Skip to main content

Role of Lipid Bilayer Mechanics in Mechanosensation

  • Chapter
Mechanosensitive Ion Channels

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 1))

abstract

Mechanosensation is a key part of the sensory repertoire of a vast array of different cells and organisms. The molecular dissection of the origins of mechanosensation is rapidly advancing as a result of both structural and functional studies. One intriguing mode of mechanosensation results from tension in the membrane of the cell (or vesicle) of interest. The aim of this review is to catalogue recent work that uses a mix of continuum and statistical mechanics to explore the role of the lipid bilayer in the function of mechanosensitive channels that respond to membrane tension. The role of bilayer deformation will be explored in the context of the well known mechanosensitive channel MscL. Additionally, we make suggestions for bridging gaps between our current theoretical understanding and common experimental techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akitake B, Anishkin A, Sukharev S (2005) The“dashpot” mechanism of stretch-dependent gating in MscS. J Gen Physiol 125(2):143–154

    Article  PubMed  CAS  Google Scholar 

  • Anishkin A, Chiang CS, Sukharev S (2005) Gain-of-function mutations reveal expanded intermediate states and a sequential action of two gates in MscL. J Gen Physiol 125 (2): 155–170

    Article  PubMed  CAS  Google Scholar 

  • Aranda-Espinoza H, Berman A, Dan N, Pincus P, Safran S (1996) Interaction between inclusions embedded in membranes. Biophys J 71 (2): 648–656

    PubMed  CAS  Google Scholar 

  • Barry PH, Lynch JW (2005) Ligand-gated channels. IEEE Trans Nanobioscience 4 (1): 70–80

    Article  PubMed  Google Scholar 

  • Bass RB, Strop P, Barclay M, Rees DC (2002) Crystal structure of Escherichia coli MscS, a voltage-modulated and mechanosensitive channel. Science 298 (5598):1582–1587

    Article  CAS  Google Scholar 

  • Boal D (2002)Mechanics of the cell. Cambridge University Press, New York, 1st edition

    Google Scholar 

  • Botelho AV, Huber T, Sakmar TP, Brown MF (2006) Curvature and hydrophobic forces drive oligomerization and modulate activity of Rhodopsin in membranes. Biophys J 91(12):4464–4477

    Article  PubMed  CAS  Google Scholar 

  • Calabrese B, Tabarean IV, Juranka P, Morris CE (2002) Mechanosensitivity of n-type calcium channel currents. Biophys J 83(5): 2560–2574

    PubMed  CAS  Google Scholar 

  • Cantor RS (1999) Lipid composition and the lateral pressure profile in bilayers. Biophys J 76(5):2625–2639

    PubMed  CAS  Google Scholar 

  • Chang G, Spencer RH, Lee AT, Barclay MT, Rees DC (1998) Structure of the MscL homolog from Mycobacterium tuberculosis: A gated mechanosensitive ion channel. Science 282 (5397): 2220–2226

    Article  PubMed  CAS  Google Scholar 

  • Chiang CS, Anishkin A, Sukharev S (2004) Gating of the large mechanosensitive channel in situ: Estimation of the spatial scale of the transition from channel population responses. Biophys J 86 (5): 2846–2861

    PubMed  CAS  Google Scholar 

  • Chou T, Kim KS, Oster G (2001) Statistical thermodynamics of membrane bending-mediated protein-protein attractions. Biophys J 80 (3): 1075–1087

    PubMed  CAS  Google Scholar 

  • Christensen M, Strange K (2001) Developmental regulation of a novel outwardly rectifying mechanosensitive anion channel in Caenorhabditis elegans. J Biol Chem 276 (48): 45024–45030

    Article  PubMed  CAS  Google Scholar 

  • Clapham DE, Runnels LW, Strubing C (2001) The TRP ion channel family. Nat Rev Neurosci 2 (6): 387–396

