Gain-of-function mutations reveal expanded intermediate states and a sequential action of two gates in MscL. J Gen Physiol 125 :155–170.PubMedGoogle Scholar
  4. Anishkin, A., Gendel, V., Sharifi, N. A., Chiang, C. S., Shirinian, L., Guy, H. R., and Sukharev, S. (2003) On the conformation of the COOH-terminal domain of the large mechanosensitive channel MscL. The Journal of general physiology 121(3) :227–244.PubMedGoogle Scholar
  5. Anishkin, A., and Sukharev, S. (2004) Water dynamics and dewetting transitions in the small mechanosensitive channel MscS. Biophys J 86 :2883–2895.PubMedGoogle Scholar
  6. Awayda, M. S., Shao, W., Guo, F., Zeidel, M., and Hill, W. G. (2004) ENaC-membrane interactions: regulation of channel activity by membrane order. J Gen Physiol 123 :709–727.PubMedGoogle Scholar
  7. Bang, H., Kim, Y., and Kim, D. (2000) TREK-2, a new member of the mechanosensitive tandem-pore K+ channel family. J Biol Chem 275 :17412–17419.PubMedGoogle Scholar
  8. Bartlett, J. L., Levin, G., and Blount, P. (2004) An in vivo assay identifies changes in residue accessibility on mechanosensitive channel gating. Proc Natl Acad Sci U S A 101 :10161–10165.PubMedGoogle Scholar
  9. Bartlett, J. L., Li, Y., and Blount, P. (2006) Mechanosensitive channel gating transitions resolved by functional changes upon pore modification. Biophys J 91 :3684–3691.PubMedGoogle Scholar
  10. Bass, R. B., Strop, P., Barclay, M., and Rees, D. C. (2002) Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298 :1582–1587.PubMedGoogle Scholar
  11. Batiza, A. F., Schulz, T., and Masson, P. H. (1996) Yeast respond to hypotonic shock with a calcium pulse. J Biol Chem 271 :23357–23362.PubMedGoogle Scholar
  12. Bayliss, D. A., Talley, E. M., Sirois, J. E., and Lei, Q. (2001) TASK-1 is a highly modulated pH-sensitive ‘leak’ K+ channel expressed in brainstem respiratory neurons. Respiration physiology 129 :159–174.PubMedGoogle Scholar
  13. Berrier, C., Besnard, M., Ajouz, B., Coulombe, A., and Ghazi, A. (1996) Multiple mechanosensitive ion channels from Escherichia coli, activated at different thresholds of applied pressure. J Membr Biol 151 :175–187.PubMedGoogle Scholar
  14. Blount, P., Iscla, I., Li, Y., and Moe, P. C. (2005). The bacterial mechanosensitive channel MscS and its extended family. In Bacterial channels and their eukaryotic homologues, A. Kubalski, and B. Martinac, eds. (Washington, D.C., ASM Press).Google Scholar
  15. Blount, P., Iscla, I., Moe, P. C., and Li, Y. (2007). MscL: The bacterial mechanosensitive channel of large conductance. In Mechanosensitive Ion Channels (Volume 58 Current Topics in Membranes series), O. P. Hamill, ed. (St. Louis, MO, Elsievier Press) pp 202–233.Google Scholar
  16. Blount, P., and Moe, P. (1999) Bacterial mechanosensitive channels: integrating physiology, structure and function. Trends in Microbiol 7 :420–424.Google Scholar
  17. Blount, P., Sukharev, S. I., Moe, P. C., Schroeder, M. J., Guy, H. R., and Kung, C. (1996a) Membrane topology and multimeric structure of a mechanosensitive channel protein of Escherichia coli. EMBO J 15 :4798–4805.Google Scholar
  18. Blount, P., Sukharev, S. I., Schroeder, M. J., Nagle, S. K., and Kung, C. (1996b) Single residue substitutions that change the gating properties of a mechanosensitive channel in Escherichia coli. Proc Nat Acad Sci USA 93 :11652–11657.Google Scholar
  19. Boyd, D., Manoil, C., and Beckwith, J. (1987) Determinants of membrane protein topology. Proc Nat Acad Sci USA 84 :8525–8529.PubMedGoogle Scholar
  20. Britten, R. J., and McClure, F. T. (1962) The amino acid pool in Escherichia coli. Bacteriol Rev 26 :292–335.PubMedGoogle Scholar
  21. Buckler, K. J., and Honore, E. (2005) The lipid-activated two-pore domain K+ channel TREK-1 is resistant to hypoxia: implication for ischaemic neuroprotection. The Journal of physiology 562 :213–222.PubMedGoogle Scholar
  22. Cantor, R. (1999) Lipid composition and the lateral pressure profile in bilayers. Biophys J 76 :2625–2639.PubMedGoogle Scholar
