Role of Lipid Bilayer Mechanics in Mechanosensation

  • Tristan Ursell
  • Jané Kondev
  • Dan Reeves
  • Paul A. Wiggins
  • Rob RobPhillips
Part of the Mechanosensitivity in Cells and Tissues book series (MECT, volume 1)


Mechanosensation is a key part of the sensory repertoire of a vast array of different cells and organisms. The molecular dissection of the origins of mechanosensation is rapidly advancing as a result of both structural and functional studies. One intriguing mode of mechanosensation results from tension in the membrane of the cell (or vesicle) of interest. The aim of this review is to catalogue recent work that uses a mix of continuum and statistical mechanics to explore the role of the lipid bilayer in the function of mechanosensitive channels that respond to membrane tension. The role of bilayer deformation will be explored in the context of the well known mechanosensitive channel MscL. Additionally, we make suggestions for bridging gaps between our current theoretical understanding and common experimental techniques.


Lipid bilayer mechanics Statistical mechanics Mechanosensitive ion channels Membrane-protein interactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akitake B, Anishkin A, Sukharev S (2005) The“dashpot” mechanism of stretch-dependent gating in MscS. J Gen Physiol 125(2):143–154PubMedCrossRefGoogle Scholar
  2. Anishkin A, Chiang CS, Sukharev S (2005) Gain-of-function mutations reveal expanded intermediate states and a sequential action of two gates in MscL. J Gen Physiol 125 (2): 155–170PubMedCrossRefGoogle Scholar
  3. Aranda-Espinoza H, Berman A, Dan N, Pincus P, Safran S (1996) Interaction between inclusions embedded in membranes. Biophys J 71 (2): 648–656PubMedGoogle Scholar
  4. Barry PH, Lynch JW (2005) Ligand-gated channels. IEEE Trans Nanobioscience 4 (1): 70–80PubMedCrossRefGoogle Scholar
  5. Bass RB, Strop P, Barclay M, Rees DC (2002) Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298 (5598):1582–1587CrossRefGoogle Scholar
  6. Boal D (2002)Mechanics of the cell. Cambridge University Press, New York, 1st editionGoogle Scholar
  7. Botelho AV, Huber T, Sakmar TP, Brown MF (2006) Curvature and hydrophobic forces drive oligomerization and modulate activity of Rhodopsin in membranes. Biophys J 91(12):4464–4477PubMedCrossRefGoogle Scholar
  8. Calabrese B, Tabarean IV, Juranka P, Morris CE (2002) Mechanosensitivity of n-type calcium channel currents. Biophys J 83(5): 2560–2574PubMedGoogle Scholar
  9. Cantor RS (1999) Lipid composition and the lateral pressure profile in bilayers. Biophys J 76(5):2625–2639PubMedGoogle Scholar
  10. Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: A gated mechanosensitive ion channel. Science 282 (5397): 2220–2226PubMedCrossRefGoogle Scholar
  11. Chiang CS, Anishkin A, Sukharev S (2004) Gating of the large mechanosensitive channel in situ: Estimation of the spatial scale of the transition from channel population responses. Biophys J 86 (5): 2846–2861PubMedGoogle Scholar
  12. Chou T, Kim KS, Oster G (2001) Statistical thermodynamics of membrane bending-mediated protein-protein attractions. Biophys J 80 (3): 1075–1087PubMedGoogle Scholar
  13. Christensen M, Strange K (2001) Developmental regulation of a novel outwardly rectifying mechanosensitive anion channel in Caenorhabditis elegans. J Biol Chem 276 (48): 45024–45030PubMedCrossRefGoogle Scholar
  14. Clapham DE, Runnels LW, Strubing C (2001) The TRP ion channel family. Nat Rev Neurosci 2 (6): 387–396PubMedCrossRefGoogle Scholar
  15. Cruickshank CC, Minchin RF, Le Dain AC, Martinac B (1997) Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys J 73 (4): 1925–1931PubMedGoogle Scholar
  16. Dan N, Pincus P, Safran SA (1993) Membrane-induced interactions between inclusions. Langmuir 9: 2768–2771CrossRefGoogle Scholar