    Article  PubMed  CAS  Google Scholar 

  • Cruickshank CC, Minchin RF, Le Dain AC, Martinac B (1997) Estimation of the pore size of the large-conductance mechanosensitive ion channel of Escherichia coli. Biophys J 73 (4): 1925–1931

    PubMed  CAS  Google Scholar 

  • Dan N, Pincus P, Safran SA (1993) Membrane-induced interactions between inclusions. Langmuir 9: 2768–2771

    Article  CAS  Google Scholar 

  • Dan N, Safran SA (1998) Effect of lipid characteristics on the structure of transmembrane proteins. Biophys J 75 (3): 1410–1414

    Article  PubMed  CAS  Google Scholar 

  • Doeven MK, Folgering JH, Krasnikov V, Geertsma ER, van den Bogaart G, Poolman B (2005) Distribution, lateral mobility and function of membrane proteins incorporated into giant unilamellar vesicles. Biophys J 88 (2): 1134–1142

    Article  PubMed  CAS  Google Scholar 

  • Duggan A, Garcia-Anoveros J, Corey DP (2000) Insect mechanoreception: What a long, strange TRP it’s been. Curr Biol 10 (10): R384–387

    Article  PubMed  CAS  Google Scholar 

  • Elmore DE, Dougherty DA (2001) Molecular dynamics simulations of wild-type and mutant forms of the Mycobacterium tuberculosis MscL channel. Biophys J 81 (3): 1345–1359

    PubMed  CAS  Google Scholar 

  • Elmore DE, Dougherty DA (2003) Investigating lipid composition effects on the mechanosensitive channel of large conductance (MscL) using molecular dynamics simulations. Biophys J 85 (3): 1512–1524

    PubMed  CAS  Google Scholar 

  • Evans E, Heinrich V, Ludwig F, Rawicz W (2003) Dynamic tension spectroscopy and strength of biomembranes. Biophys J 85 (4): 2342–2350

    Article  PubMed  CAS  Google Scholar 

  • Fain GL (2003) Sensory Transduction. Sinauer Associates, Sunderland

    Google Scholar 

  • Franks NP, Honore E (2004) The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends Pharmacol Sci 25 (11): 601–608

    Article  PubMed  CAS  Google Scholar 

  • Gambin Y, Lopez-Esparza R, Reffay M, Sierecki E, Gov NS, Genest M, Hodges RS, Urbach W (2006) Lateral mobility of proteins in liquid membranes revisited. Proc Natl Acad Sci USA 103 (7): 2098–2102

    Article  PubMed  CAS  Google Scholar 

  • Gillespie PG, Walker RG (2001) Molecular basis of mechanosensory transduction. Nature 413 (6852): 194–202

    Article  PubMed  CAS  Google Scholar 

  • Goforth RL, Chi AK, Greathouse DV, Providence LL, Koeppe 2nd RE, Andersen OS (2003) Hydrophobic coupling of lipid bilayer energetics to channel function. J Gen Physiol 121 (5): 477–493

    Article  PubMed  CAS  Google Scholar 

  • Goulian M, Mesquita ON, Fygenson DK, Nielsen C, Andersen OS, Libchaber A (1998) Gramicidin channel kinetics under tension. Biophys J 74 (1): 328–337

    PubMed  CAS  Google Scholar 

  • Goulian M, Pincus P, Bruinsma R (1993) Long-range forces in heterogenous fluid membranes. Europhys Letters 22 (2): 145–150

    Article  CAS  Google Scholar 

  • Gu CX, Juranka PF, Morris CE (2001) Stretch-activation and stretch-inactivation of Shaker-IR, a voltage-gated K+ channel. Biophys J 80 (6): 2678–2693

    PubMed  CAS  Google Scholar 

  • Guigas G, Weiss M (2006) Size-dependent diffusion of membrane inclusions. Biophys J 91 (7): 2393–2398

    Article  PubMed  CAS  Google Scholar 

  • Gullingsrud J, Kosztin D, Schulten K (2001) Structural determinants of MscL gating studied by molecular dynamics simulations. Biophys J 80 (5): 2074–2081