  23. Casado, M., and Ascher, P. (1998) Opposite modulation of NMDA receptors by lysophospholipids and arachidonic acid: common features with mechanosensitivity. The Journal of physiology 513 (Pt 2) :317–330.PubMedGoogle Scholar
  24. Caterina, M., Rosen, T., Tominaga, M., Brake, A., and Julius, D. (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. SO - Nature 1999 Apr 1;398(6726): 436–41 398.Google Scholar
  25. Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D., and Julius, D. (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389 :816–824.PubMedGoogle Scholar
  26. Chang, G., Spencer, R. H., Lee, A. T., Barclay, M. T., and Rees, D. C. (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: A gated mechanosensitive ion channel. Science 282 :2220–2226.PubMedGoogle Scholar
  27. Chapman, C. G., Meadows, H. J., Godden, R. J., Campbell, D. A., Duckworth, M., Kelsell, R. E., Murdock, P. R., Randall, A. D., Rennie, G. I., and Gloger, I. S. (2000) Cloning, localisation and functional expression of a novel human, cerebellum specific, two pore domain potassium channel. Brain Res Mol Brain Res 82 :74–83.PubMedGoogle Scholar
  28. Chavez, R. A., Gray, A. T., Zhao, B. B., Kindler, C. H., Mazurek, M. J., Mehta, Y., Forsayeth, J. R., and Yost, C. S. (1999) TWIK-2, a new weak inward rectifying member of the tandem pore domain potassium channel family. J Biol Chem 274 : 7887–7892.PubMedGoogle Scholar
  29. Chen, J., and Barritt, G. J. (2003) Evidence that TRPC1 (transient receptor potential canonical 1) forms a Ca(2+)-permeable channel linked to the regulation of cell volume in liver cells obtained using small interfering RNA targeted against TRPC1. The Biochemical journal 373 :327–336.PubMedGoogle Scholar
  30. Chiang, C. S., Anishkin, A., and Sukharev, S. (2004) Gating of the large mechanosensitive channel in situ: estimation of the spatial scale of the transition from channel population responses. Biophys J 86 :2846–2861.PubMedGoogle Scholar
  31. Chiang, C. S., Shirinian, L., and Sukharev, S. (2005) Capping Transmembrane Helices of MscL with Aromatic Residues Changes Channel Response to Membrane Stretch. Biochemistry 44 :12589–12597.PubMedGoogle Scholar
  32. Czirjak, G., and Enyedi, P. (2002) TASK-3 dominates the background potassium conductance in rat adrenal glomerulosa cells. Molecular endocrinology Baltimore, Md 16 :621–629.PubMedGoogle Scholar
  33. Davidson, R. M., Tatakis, D. W., and Auerbach, A. L. (1990) Multiple forms of mechanosensitive ion channels in osteoblast-like cells. Pflugers Arch 416 :646–651.PubMedGoogle Scholar
  34. Deuticke, B. (1968) Transformation and restoration of biconcave shape of human erythrocytes induced by amphiphilic agents and changes of ionic environment. Biochim Biophys Acta 163 :494–500.PubMedGoogle Scholar
  35. Dopico, A. M., Kirber, M. T., Singer, J. J., and Walsh, J. V., Jr. (1994) Membrane stretch directly activates large conductance Ca(2+)-activated K+ channels in mesenteric artery smooth muscle cells. Am J Hypertens 7 :82–89.PubMedGoogle Scholar
  36. Duprat, F., Girard, C., Jarretou, G., and Lazdunski, M. (2005) Pancreatic two P domain K+ channels TALK-1 and TALK-2 are activated by nitric oxide and reactive oxygen species. The Journal of physiology 562 :235–244.PubMedGoogle Scholar
  37. Duprat, F., Lesage, F., Patel, A., Fink, M., Romey, G., and Lazdunski, M. (2000) The neuroprotective agent riluzole activates the two P domain K(+) channels TREK-1 and TRAAK. Molecular Pharmacology 57 :906–912.PubMedGoogle Scholar
  38. Edwards, M. D., Booth, I. R., and Miller, S. (2004) Gating the bacterial mechanosensitive channels: MscS a new paradigm? Current Opinion in Microbiology 7 :163–167.PubMedGoogle Scholar
  39. Edwards, M. D., Li, Y., Kim, S., Miller, S., Bartlett, W., Black, S., Dennison, S., Iscla, I., Blount, P., Bowie, J. U., and Booth, I. R. (2005) Pivotal role of the glycine-rich TM3 helix in gating the MscS mechanosensitive channel. Nat Struct Mol Biol 12 :113–119.PubMedGoogle Scholar
  40. Elmore, D. E., and Dougherty, D. A. (2001) Molecular dynamics simulations of wild-type and mutant forms of the Mycobacterium tuberculosis MscL channel. Biophys J 81 :1345–1359.PubMedGoogle Scholar