  17. Dan N, Safran SA (1998) Effect of lipid characteristics on the structure of transmembrane proteins. Biophys J 75 (3): 1410–1414PubMedCrossRefGoogle Scholar
  18. Doeven MK, Folgering JH, Krasnikov V, Geertsma ER, van den Bogaart G, Poolman B (2005) Distribution, lateral mobility and function of membrane proteins incorporated into giant unilamellar vesicles. Biophys J 88 (2): 1134–1142PubMedCrossRefGoogle Scholar
  19. Duggan A, Garcia-Anoveros J, Corey DP (2000) Insect mechanoreception: What a long, strange TRP it’s been. Curr Biol 10 (10): R384–387PubMedCrossRefGoogle Scholar
  20. Elmore DE, Dougherty DA (2001) Molecular dynamics simulations of wild-type and mutant forms of the Mycobacterium tuberculosis MscL channel. Biophys J 81 (3): 1345–1359PubMedGoogle Scholar
  21. Elmore DE, Dougherty DA (2003) Investigating lipid composition effects on the mechanosensitive channel of large conductance (MscL) using molecular dynamics simulations. Biophys J 85 (3): 1512–1524PubMedGoogle Scholar
  22. Evans E, Heinrich V, Ludwig F, Rawicz W (2003) Dynamic tension spectroscopy and strength of biomembranes. Biophys J 85 (4): 2342–2350PubMedCrossRefGoogle Scholar
  23. Fain GL (2003) Sensory Transduction. Sinauer Associates, SunderlandGoogle Scholar
  24. Franks NP, Honore E (2004) The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends Pharmacol Sci 25 (11): 601–608PubMedCrossRefGoogle Scholar
  25. Gambin Y, Lopez-Esparza R, Reffay M, Sierecki E, Gov NS, Genest M, Hodges RS, Urbach W (2006) Lateral mobility of proteins in liquid membranes revisited. Proc Natl Acad Sci USA 103 (7): 2098–2102PubMedCrossRefGoogle Scholar
  26. Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413 (6852): 194–202PubMedCrossRefGoogle Scholar
  27. Goforth RL, Chi AK, Greathouse DV, Providence LL, Koeppe 2nd RE, Andersen OS (2003) Hydrophobic coupling of lipid bilayer energetics to channel function. J Gen Physiol 121 (5): 477–493PubMedCrossRefGoogle Scholar
  28. Goulian M, Mesquita ON, Fygenson DK, Nielsen C, Andersen OS, Libchaber A (1998) Gramicidin channel kinetics under tension. Biophys J 74 (1): 328–337PubMedGoogle Scholar
  29. Goulian M, Pincus P, Bruinsma R (1993) Long-range forces in heterogenous fluid membranes. Europhys Letters 22 (2): 145–150CrossRefGoogle Scholar
  30. Gu CX, Juranka PF, Morris CE (2001) Stretch-activation and stretch-inactivation of Shaker-IR, a voltage-gated K+ channel. Biophys J 80 (6): 2678–2693PubMedGoogle Scholar
  31. Guigas G, Weiss M (2006) Size-dependent diffusion of membrane inclusions. Biophys J 91 (7): 2393–2398PubMedCrossRefGoogle Scholar
  32. Gullingsrud J, Kosztin D, Schulten K (2001) Structural determinants of MscL gating studied by molecular dynamics simulations. Biophys J 80 (5): 2074–2081PubMedGoogle Scholar
  33. Gullingsrud J, Schulten K (2003) Gating of MscL studied by steered molecular dynamics. Biophys J 85 (4): 2087–2099PubMedCrossRefGoogle Scholar
  34. Harroun TA, Heller WT, Weiss TM, Yang L, Huang HW (1999) Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing Gramicidin. Biophys J 76 (6): 3176–3185PubMedGoogle Scholar
  35. Haswell ES, Meyerowitz EM (2006) MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr Biol 16 (1): 1–11PubMedCrossRefGoogle Scholar
  36. Helfrich W (1973) Elastic properties of lipid bilayers: Theory and possible experiments. Z Naturforsch [C] 28 (11): 693–703Google Scholar
  37. Hille B (1968) Pharmacological modifications of the sodium channels of frog nerve. J Gen Physiol 51 (2): 199–219PubMedCrossRefGoogle Scholar
  38. Huang HW (1986) Deformation free energy of bilayer membrane and its effect on Gramicidin channel lifetime. Biophys J 50 (6): 1061–1070PubMedGoogle Scholar
  39. Jensen MO, Mouritsen OG (2004) Lipids do influence protein function - the hydrophobic matching hypothesis revisited. Biochim Biophys Acta 1666 (1-2): 205–226PubMedCrossRefGoogle Scholar