    PubMed  CAS  Google Scholar 

  • Gullingsrud J, Schulten K (2003) Gating of MscL studied by steered molecular dynamics. Biophys J 85 (4): 2087–2099

    Article  PubMed  CAS  Google Scholar 

  • Harroun TA, Heller WT, Weiss TM, Yang L, Huang HW (1999) Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing Gramicidin. Biophys J 76 (6): 3176–3185

    PubMed  CAS  Google Scholar 

  • Haswell ES, Meyerowitz EM (2006) MscS-like proteins control plastid size and shape in Arabidopsis thaliana. Curr Biol 16 (1): 1–11

    Article  PubMed  CAS  Google Scholar 

  • Helfrich W (1973) Elastic properties of lipid bilayers: Theory and possible experiments. Z Naturforsch [C] 28 (11): 693–703

    CAS  Google Scholar 

  • Hille B (1968) Pharmacological modifications of the sodium channels of frog nerve. J Gen Physiol 51 (2): 199–219

    Article  PubMed  CAS  Google Scholar 

  • Huang HW (1986) Deformation free energy of bilayer membrane and its effect on Gramicidin channel lifetime. Biophys J 50 (6): 1061–1070

    PubMed  CAS  Google Scholar 

  • Jensen MO, Mouritsen OG (2004) Lipids do influence protein function - the hydrophobic matching hypothesis revisited. Biochim Biophys Acta 1666 (1-2): 205–226

    Article  PubMed  CAS  Google Scholar 

  • Kahya N, Scherfeld D, Bacia K, Poolman B, Schwille P (2003) Probing lipid mobility of raft-exhibiting model membranes by fluorescence correlation spectroscopy. J Biol Chem 278 (30): 28109–28115

    Article  PubMed  CAS  Google Scholar 

  • Kamada Y, Jung US, Piotrowski J, Levin DE (1995) The protein kinase C-activated MAP kinase pathway of Saccharomyces cerevisiae mediates a novel aspect of the heat shock response. Genes Dev 9 (13): 1559–1571

    Article  PubMed  CAS  Google Scholar 

  • Katsumi A, Orr AW, Tzima E, Schwartz MA (2004) Integrins in mechanotransduction. J Biol Chem 279 (13): 12001–12004

    Article  PubMed  CAS  Google Scholar 

  • Kloda A, Martinac B (2001) Molecular identification of a mechanosensitive channel in archaea. Biophys J 80 (1): 229–240

    Article  PubMed  CAS  Google Scholar 

  • Lauritzen I, Chemin J, Honore E, Jodar M, Guy N, Lazdunski M, Jane Patel A (2005) Cross-talk between the mechano-gated K2P channel TREK-1 and the actin cytoskeleton. EMBO Rep 6 (7): 642–648

    Article  PubMed  CAS  Google Scholar 

  • Lee AG (2003) Lipid-protein interactions in biological membranes: A structural perspective. Biochim Biophys Acta 1612 (1): 1–40

    Article  PubMed  CAS  Google Scholar 

  • Lee AG (2005) How lipids and proteins interact in a membrane: A molecular approach. Mol Biosyst 1 (3): 203–212

    Article  PubMed  CAS  Google Scholar 

  • Levina N, Totemeyer S, Stokes NR, Louis P, Jones MA, Booth IR (1999) Protection of Escherichia coli cells against extreme turgor by activation of MscS and MscL mechanosensitive channels: Identification of genes required for MscS activity. Embo J 18 (7): 1730–1737

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Moe PC, Chandrasekaran S, Booth IR, Blount P (2002) Ionic regulation of MscK, a mechanosensitive channel from Escherichia coli. Embo J 21 (20): 5323–5330

    Article  PubMed  CAS  Google Scholar 

  • Maingret F, Fosse M, Lesage F, Lazdunski M, Honore E (1999) TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem 274 (3): 1381–1387