  41. Elmore, D. E., and Dougherty, D. A. (2003) Investigating lipid composition effects on the mechanosensitive channel of large conductance (MscL) using molecular dynamics simulations. Biophys J 85 :1512–1524.PubMedGoogle Scholar
  42. Fischer, M., Schnell, N., Chattaway, J., Davies, P., Dixon, G., and Sanders, D. (1997) The Saccharomyces cerevisiae CCH1 gene is involved in calcium influx and mating. FEBS Lett 419 :259–262.PubMedGoogle Scholar
  43. Girard, C., Duprat, F., Terrenoire, C., Tinel, N., Fosset, M., Romey, G., Lazdunski, M., and Lesage, F. (2001) Genomic and functional characteristics of novel human pancreatic 2P domain K(+) channels. Biochemical and biophysical research communications 282 :249–256.PubMedGoogle Scholar
  44. Goldstein, S. A., Bayliss, D. A., Kim, D., Lesage, F., Plant, L. D., and Rajan, S. (2005) International Union of Pharmacology. LV. Nomenclature and molecular relationships of two-P potassium channels. Pharmacol Rev 57 :527–540.PubMedGoogle Scholar
  45. Grimm, C., Kraft, R., Sauerbruch, S., Schultz, G., and Harteneck, C. (2003) Molecular and functional characterization of the melastatin-related cation channel TRPM3. J Biol Chem 278 :21493–21501.PubMedGoogle Scholar
  46. Gu, C. X., Juranka, P. F., and Morris, C. E. (2001) Stretch-activation and stretch-inactivation of Shaker-IR, a voltage-gated K+ channel. Biophys J 80 :2678–2693.PubMedGoogle Scholar
  47. Guharay, F., and Sachs, F. (1984) Stretch-activated single ion channel currents in tissue-cultured embryonic chick skeletal muscle. J Physiol 352 :685–701.PubMedGoogle Scholar
  48. Gullingsrud, J., and Schulten, K. (2004) Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys J 86 :3496–3509.PubMedGoogle Scholar
  49. Gustin, M. C., Zhou, X. L., Martinac, B., and Kung, C. (1988) A mechanosensitive ion channel in the yeast plasma membrane. Science 242 :762–765.PubMedGoogle Scholar
  50. Han, J., Kang, D., and Kim, D. (2003) Functional properties of four splice variants of a human pancreatic tandem-pore K+ channel, TALK-1. Am J Physiol Cell Physiol 285 : C529–538.PubMedGoogle Scholar
  51. Häse, C. C., Le Dain, A. C., and Martinac, B. (1995) Purification and functional reconstitution of the recombinant large mechanosensitive ion channel (MscL) of Escherichia coli.J Biol Chem 270 :18329–18334.PubMedGoogle Scholar
  52. Haswell, E. S. (2007). MscS-like proteins in plants. In Mechanosensitive Ion Channels (Volume 58 Current Topics in Membranes series), O. P. Hamill, ed. (St. Louis, MO, Elsievier Press).Google Scholar
  53. Haswell, E. S., and Meyerowitz, E. M. (2006) MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr Biol 16 :1–11.PubMedGoogle Scholar
  54. Heurteaux, C., Guy, N., Laigle, C., Blondeau, N., Duprat, F., Mazzuca, M., Lang-Lazdunski, L., Widmann, C., Zanzouri, M., Romey, G., and Lazdunski, M. (2004) TREK-1, a K+ channel involved in neuroprotection and general anesthesia. Embo J 23 :2684–2695.PubMedGoogle Scholar
  55. Iida, H., Nakamura, H., Ono, T., Okumura, M. S., and Anraku, Y. (1994) MID1, a novel Saccharomyces cerevisiae gene encoding a plasma membrane protein, is required for Ca2+ influx and mating. Molecular and cellular biology 14 :8259–8271.PubMedGoogle Scholar
  56. Iscla, I., Levin, G., Wray, R., Reynolds, R., and Blount, P. (2004) Defining the physical gate of a mechanosensitive channel, MscL, by engineering metal-binding sites. Biophys J 87(5): 3172–3180.PubMedGoogle Scholar
  57. Ismailov, II, Berdiev, B. K., Shlyonsky, V. G., and Benos, D. J. (1997) Mechanosensitivity of an epithelial Na+ channel in planar lipid bilayers: release from Ca2+ block. Biophys J 72 :1182–1192.PubMedGoogle Scholar
  58. Ji, H. L., Fuller, C. M., and Benos, D. J. (1998) Osmotic pressure regulates alpha beta gamma-rENaC expressed in Xenopus oocytes. The American journal of physiology 275 :C1182–1190.PubMedGoogle Scholar
  59. Kang, D., Han, J., Talley, E. M., Bayliss, D. A., and Kim, D. (2004) Functional expression of TASK-1/TASK-3 heteromers in cerebellar granule cells. The Journal of physiology 554 :64–77.PubMedGoogle Scholar
