Advertisement

Mechanobiology of Fibroblasts

  • Bhavani P. Thampatty
  • James H-C. Wang
Part of the Mechanosensitivity in Cells and Tissues book series (MECT, volume 1)

Abstract

Extensive research has shown that connective tissues such as tendons and ligaments are able to respond to mechanical forces by changing their structure, composition, and function. This mechanical adaptation is made possible largely by fibroblasts, the major cell types responsible for maintaining, repairing, and remodeling extracellular matrix (ECM) in connective tissues. This review focuses on mechanobiological responses of tendon, ligament, and skin fibroblasts in terms of their ECM gene expression and protein synthesis and secretion. The mechanobiological responses of fibroblasts in tissue engineering constructs and in wound healing are also discussed, followed by a review of the roles of major cellular components including integrins, the cytoskeleton, and stretch-activated ion channels in cellular mechanotransduction mechanisms. Finally, the review concludes with a brief discussion of future research directions in fibroblast mechanobiology.

Keywords

Connective tissue Fibroblasts ECM Mechanical loading Uniaxial stretching Biaxial stretching Growth factors Collagen MMPs Tissue engineering Mechanotransduction Integrins Cytoskeleton SACs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adzick, N.S., and H.P. Lorenz. (1994). Cells, matrix, growth factors, and the surgeon. The biology of scarless fetal wound repair. Ann Surg. 220:10–8.PubMedGoogle Scholar
  2. Akeson, W.H., S.L. Woo, D. Amiel, R.D. Coutts, and D. Daniel. (1973). The connective tissue response to immobility: biochemical changes in periarticular connective tissue of the immobilized rabbit knee. Clin Orthop Relat Res:356–62.Google Scholar
  3. Alfredson, H., T. Pietila, P. Jonsson, and R. Lorentzon. (1998). Heavy-load eccentric calf muscle training for the treatment of chronic Achilles tendinosis. Am J Sports Med. 26:360–6.PubMedGoogle Scholar
  4. Altman, G.H., R.L. Horan, I. Martin, J. Farhadi, P.R. Stark, V. Volloch, J.C. Richmond, G. Vunjak-Novakovic, and D.L. Kaplan. (2002a). Cell differentiation by mechanical stress. Faseb J. 16:270–2.Google Scholar
  5. Altman, G.H., H.H. Lu, R.L. Horan, T. Calabro, D. Ryder, D.L. Kaplan, P. Stark, I. Martin, J.C. Richmond, and G. Vunjak-Novakovic. (2002b). Advanced bioreactor with controlled application of multi-dimensional strain for tissue engineering. J Biomech Eng. 124:742–9.Google Scholar
  6. Amano, M., K. Chihara, K. Kimura, Y. Fukata, N. Nakamura, Y. Matsuura, and K. Kaibuchi. (1997). Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science. 275:1308–11.PubMedGoogle Scholar
  7. Amano, M., M. Ito, K. Kimura, Y. Fukata, K. Chihara, T. Nakano, Y. Matsuura, and K. Kaibuchi. (1996). Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem. 271:20246–9.PubMedGoogle Scholar
  8. Amiel, D., C. Frank, F. Harwood, J. Fronek, and W. Akeson. (1984). Tendons and ligaments: a morphological and biochemical comparison. J Orthop Res. 1:257–65.PubMedGoogle Scholar
  9. Amiel, D., S.L. Woo, F.L. Harwood, and W.H. Akeson. (1982). The effect of immobilization on collagen turnover in connective tissue: a biochemical-biomechanical correlation. Acta Orthop Scand. 53:325–32.PubMedGoogle Scholar
  10. Archambault, J., M. Tsuzaki, W. Herzog, and A.J. Banes. (2002). Stretch and interleukin-1beta induce matrix metalloproteinases in rabbit tendon cells in vitro. J Orthop Res. 20:36–9.PubMedGoogle Scholar
  11. Aumailley, M., and B. Gayraud. (1998). Structure and biological activity of the extracellular matrix. J Mol Med. 76:253–65.PubMedGoogle Scholar
  12. Awad, H.A., G.P. Boivin, M.R. Dressler, F.N. Smith, R.G. Young, and D.L. Butler. (2003). Repair of patellar tendon injuries using a cell-collagen composite. J Orthop Res. 21:420–31.PubMedGoogle Scholar