    Article  PubMed  CAS  Google Scholar 

  • Maingret F, Patel AJ, Lesage F, Lazdunski M, Honore E (2000) Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J Biol Chem 275 (14): 10128–10133

    Article  PubMed  CAS  Google Scholar 

  • Markin VS, Sachs F (2004) Thermodynamics of mechanosensitivity. Phys Biol 1 (1-2): 110–124

    Article  PubMed  CAS  Google Scholar 

  • Martinac B, Hamill OP (2002) Gramicidin A channels switch between stretch activation and stretch inactivation depending on bilayer thickness. Proc Natl Acad Sci USA 99 (7): 4308–4312

    Article  PubMed  CAS  Google Scholar 

  • Mitra K, Ubarretxena-Belandia I, Taguchi T, Warren G, Engelman DM (2004) Modulation of the bilayer thickness of exocytic pathway membranes by membrane proteins rather than cholesterol. Proc Natl Acad Sci USA 101 (12): 4083–4088

    Article  PubMed  CAS  Google Scholar 

  • Moe P, Blount P (2005) Assessment of potential stimuli for mechano-dependent gating of MscL: Effects of pressure, tension, and lipid headgroups. Biochemistry 44 (36): 12239–12244

    Article  PubMed  CAS  Google Scholar 

  • Molina ML, Barrera FN, Fernandez AM, Poveda JA, Renart ML, Encinar JA, Riquelme G, Gonzalez-Ros JM (2006) Clustering and coupled gating modulate the activity in KcsA, a potassium channel model. J Biol Chem 281 (27): 18837–18848

    Article  PubMed  CAS  Google Scholar 

  • Morris CE, Homann U (2001) Cell surface area regulation and membrane tension. J Membr Biol 179 (2): 79–102

    PubMed  CAS  Google Scholar 

  • Nauli SM, Zhou J (2004) Polycystins and mechanosensation in renal and nodal cilia. Bioessays 26 (8): 844–856

    Article  PubMed  CAS  Google Scholar 

  • Nielsen C, Goulian M, Andersen OS (1998) Energetics of inclusion-induced bilayer deformations. Biophys J 74 (4): 1966–1983

    PubMed  CAS  Google Scholar 

  • Niggemann G, Kummrow M, Helfrich W (1995) The bending rigidity of phosphatidylcholine bilayers: Dependences on experimental method, sample cell sealing and temperature. J Phys II France 5: 413–425

    Article  CAS  Google Scholar 

  • Park JM, Lubensky TC (1996) Interactions between membrane inclusions on fluctuating membranes. J Phys I France 6: 1217–1235

    Article  CAS  Google Scholar 

  • Perozo E, Cortes DM, Sompornpisut P, Kloda A, Martinac B (2002a) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418 (6901): 942–948

    Article  CAS  Google Scholar 

  • Perozo E, Kloda A, Cortes DM, Martinac B (2001) Site-directed spin-labeling analysis of reconstituted MscL in the closed state. J Gen Physiol 118 (2): 193–206

    Article  PubMed  CAS  Google Scholar 

  • Perozo E, Kloda A, Cortes DM, Martinac B (2002b) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol 9 (9): 696–703

    Article  CAS  Google Scholar 

  • Perozo E, Rees DC (2003) Structure and mechanism in prokaryotic mechanosensitive channels. Curr Opin Struct Biol 13 (4): 432–442

    Article  PubMed  CAS  Google Scholar 

  • Pivetti CD, Yen MR, Miller S, Busch W, Tseng YH, Booth IR, Saier Jr. MH (2003) Two families of mechanosensitive channel proteins. Microbiol Mol Biol Rev 67 (1): 66–85

    Article  PubMed  CAS  Google Scholar 

  • Powl AM, East JM, Lee AG (2003) Lipid-protein interactions studied by introduction of a tryptophan residue: The mechanosensitive channel MscL. Biochemistry 42 (48): 14306–14317