  60. Kanzaki, M., Nagasawa, M., Kojima, I., Sato, C., Naruse, K., Sokabe, M., and Iida, H. (1999) Molecular identification of a eukaryotic, stretch-activated nonselective cation channel. Science 285 :882–886.PubMedGoogle Scholar
  61. Kim, D. (2003) Fatty acid-sensitive two-pore domain K^+ channels. TRENDS in Pharmacological Sciences 24 :648–654.PubMedGoogle Scholar
  62. Kim, Y., Bang, H., and Kim, D. (2000) TASK-3, a new member of the tandem pore K(+) channel family. J Biol Chem 275 :9340–9347.PubMedGoogle Scholar
  63. Kirber, M. T., Ordway, R. W., Clapp, L. H., Walsh, J. V., Jr., and Singer, J. J. (1992) Both membrane stretch and fatty acids directly activate large conductance Ca(2+)-activated K+ channels in vascular smooth muscle cells. FEBS Lett 297 :24–28.PubMedGoogle Scholar
  64. Kloda, A., Ghazi, A., and Martinac, B. (2006) C-terminal charged cluster of MscL, RKKEE, functions as a pH sensor. Biophys J 90 :1992–1998.PubMedGoogle Scholar
  65. Kloda, A., and Martinac, B. (2001) Molecular identification of a mechanosensitive channel in archaea. Biophys J 80 :229–240.PubMedGoogle Scholar
  66. Kloda, A., and Martinac, B. (2002) Common evolutionary origins of mechanosensitive ion channels in Archaea, bacteria and cell-walled Eukarya. Archaea 1 :35–44.PubMedGoogle Scholar
  67. Koh, S. D., Monaghan, K., Sergeant, G. P., Ro, S., Walker, R. L., Sanders, K. M., and Horowitz, B. (2001) TREK-1 Regulation by Nitric Oxide and cGMP-dependent Protein Kinase. The Journal of Biological Chemistry 276 :44338–44346.PubMedGoogle Scholar
  68. Koprowski, P., and Kubalski, A. (1998) Voltage-independent adaptation of mechanosensitive channels in Escherichia coli protoplasts. J Membr Biol 164 :253–262.PubMedGoogle Scholar
  69. Koprowski, P., and Kubalski, A. (2003) C termini of the Escherichia coli mechanosensitive ion channel (MscS) move apart upon the channel opening. J Biol Chem 278 :11237–11245.PubMedGoogle Scholar
  70. Kung, C. (2005) A possible unifying principle for mechanosensation. Nature 436(7051) :647–654.PubMedGoogle Scholar
  71. Laitko, U., Juranka, P. F., and Morris, C. E. (2006) Membrane stretch slows the concerted step prior to opening in a Kv channel. J Gen Physiol 127 :687–701.PubMedGoogle Scholar
  72. Laitko, U., and Morris, C. E. (2004) Membrane tension accelerates rate-limiting voltage-dependent activation and slow inactivation steps in a Shaker channel. J Gen Physiol 123 :135–154.PubMedGoogle Scholar
  73. Lesage, F., Guillemare, E., Fink, M., Duprat, F., Lazdunski, M., Romey, G., and Barhanin, J. (1996) TWIK-1, a ubiquitous human weakly inward rectifying K+ channel with a novel structure. Embo J 15 :1004–1011.PubMedGoogle Scholar
  74. Lesage, F., and Lazdunski, M. (2000) Molecular and functional properties of two-pore-domain potassium channels. American Journal of Physiology - Renal Fluid & Electrolyte Physiology 279 :F793-F801.Google Scholar
  75. Levin, G., and Blount, P. (2004) Cysteine scanning of MscL transmembrane domains reveals residues critical for mechanosensitive channel gating. Biophys J 86 :2862–2870.PubMedGoogle Scholar
  76. Levina, N., Totemeyer, S., Stokes, N. R., Louis, P., Jones, M. A., and Booth, I. R. (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: identification of genes required for MscS activity. EMBO J 18 :1730–1737.PubMedGoogle Scholar
  77. Li, Y., Moe, P. C., Chandrasekaran, S., Booth, I. R., and Blount, P. (2002) Ionic regulation of MscK, a mechanosensitive channel from Escherichia coli. EMBO J 21 :5323–5330.PubMedGoogle Scholar
  78. Li, Y., Wray, R., and Blount, P. (2004) Intragenic suppression of gain-of-function mutations in the Escherichia coli mechanosensitive channel, MscL. Mol Microbiol 53 :485–495.PubMedGoogle Scholar
  79. Liedtke, W., Choe, Y., Marti-Renom, M. A., Bell, A. M., Denis, C. S., Sali, A., Hudspeth, A. J., Friedman, J. M., and Heller, S. (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103 :525–535.PubMedGoogle Scholar
  80. Macdonald, A. G., and Martinac, B. (2005) Effect of high hydrostatic pressure on the bacterial mechanosensitive channel MscS. Eur Biophys J 34 :434–441.PubMedGoogle Scholar