  40. Kahya N, Scherfeld D, Bacia K, Poolman B, Schwille P (2003) Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J Biol Chem 278 (30): 28109–28115PubMedCrossRefGoogle Scholar
  41. Kamada Y, Jung US, Piotrowski J, Levin DE (1995) The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev 9 (13): 1559–1571PubMedCrossRefGoogle Scholar
  42. Katsumi A, Orr AW, Tzima E, Schwartz MA (2004) Integrins in mechanotransduction. J Biol Chem 279 (13): 12001–12004PubMedCrossRefGoogle Scholar
  43. Kloda A, Martinac B (2001) Molecular identification of a mechanosensitive channel in archaea. Biophys J 80 (1): 229–240PubMedCrossRefGoogle Scholar
  44. Lauritzen I, Chemin J, Honore E, Jodar M, Guy N, Lazdunski M, Jane Patel A (2005) Cross-talk between the mechano-gated K2P channel TREK-1 and the actin cytoskeleton. EMBO Rep 6 (7): 642–648PubMedCrossRefGoogle Scholar
  45. Lee AG (2003) Lipid-protein interactions in biological membranes: A structural perspective. Biochim Biophys Acta 1612 (1): 1–40PubMedCrossRefGoogle Scholar
  46. Lee AG (2005) How lipids and proteins interact in a membrane: A molecular approach. Mol Biosyst 1 (3): 203–212PubMedCrossRefGoogle Scholar
  47. Levina N, Totemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: Identification of genes required for MscS activity. Embo J 18 (7): 1730–1737PubMedCrossRefGoogle Scholar
  48. Li Y, Moe PC, Chandrasekaran S, Booth IR, Blount P (2002) Ionic regulation of MscK, a mechanosensitive channel from Escherichia coli. Embo J 21 (20): 5323–5330PubMedCrossRefGoogle Scholar
  49. Maingret F, Fosse M, Lesage F, Lazdunski M, Honore E (1999) TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem 274 (3): 1381–1387PubMedCrossRefGoogle Scholar
  50. Maingret F, Patel AJ, Lesage F, Lazdunski M, Honore E (2000) Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J Biol Chem 275 (14): 10128–10133PubMedCrossRefGoogle Scholar
  51. Markin VS, Sachs F (2004) Thermodynamics of mechanosensitivity. Phys Biol 1 (1-2): 110–124PubMedCrossRefGoogle Scholar
  52. Martinac B, Hamill OP (2002) Gramicidin A channels switch between stretch activation and stretch inactivation depending on bilayer thickness. Proc Natl Acad Sci USA 99 (7): 4308–4312PubMedCrossRefGoogle Scholar
  53. Mitra K, Ubarretxena-Belandia I, Taguchi T, Warren G, Engelman DM (2004) Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc Natl Acad Sci USA 101 (12): 4083–4088PubMedCrossRefGoogle Scholar
  54. Moe P, Blount P (2005) Assessment of potential stimuli for mechano-dependent gating of MscL: Effects of pressure, tension, and lipid headgroups. Biochemistry 44 (36): 12239–12244PubMedCrossRefGoogle Scholar
  55. Molina ML, Barrera FN, Fernandez AM, Poveda JA, Renart ML, Encinar JA, Riquelme G, Gonzalez-Ros JM (2006) Clustering and coupled gating modulate the activity in KcsA, a potassium channel model. J Biol Chem 281 (27): 18837–18848PubMedCrossRefGoogle Scholar
  56. Morris CE, Homann U (2001) Cell surface area regulation and membrane tension. J Membr Biol 179 (2): 79–102PubMedGoogle Scholar
  57. Nauli SM, Zhou J (2004) Polycystins and mechanosensation in renal and nodal cilia. Bioessays 26 (8): 844–856PubMedCrossRefGoogle Scholar
  58. Nielsen C, Goulian M, Andersen OS (1998) Energetics of inclusion-induced bilayer deformations. Biophys J 74 (4): 1966–1983PubMedGoogle Scholar
  59. Niggemann G, Kummrow M, Helfrich W (1995) The bending rigidity of phosphatidylcholine bilayers: Dependences on experimental method, sample cell sealing and temperature. J Phys II France 5: 413–425CrossRefGoogle Scholar
  60. Park JM, Lubensky TC (1996) Interactions between membrane inclusions on fluctuating membranes. J Phys I France 6: 1217–1235CrossRefGoogle Scholar
  61. Perozo E, Cortes DM, Sompornpisut P, Kloda A, Martinac B (2002a) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418 (6901): 942–948CrossRefGoogle Scholar