  13. Balaban, N.Q., U.S. Schwarz, D. Riveline, P. Goichberg, G. Tzur, I. Sabanay, D. Mahalu, S. Safran, A. Bershadsky, L. Addadi, and B. Geiger. (2001). Force and focal adhesion assembly: a close relationship studied using elastic micropatterned substrates. Nat Cell Biol. 3:466–72.PubMedGoogle Scholar
  14. Banes, A., Sanderson, M.,Biotano, S., Hu, P., Brigman, B., Tsuzaki, M., Fischer, T., Lawrence, W. (1994). Cell Mechanics and Celular engineering. 210–232 pp.Google Scholar
  15. Banes, A.J., G. Horesovsky, C. Larson, M. Tsuzaki, S. Judex, J. Archambault, R. Zernicke, W. Herzog, S. Kelley, and L. Miller. (1999). Mechanical load stimulates expression of novel genes in vivo and in vitro in avian flexor tendon cells. Osteoarthritis Cartilage. 7:141–53.PubMedGoogle Scholar
  16. Banes, A.J., Lee, G., Graff, R., Otey, C., Arcahmbault, J., Tsuzaki, M., Elfervig, M., Qi, J. (2001). Mechanical forces and signaling in connective tissue cells: cellular mechanisms of detection, transduction, and response to mechanical deformation. Current opinions in Orthopaedics. 12:389–396.Google Scholar
  17. Banes, A.J., M. Tsuzaki, P. Hu, B. Brigman, T. Brown, L. Almekinders, W.T. Lawrence, and T. Fischer. (1995a). PDGF-BB, IGF-I and mechanical load stimulate DNA synthesis in avian tendon fibroblasts in vitro. J Biomech. 28:1505–13.Google Scholar
  18. Banes, A.J., M. Tsuzaki, J. Yamamoto, T. Fischer, B. Brigman, T. Brown, and L. Miller. (1995b). Mechanoreception at the cellular level: the detection, interpretation, and diversity of responses to mechanical signals. Biochem Cell Biol. 73:349–65.Google Scholar
  19. Barkhausen, T., M. van Griensven, J. Zeichen, and U. Bosch. (2003). Modulation of cell functions of human tendon fibroblasts by different repetitive cyclic mechanical stress patterns. Exp Toxicol Pathol. 55:153–8.PubMedGoogle Scholar
  20. Berry, C.C., J.C. Shelton, D.L. Bader, and D.A. Lee. (2003). Influence of external uniaxial cyclic strain on oriented fibroblast-seeded collagen gels. Tissue Eng. 9:613–24.PubMedGoogle Scholar
  21. Bershadsky, A.D., N.Q. Balaban, and B. Geiger. (2003). Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol. 19:677-95.PubMedGoogle Scholar
  22. Bosman, F.T., and I. Stamenkovic. (2003). Functional structure and composition of the extracellular matrix. J Pathol. 200:423–8.PubMedGoogle Scholar
  23. Butler, D.D., M; Awad,H. (2003). Functional tissue engineering:assessment of function in tendon and ligament repair. Springer, New York. 213–226 pp.Google Scholar
  24. Camelliti, P., T.K. Borg, and P. Kohl. (2005). Structural and functional characterisation of cardiac fibroblasts. Cardiovasc Res. 65:40–51.PubMedGoogle Scholar
  25. Canty, E.G., and K.E. Kadler. (2002). Collagen fibril biosynthesis in tendon: a review and recent insights. Comp Biochem Physiol A Mol Integr Physiol. 133:979–85.PubMedGoogle Scholar
  26. Chang, H.Y., J.T. Chi, S. Dudoit, C. Bondre, M. van de Rijn, D. Botstein, and P.O. Brown. (2002). Diversity, topographic differentiation, and positional memory in human fibroblasts. Proc Natl Acad Sci U S A. 99:12877–82.PubMedGoogle Scholar
  27. Chiquet-Ehrismann, R., M. Tannheimer, M. Koch, A. Brunner, J. Spring, D. Martin, S. Baumgartner, and M. Chiquet. (1994). Tenascin-C expression by fibroblasts is elevated in stressed collagen gels. J Cell Biol. 127:2093–101.PubMedGoogle Scholar
  28. Chiquet, M. (1999). Regulation of extracellular matrix gene expression by mechanical stress. Matrix Biol. 18:417–26.PubMedGoogle Scholar
  29. Chiquet, M., Fluck,M. (2001). Early response to mechanical stress: form signals at the surface to altered gene expression. Elsevier, Amsterdam. 97–110 pp.Google Scholar