  81. Maingret, F., Fosset, M., Lesage, F., Lazdunski, M., and Honore, E. (1999) TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem 274 :1381–1387.PubMedGoogle Scholar
  82. Maingret, F., Lauritzen, I., Patel, A., Heurteaux, C., Reyes, R., Lesage, F., Lazdunski, M., and Honore, E. (2000a) TREK-1 is a heat-activated background K(+) channel. EMBO J 19 : 2483–2491.Google Scholar
  83. Maingret, F., Patel, A., Lesage, F., Lazdunski, M., and Honore, E. (2000b) Lysophospholipids open the two-pore domain mechano-gated K(+) channels TREK-1 and TRAAK. J Biol Chem 275 :10128–10133.Google Scholar
  84. Mallouk, N., and Allard, B. (2000) Stretch-induced activation of Ca(2+)-activated K(+) channels in mouse skeletal muscle fibers. Am J Physiol Cell Physiol 278 :C473–479.PubMedGoogle Scholar
  85. Maroto, R., Raso, A., Wood, T. G., Kurosky, A., Martinac, B., and Hamill, O. P. (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7 :179–185.PubMedGoogle Scholar
  86. Martinac, B. (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117 :2449–2460.PubMedGoogle Scholar
  87. Martinac, B., Adler, J., and Kung, C. (1990) Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348 :261–263.PubMedGoogle Scholar
  88. Martinac, B., Buechner, M., Delcour, A. H., Adler, J., and Kung, C. (1987) Pressure-sensitive ion channel in Escherichia coli. Proc Nat Acad Sci USA 84 :2297–2301.PubMedGoogle Scholar
  89. Martinac, B., and Hamill, O. P. (2002) Gramicidin A channels switch between stretch activation and stretch inactivation depending on bilayer thickness. Proc Natl Acad Sci USA 99 :4308–4312.PubMedGoogle Scholar
  90. Martinac, B., and Kloda, A. (2003) Evolutionary origins of mechanosensitive ion channels. Progress in biophysics and molecular biology 82 :11–24.PubMedGoogle Scholar
  91. Matsumoto, T. K., Ellsmore, A. J., Cessna, S. G., Low, P. S., Pardo, J. M., Bressan, R. A., and Hasegawa, P. M. (2002) An osmotically induced cytosolic Ca^2+ transient activates calcineurin signaling to mediate ion homeostasis and salt tolerance of Saccharomyces cerevisiae. J Biol Chem 277 :33075–33080.PubMedGoogle Scholar
  92. Maurer, J. A., and Dougherty, D. A. (2003) Generation and evaluation of a large mutational library from the Escherichia coli mechanosensitive channel of large conductance, MscL - Implications for channel gating and evolutionary design. J Biol Chem 278 :21076–21082.PubMedGoogle Scholar
  93. McKemy, D. D., Neuhausser, W. M., and Julius, D. (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416 :52–58.PubMedGoogle Scholar
  94. McLaggan, D., Jones, M. A., Gouesbet, G., Levina, N., Lindey, S., Epstein, W., and Booth, I. R. (2002) Analysis of the kefA2 mutation suggests that KefA is a cation-specific channel involved in osmotic adaptation in Escherichia coli. Molec Microbiol 43 :521–536.Google Scholar
  95. Meyer, G. R., Gullingsrud, J., Schulten, K., and Martinac, B. (2006) Molecular Dynamics study of MscL interactions with a curved lipid bilayer. Biophys J.Google Scholar
  96. Mienville, J., Barker, J. L., and Lange, G. D. (1996) Mechanosensitive properties of BK channels from embryonic rat neuroepithelium. The Journal of membrane biology 153 :211–216.PubMedGoogle Scholar
  97. Miller, S., Edwards, M. D., Ozdemir, C., and Booth, I. R. (2003) The closed structure of the MscS mechanosensitive channel - Cross-linking of single cysteine mutants. J Biol Chem 278 :32246–32250.PubMedGoogle Scholar
  98. Minke, B. (2006) TRP channels and Ca^+2 signaling. Cell calcium 40 :261–275.PubMedGoogle Scholar
  99. Moe, P., and Blount, P. (2005) Assessment of Potential Stimuli for Mechano-Dependent Gating of MscL: Effects of Pressure, Tension, and Lipid Headgroups. Biochemistry 44 :12239–12244.PubMedGoogle Scholar
  100. Moe, P. C., Blount, P., and Kung, C. (1998) Functional and structural conservation in the mechanosensitive channel MscL implicates elements crucial for mechanosensation. Molec Microbiol 28 :583–592.Google Scholar
  101. Moe, P. C., Levin, G., and Blount, P. (2000) Correlating a protein structure with function of a bacterial mechanosensitive channel. J Biol Chem 275 :31121–31127.PubMedGoogle Scholar