    Article  PubMed  CAS  Google Scholar 

  • Rawicz W, Olbrich KC, McIntosh T, Needham D, Evans E (2000) Effect of chain length and unsaturation on elasticity of lipid bilayers. Biophys J 79 (1): 328–339

    PubMed  CAS  Google Scholar 

  • Sachs F (1991) Mechanical transduction by membrane ion channels: A mini review. Mol Cell Biochem 104 (1-2): 57–60

    Article  PubMed  CAS  Google Scholar 

  • Seemann H, Winter R (2003) Volumetric properties, compressibilities and volume fluctuations in phospholipid-cholesterol bilayers. Zeitschrift fur physikalische Chemie 217: 831–846

    Article  CAS  Google Scholar 

  • Shapovalov G, Lester HA (2004) Gating transitions in bacterial ion channels measured at 3 microsecond resolution. J Gen Physiol 124 (2): 151–161

    Article  PubMed  CAS  Google Scholar 

  • Sintes T, Baumgartner A (1997) Protein attraction in membranes induced by lipid fluctuations. Biophys J 73 (5): 2251–2259

    PubMed  CAS  Google Scholar 

  • Spencer RH, Rees DC (2002) The alpha-helix and the organization and gating of channels. Annu Rev Biophys Biomol Struct 31: 207–233

    Article  PubMed  CAS  Google Scholar 

  • Sukharev S, Betanzos M, Chiang CS, Guy HR (2001) The gating mechanism of the large mechanosensitive channel MscL. Nature 409 (6821): 720–724

    Article  PubMed  CAS  Google Scholar 

  • Sukharev SI, Blount P, Martinac B, Kung C (1997) Mechanosensitive channels of Escherichia coli: The MscL gene, protein, and activities. Annu Rev Physiol 59: 633–657

    Article  PubMed  CAS  Google Scholar 

  • Sukharev SI, Sigurdson WJ, Kung C, Sachs F (1999) Energetic and spatial parameters for gating of the bacterial large conductance mechanosensitive channel, MscL. J Gen Physiol 113 (4): 525–540

    Article  PubMed  CAS  Google Scholar 

  • Tosh RE, Collings PJ (1986) High pressure volumetric measurements in dipalmitoylphosphatidylcholine bilayers. Biochim Biophys Acta 859 (1): 10–14

    Article  PubMed  CAS  Google Scholar 

  • Turner MS, Sens P (2004) Gating-by-tilt of mechanically sensitive membrane channels. Phys Rev Lett 93 (11): 118103

    Article  PubMed  CAS  Google Scholar 

  • Ursell T, Huang KC, Peterson E, Phillips R (2007) Cooperative gating and spatial organization of membrane proteins through elastic interactions. PLoS Comput Biol 3 (5): e81

    Article  PubMed  CAS  Google Scholar 

  • Wiggins P, Phillips R (2004) Analytic models for mechanotransduction: Gating a mechanosensitive channel. Proc Natl Acad Sci USA 101 (12): 4071–4076

    Article  PubMed  CAS  Google Scholar 

  • Wiggins P, Phillips R (2005) Membrane-protein interactions in mechanosensitive channels. Biophys J 88 (2): 880–902

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura K, Batiza A, Schroeder M, Blount P, C Kung (1999) Hydrophilicity of a single residue within MscL correlates with increased channel mechanosensitivity. Biophys J 77 (4): 1960–1972

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura K, Nomura T, Sokabe M (2004) Loss-of-function mutations at the rim of the funnel of mechanosensitive channel MscL. Biophys J 86 (4): 2113–2120

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer

About this chapter

Cite this chapter

Ursell, T., Kondev, J., Reeves, D., Wiggins, P.A., RobPhillips, R. (2008). Role of Lipid Bilayer Mechanics in Mechanosensation. In: Kamkin, A., Kiseleva, I. (eds) Mechanosensitive Ion Channels. Mechanosensitivity in Cells and Tissues, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6426-5_2

Download citation

Publish with us

Policies and ethics