  62. Perozo E, Kloda A, Cortes DM, Martinac B (2001) Site-directed spin-labeling analysis of reconstituted MscL in the closed state. J Gen Physiol 118 (2): 193–206PubMedCrossRefGoogle Scholar
  63. Perozo E, Kloda A, Cortes DM, Martinac B (2002b) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol 9 (9): 696–703CrossRefGoogle Scholar
  64. Perozo E, Rees DC (2003) Structure and mechanism in prokaryotic mechanosensitive channels. Curr Opin Struct Biol 13 (4): 432–442PubMedCrossRefGoogle Scholar
  65. Pivetti CD, Yen MR, Miller S, Busch W, Tseng YH, Booth IR, Saier Jr. MH (2003) Two families of mechanosensitive channel proteins. Microbiol Mol Biol Rev 67 (1): 66–85PubMedCrossRefGoogle Scholar
  66. Powl AM, East JM, Lee AG (2003) Lipid-protein interactions studied by introduction of a tryptophan residue: The mechanosensitive channel MscL. Biochemistry 42 (48): 14306–14317PubMedCrossRefGoogle Scholar
  67. Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79 (1): 328–339PubMedGoogle Scholar
  68. Sachs F (1991) Mechanical transduction by membrane ion channels: A mini review. Mol Cell Biochem 104 (1-2): 57–60PubMedCrossRefGoogle Scholar
  69. Seemann H, Winter R (2003) Volumetric properties, compressibilities and volume fluctuations in phospholipid-cholesterol bilayers. Zeitschrift fur physikalische Chemie 217: 831–846CrossRefGoogle Scholar
  70. Shapovalov G, Lester HA (2004) Gating transitions in bacterial ion channels measured at 3 microsecond resolution. J Gen Physiol 124 (2): 151–161PubMedCrossRefGoogle Scholar
  71. Sintes T, Baumgartner A (1997) Protein attraction in membranes induced by lipid fluctuations. Biophys J 73 (5): 2251–2259PubMedGoogle Scholar
  72. Spencer RH, Rees DC (2002) The alpha-helix and the organization and gating of channels. Annu Rev Biophys Biomol Struct 31: 207–233PubMedCrossRefGoogle Scholar
  73. Sukharev S, Betanzos M, Chiang CS, Guy HR (2001) The gating mechanism of the large mechanosensitive channel MscL. Nature 409 (6821): 720–724PubMedCrossRefGoogle Scholar
  74. Sukharev SI, Blount P, Martinac B, Kung C (1997) Mechanosensitive channels of Escherichia coli: The MscL gene, protein, and activities. Annu Rev Physiol 59: 633–657PubMedCrossRefGoogle Scholar
  75. Sukharev SI, Sigurdson WJ, Kung C, Sachs F (1999) Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J Gen Physiol 113 (4): 525–540PubMedCrossRefGoogle Scholar
  76. Tosh RE, Collings PJ (1986) High pressure volumetric measurements in dipalmitoylphosphatidylcholine bilayers. Biochim Biophys Acta 859 (1): 10–14PubMedCrossRefGoogle Scholar
  77. Turner MS, Sens P (2004) Gating-by-tilt of mechanically sensitive membrane channels. Phys Rev Lett 93 (11): 118103PubMedCrossRefGoogle Scholar
  78. Ursell T, Huang KC, Peterson E, Phillips R (2007) Cooperative gating and spatial organization of membrane proteins through elastic interactions. PLoS Comput Biol 3 (5): e81PubMedCrossRefGoogle Scholar
  79. Wiggins P, Phillips R (2004) Analytic models for mechanotransduction: Gating a mechanosensitive channel. Proc Natl Acad Sci USA 101 (12): 4071–4076PubMedCrossRefGoogle Scholar
  80. Wiggins P, Phillips R (2005) Membrane-protein interactions in mechanosensitive channels. Biophys J 88 (2): 880–902PubMedCrossRefGoogle Scholar
  81. Yoshimura K, Batiza A, Schroeder M, Blount P, C Kung (1999) Hydrophilicity of a single residue within MscL correlates with increased channel mechanosensitivity. Biophys J 77 (4): 1960–1972PubMedCrossRefGoogle Scholar
  82. Yoshimura K, Nomura T, Sokabe M (2004) Loss-of-function mutations at the rim of the funnel of mechanosensitive channel MscL. Biophys J 86 (4): 2113–2120PubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Tristan Ursell
  • Jané Kondev
  • Dan Reeves
  • Paul A. Wiggins
  • Rob RobPhillips

There are no affiliations available

Personalised recommendations