  102. Muller, E. M., Locke, E. G., and Cunningham, K. W. (2001) Differential regulation of two Ca(2+) influx systems by pheromone signaling in Saccharomyces cerevisiae. Genetics 159 :1527–1538.PubMedGoogle Scholar
  103. Muraki, K., Iwata, Y., Katanosaka, Y., Ito, T., Ohya, S., Shigekawa, M., and Imaizumi, Y. (2003) TRPV2 is a component of osmotically sensitive cation channels in murine aortic myocytes. Circ Res 93 :829–838.PubMedGoogle Scholar
  104. Nauli, S. M., Alenghat, F. J., Luo, Y., Williams, E., Vassilev, P., Li, X., Elia, A. E., Lu, W., Brown, E. M., Quinn, S. J., Ingber, D. E., and Zhou, J. (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nature genetics 33 :129–137.PubMedGoogle Scholar
  105. Niemeyer, M. I., Cid, L. P., Barros, L. F., and Sepulveda, F. V. (2001) Modulation of the two-pore domain acid-sensitive K+ channel TASK-2 (KCNK5) by changes in cell volume. J Biol Chem 276 :43166–43174.PubMedGoogle Scholar
  106. Nomura, T., Sokabe, M., and Yoshimura, K. (2006) Lipid-protein interaction of the MscS mechanosensitive channel examined by scanning mutagenesis. Biophys J 91 :2874–2881.PubMedGoogle Scholar
  107. Numata, T., Shimizu, T., and Okada, Y. (2006) TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells. Am J Physiol Cell Physiol.Google Scholar
  108. Okada, K., Moe, P. C., and Blount, P. (2002) Functional design of bacterial mechanosensitive channels. Comparisons and contrasts illuminated by random mutagenesis. J Biol Chem 277 :27682–27688.PubMedGoogle Scholar
  109. Opsahl, L. R., and Webb, W. W. (1994) Transduction of membrane tension by the ion channel alamethicin. Biophys J 66 :71–74.PubMedGoogle Scholar
  110. Ozdirekcan, S., Rijkers, D. T., Liskamp, R. M., and Killian, J. A. (2005) Influence of flanking residues on tilt and rotation angles of transmembrane peptides in lipid bilayers. A solid-state 2H NMR study. Biochemistry 44 :1004–1012.Google Scholar
  111. Pacha, J., Frindt, G., Sackin, H., and Palmer, L. G. (1991) Apical maxi K channels in intercalated cells of CCT. The American journal of physiology 261 :F696–705.PubMedGoogle Scholar
  112. Palmer, C. P., Batiza, A., Zhou, X. L., Loukin, S. H., Saimi, Y., and Kung, C. (2004). Ion channels of microbes. In Cell signalling in prokaryotes and lower metazoa, I. Fairweather, ed. (Lkuver Academic Publishers), pp. 325–345.Google Scholar
  113. Paoletti, P., and Ascher, P. (1994) Mechanosensitivity of NMDA receptors in cultured mouse central neurons. Neuron 13 :645–655.PubMedGoogle Scholar
  114. Park, K. H., Berrier, C., Martinac, B., and Ghazi, A. (2004) Purification and functional reconstitution of N- and C-halves of the MscL channel. Biophys J 86 :2129–2136.PubMedGoogle Scholar
  115. Patel, A., and Honoré, E. (2002) The TREK two P domain K$^ +$ channels. J Physiol 539.3 :647.Google Scholar
  116. Patel, A., Honore, E., Lesage, F., Fink, M., Romey, G., and Lazdunski, M. (1999) Inhalational anesthetics activate two-pore-domain background K+ channels. Nature Neuroscience 2 :422–426.PubMedGoogle Scholar
  117. Patel, A. J., and Honore, E. (2001) Molecular physiology of oxygen-sensitive potassium channels. European Respiratory Journal 18 :221–227.PubMedGoogle Scholar
  118. Patel, A. J., Lazdunski, M., and Honoré, E. (2001) Lipid and mechano-gated 2P domain K + channels. Current Opinion in Cell Biology 13 :422–427.PubMedGoogle Scholar
  119. Peier, A. M., Moqrich, A., Hergarden, A. C., Reeve, A. J., Andersson, D. A., Story, G. M., Earley, T. J., Dragoni, I., McIntyre, P., Bevan, S., and Patapoutian, A. (2002) A TRP channel that senses cold stimuli and menthol. Cell 108 :705–715.PubMedGoogle Scholar
  120. Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A., and Martinac, B. (2002a) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418 :942–948.Google Scholar
  121. Perozo, E., Kloda, A., Cortes, D. M., and Martinac, B. (2001) Site-directed spin-labeling analysis of reconstituted Mscl in the closed state. J Gen Physiol 118 :193–206.PubMedGoogle Scholar
  122. Perozo, E., Kloda, A., Cortes, D. M., and Martinac, B. (2002b) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nature Struct Biol 9 :696–703.Google Scholar