  30. Chiquet, M., A.S. Renedo, F. Huber, and M. Fluck. (2003). How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol. 22:73–80.PubMedGoogle Scholar
  31. Chiquet, M., A. Sarasa-Renedo, and V. Tunc-Civelek. (2004). Induction of tenascin-C by cyclic tensile strain versus growth factors: distinct contributions by Rho/ROCK and MAPK signaling pathways. Biochim Biophys Acta. 1693:193–204.PubMedGoogle Scholar
  32. Clark, E.A., and J.S. Brugge. (1995). Integrins and signal transduction pathways: the road taken. Science. 268:233–9.PubMedGoogle Scholar
  33. Clark, R.A. (1990). Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin. J Invest Dermatol. 94:128S–134S.PubMedGoogle Scholar
  34. Coleman, C., T.L. Tuan, S. Buckley, K.D. Anderson, and D. Warburton. (1998). Contractility, transforming growth factor-beta, and plasmin in fetal skin fibroblasts: role in scarless wound healing. Pediatr Res. 43:403–9.PubMedGoogle Scholar
  35. Davidson, C.J., L.R. Ganion, G.M. Gehlsen, B. Verhoestra, J.E. Roepke, and T.L. Sevier. (1997). Rat tendon morphologic and functional changes resulting from soft tissue mobilization. Med Sci Sports Exerc. 29:313–9.PubMedGoogle Scholar
  36. Desmouliere, A., C. Chaponnier, and G. Gabbiani. (2005). Tissue repair, contraction, and the myofibroblast. Wound Repair Regen. 13:7–12.PubMedGoogle Scholar
  37. Doroski, D.M., K.S. Brink, and J.S. Temenoff. (2006). Techniques for biological characterization of tissue-engineered tendon and ligament. Biomaterials.Google Scholar
  38. Fluck, M., M.N. Giraud, V. Tunc, and M. Chiquet. (2003). Tensile stress-dependent collagen XII and fibronectin production by fibroblasts requires separate pathways. Biochim Biophys Acta. 1593:239–48.PubMedGoogle Scholar
  39. French, A.S., and L.L. Stockbridge. (1988). Potassium channels in human and avian fibroblasts. Proc R Soc Lond B Biol Sci. 232:395–412.PubMedGoogle Scholar
  40. Fukata, Y., M. Amano, and K. Kaibuchi. (2001). Rho-Rho-kinase pathway in smooth muscle contraction and cytoskeletal reorganization of non-muscle cells. Trends Pharmacol Sci. 22:32–9.PubMedGoogle Scholar
  41. Gannier, F., E. White, A. Lacampagne, D. Garnier, and J.Y. Le Guennec. (1994). Streptomycin reverses a large stretch induced increases in [Ca2+]i in isolated guinea pig ventricular myocytes. Cardiovasc Res. 28:1193–8.PubMedGoogle Scholar
  42. Garvin, J., J. Qi, M. Maloney, and A.J. Banes. (2003). Novel system for engineering bioartificial tendons and application of mechanical load. Tissue Eng. 9:967–79.PubMedGoogle Scholar
  43. Glogauer, M., P. Arora, G. Yao, I. Sokholov, J. Ferrier, and C.A. McCulloch. (1997). Calcium ions and tyrosine phosphorylation interact coordinately with actin to regulate cytoprotective responses to stretching. J Cell Sci. 110 ( Pt 1):11–21.PubMedGoogle Scholar
  44. Grinnell, F. (2000). Fibroblast-collagen-matrix contraction: growth-factor signalling and mechanical loading. Trends Cell Biol. 10:362–5.PubMedGoogle Scholar
  45. Grinnell, F. (2003). Fibroblast biology in three-dimensional collagen matrices. Trends Cell Biol. 13:264–9.PubMedGoogle Scholar
  46. He, Y., E.J. Macarak, J.M. Korostoff, and P.S. Howard. (2004). Compression and tension: differential effects on matrix accumulation by periodontal ligament fibroblasts in vitro. Connect Tissue Res. 45:28–39.PubMedGoogle Scholar
  47. Helfman, D.M., E.T. Levy, C. Berthier, M. Shtutman, D. Riveline, I. Grosheva, A. Lachish-Zalait, M. Elbaum, and A.D. Bershadsky. (1999). Caldesmon inhibits nonmuscle cell contractility and interferes with the formation of focal adhesions. Mol Biol Cell. 10:3097–112.PubMedGoogle Scholar
  48. Hinz, B., and G. Gabbiani. (2003). Mechanisms of force generation and transmission by myofibroblasts. Curr Opin Biotechnol. 14:538–46.PubMedGoogle Scholar