  123. Pivetti, C. D., Yen, M. R., Miller, S., Busch, W., Tseng, Y. H., Booth, I. R., and Saier, M. H. (2003) Two families of mechanosensitive channel proteins. Microbiol Mol Biol R 67 :66–85.Google Scholar
  124. Poolman, B., Blount, P., Folgering, J. H., Friesen, R. H., Moe, P. C., and van der Heide, T. (2002) How do membrane proteins sense water stress? Molec Microbiol 44 :889–902.Google Scholar
  125. Powl, A. M., East, J. M., and Lee, A. G. (2005a) Heterogeneity in the Binding of Lipid Molecules to the Surface of a Membrane Protein: Hot Spots for Anionic Lipids on the Mechanosensitive Channel of Large Conductance MscL and Effects on Conformation. Biochemistry 44 :5873–5883.Google Scholar
  126. Powl, A. M., Wright, J. N., East, J. M., and Lee, A. G. (2005b) Identification of the Hydrophobic Thickness of a Membrane Protein Using Fluorescence Spectroscopy: Studies with the Mechanosensitive Channel MscL(,)(1). Biochemistry 44 :5713–5721.Google Scholar
  127. Qi, Z., Chi, S., Su, X., Naruse, K., and Sokabe, M. (2005) Activation of a mechanosensitive BK channel by membrane stress created with amphipaths. Mol Membr Biol 22 : 519–527.PubMedGoogle Scholar
  128. Rajan, S., Wischmeyer, E., Karschin, C., Preisig-Muller, R., Grzeschik, K. H., Daut, J., Karschin, A., and Derst, C. (2001) THIK-1 and THIK-2, a novel subfamily of tandem pore domain K+ channels. J Biol Chem 276 :7302–7311.PubMedGoogle Scholar
  129. Rajan, S., Wischmeyer, E., Xin Liu, G., Preisig-Muller, R., Daut, J., Karschin, A., and Derst, C. (2000) TASK-3, a novel tandem pore domain acid-sensitive K+ channel. An extracellular histiding as pH sensor. J Biol Chem 275 :16650–16657.PubMedGoogle Scholar
  130. Ricci, A. J., Kachar, B., Gale, J., and Van Netten, S. M. (2006) Mechano-electrical transduction: new insights into old ideas. The Journal of membrane biology 209 :71–88.PubMedGoogle Scholar
  131. Sachs, F. (1986) Biophysics of mechanoreception. Membrane biochemistry 6 :173–195.PubMedGoogle Scholar
  132. Saint, N., Lacapere, J. J., Gu, L. Q., Ghazi, A., Martinac, B., and Rigaud, J. L. (1998) A hexameric transmembrane pore revealed by two-dimensional crystallization of the large mechanosensitive ion channel (MscL) of Escherichia coli. J Biol Chem 273 :14667–14670.PubMedGoogle Scholar
  133. Schumann, U., Edwards, M. D., Li, C., and Booth, I. R. (2004) The conserved carboxyl-terminus of the MscS mechanosensitive channel is not essential by increases stability and activity. FEBS Lett (in press).Google Scholar
  134. Sharif Naeini, R., Witty, M. F., Seguela, P., and Bourque, C. W. (2006) An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat Neurosci 9 :93–98.PubMedGoogle Scholar
  135. Sheetz, M. P., Painter, R. G., and Singer, S. J. (1976) Biological membranes as bilayer couples. III. Compensatory shape changes induced in membranes. J Cell Biol 70 :193–203.PubMedGoogle Scholar
  136. Smith, G. D., Gunthorpe, M. J., Kelsell, R. E., Hayes, P. D., Reilly, P., Facer, P., Wright, J. E., Jerman, J. C., Walhin, J. P., Ooi, L., Egerton, J., Charles, K. J., Smart, D., Randall, A. D., Anand, P., and Davis, J. B. (2002) TRPV3 is a temperature-sensitive vanilloid receptor-like protein. Nature 418 :186–190.PubMedGoogle Scholar
  137. Sokabe, M., Naruse, K., and Qiong-Yao, T. (2004) A new mechanosensitive channel SAKCA and a new MS channel blocker GsTMx-4. Nippon yakurigaku zasshi 124 :301–310.PubMedGoogle Scholar
  138. Sotomayor, M., Vasquez, V., Perozo, E., and Schulten, K. (2006) Ion Conduction through MscS as Determined by Electrophysiology and Simulation. Biophys J.Google Scholar
  139. Spassova, M. A., Hewavitharana, T., Xu, W., Soboloff, J., and Gill, D. L. (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci U S A 103 :16586–16591.PubMedGoogle Scholar
  140. Strotmann, R., Harteneck, C., Nunnenmacher, K., Schultz, G., and Plant, T. (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nature Cell Biology 2 :695–702.PubMedGoogle Scholar
  141. Sukharev, S. (2002) Purification of the small mechanosensitive channel of Escherichia coli (MscS): the subunit structure, conduction, and gating characteristics in liposomes. Biophys J 83 :290–298.PubMedGoogle Scholar
  142. Sukharev, S., Betanzos, M., Chiang, C., and Guy, H. (2001a) The gating mechanism of the large mechanosensitive channel MscL. Nature 409 :720–724.Google Scholar
  143. Sukharev, S., Durell, S., and Guy, H. (2001b) Structural models of the MscL gating mechanism. Biophys J 81 :917–936.Google Scholar
  144. Sukharev, S. I., Blount, P., Martinac, B., Blattner, F. R., and Kung, C. (1994a) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368 :265–268.Google Scholar
  145. Sukharev, S. I., Martinac, B., Arshavsky, V. Y., and Kung, C. (1993) Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys J 65 :177–183.PubMedGoogle Scholar
  146. Sukharev, S. I., Martinac, B., Blount, P., and Kung, C. (1994b) Functional reconstitution as an assay for biochemical isolation of channel proteins: Application to the molecular identification of a bacterial mechanosensitive channel. Methods: A Companion to Methods in Enzymology 6 :51–59.Google Scholar
  147. Sukharev, S. I., Schroeder, M. J., and McCaslin, D. R. (1999a) Stoichiometry of the large conductance bacterial mechanosensitive channel of E. coli. A biochemical study. J Membr Biol 171 :183–193.Google Scholar
  148. Sukharev, S. I., Sigurdson, W. J., Kung, C., and Sachs, F. (1999b) Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J Gen Physiol 113 :525–540.Google Scholar
  149. Talley, E. M., and Bayliss, D. A. (2002) Modulation of TASK-1 (Kcnk3) and TASK-3 (Kcnk9) potassium channels: volatile anesthetics and neurotransmitters share a molecular site of action. J Biol Chem 277 :17733–17742.PubMedGoogle Scholar
  150. Talley, E. M., Lei, Q., Sirois, J. E., and Bayliss, D. A. (2000) TASK-1, a two-pore domain K+ channel, is modulated by multiple neurotransmitters in motoneurons. Neuron 25 :399–410.PubMedGoogle Scholar
  151. Tang, Q. Y., Qi, Z., Naruse, K., and Sokabe, M. (2003) Characterization of a functionally expressed stretch-activated BKca channel cloned from chick ventricular myocytes. The Journal of membrane biology 196 :185–200.PubMedGoogle Scholar
  152. Tang, Y. W., Cao, G., Chen, X., Yoo, J., Yethiraj, A., and Cui, Q. (2006) A finite element framework for studying the mechanical response of macromolecules: Application to the gating of the mechanosensitive channel MscL. Biophys J.Google Scholar
  153. Tavernarakis, N., and Driscoll, M. (1997) Molecular modeling of mechanotransduction in the nematode Caenorhabditis elegans. Ann Rev Physiol 59 :659–689.Google Scholar
  154. Tsapis, A., and Kepes, A. (1977) Transient breakdown of the permeability barrier of the membrane of Escherichia coli upon hypoosmotic shock. ,Biochim Biophys Acta 469 :1–12.PubMedGoogle Scholar
  155. Vriens, J., Watanabe, H., Janssens, A., Droogmans, G., Voets, T., and Nilius, B. (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci U S A 101 :396–401.PubMedGoogle Scholar
  156. Wiggins, P., and Phillips, R. (2005) Membrane-protein interactions in mechanosensitive channels. Biophys J 88 :880–902.PubMedGoogle Scholar
  157. Wood, J. M. (2006) Osmosensing by bacteria. Sci STKE 2006 :pe43.Google Scholar
  158. Xu, H., Ramsey, I. S., Kotecha, S. A., Moran, M. M., Chong, J. A., Lawson, D., Ge, P., Lilly, J., Silos-Santiago, I., Xie, Y., DiStefano, P. S., Curtis, R., and Clapham, D. E. (2002) TRPV3 is a calcium-permeable temperature-sensitive cation channel. Nature 418 :181–186.PubMedGoogle Scholar
  159. Yoshimura, K., Nomura, T., and Sokabe, M. (2004) Loss-of-function mutations at the rim of the funnel of mechanosensitive channel MscL. Biophys J 86 :2113–2120.PubMedGoogle Scholar
  160. Zhang, Y., Gao, F., Popov, V. L., Wen, J. W., and Hamill, O. P. (2000) Mechanically gated channel activity in cytoskeleton-deficient plasma membrane blebs and vesicles from Xenopus oocytes. The Journal of physiology 523 Pt 1 :117–130.Google Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Paul Blount
  • Li Yuezhou
  • Paul C. Moe
  • Irene Iscla

There are no affiliations available

Personalised recommendations