  49. Howard, P.S., U. Kucich, R. Taliwal, and J.M. Korostoff. (1998). Mechanical forces alter extracellular matrix synthesis by human periodontal ligament fibroblasts. J Periodontal Res. 33:500–8.PubMedGoogle Scholar
  50. Hsieh, A.H., C.M. Tsai, Q.J. Ma, T. Lin, A.J. Banes, F.J. Villarreal, W.H. Akeson, and K.L. Sung. (2000). Time-dependent increases in type-III collagen gene expression in medical collateral ligament fibroblasts under cyclic strains. J Orthop Res. 18:220–7.PubMedGoogle Scholar
  51. Hung, C.T., F.D. Allen, S.R. Pollack, E.T. Attia, J.A. Hannafin, and P.A. Torzilli. (1997). Intracellular calcium response of ACL and MCL ligament fibroblasts to fluid-induced shear stress. Cell Signal. 9:587–94.PubMedGoogle Scholar
  52. Hynes, R.O. (1992). Integrins: versatility, modulation, and signaling in cell adhesion. Cell. 69:11–25.PubMedGoogle Scholar
  53. Ingber, D. (1991). Integrins as mechanochemical transducers. Curr Opin Cell Biol. 3:841–8.PubMedGoogle Scholar
  54. Inoh, H., N. Ishiguro, S. Sawazaki, H. Amma, M. Miyazu, H. Iwata, M. Sokabe, and K. Naruse. (2002). Uni-axial cyclic stretch induces the activation of transcription factor nuclear factor kappaB in human fibroblast cells. Faseb J. 16:405–7.PubMedGoogle Scholar
  55. Iqbal, J., and M. Zaidi. (2005). Molecular regulation of mechanotransduction. Biochem Biophys Res Commun. 328:751–5.PubMedGoogle Scholar
  56. Jones, B.F., M.E. Wall, R.L. Carroll, S. Washburn, and A.J. Banes. (2005). Ligament cells stretch-adapted on a microgrooved substrate increase intercellular communication in response to a mechanical stimulus. J Biomech. 38:1653–64.PubMedGoogle Scholar
  57. Juliano, R.L., and S. Haskill. (1993). Signal transduction from the extracellular matrix. J Cell Biol. 120:577–85.PubMedGoogle Scholar
  58. Juncosa-Melvin, N., G.P. Boivin, M.T. Galloway, C. Gooch, J.R. West, A.M. Sklenka, and D.L. Butler. (2005). Effects of cell-to-collagen ratio in mesenchymal stem cell-seeded implants on tendon repair biomechanics and histology. Tissue Eng. 11:448–57.PubMedGoogle Scholar
  59. Juncosa-Melvin, N., G.P. Boivin, C. Gooch, M.T. Galloway, J.R. West, M.G. Dunn, and D.L. Butler. (2006a). The effect of autologous mesenchymal stem cells on the biomechanics and histology of gel-collagen sponge constructs used for rabbit patellar tendon repair. Tissue Eng. 12:369–79.Google Scholar
  60. Juncosa-Melvin, N., J.T. Shearn, G.P. Boivin, C. Gooch, M.T. Galloway, J.R. West, V.S. Nirmalanandhan, G. Bradica, and D.L. Butler. (2006b). Effects of mechanical stimulation on the biomechanics and histology of stem cell-collagen sponge constructs for rabbit patellar tendon repair. Tissue Eng. 12:2291–300.Google Scholar
  61. Kalapesi, F.B., J.C. Tan, and M.T. Coroneo. (2005). Stretch-activated channels: a mini-review. Are stretch-activated channels an ocular barometer? Clin Experiment Ophthalmol. 33:210–7.PubMedGoogle Scholar
  62. Karimbux, N.Y., and I. Nishimura. (1995). Temporal and spatial expressions of type XII collagen in the remodeling periodontal ligament during experimental tooth movement. J Dent Res. 74:313–8.PubMedGoogle Scholar
  63. Kato, T., N. Ishiguro, H. Iwata, T. Kojima, T. Ito, and K. Naruse. (1998). Up-regulation of COX2 expression by uni-axial cyclic stretch in human lung fibroblast cells. Biochem Biophys Res Commun. 244:615–9.PubMedGoogle Scholar
  64. Kessler, D., S. Dethlefsen, I. Haase, M. Plomann, F. Hirche, T. Krieg, and B. Eckes. (2001). Fibroblasts in mechanically stressed collagen lattices assume a ‘‘synthetic’’ phenotype. J Biol Chem. 276:36575–85.PubMedGoogle Scholar
  65. Kim, S.G., T. Akaike, T. Sasagaw, Y. Atomi, and H. Kurosawa. (2002). Gene expression of type I and type III collagen by mechanical stretch in anterior cruciate ligament cells. Cell Struct Funct. 27:139–44.PubMedGoogle Scholar
  66. Kimoto, S., M. Matsuzawa, S. Matsubara, T. Komatsu, N. Uchimura, T. Kawase, and S. Saito. (1999). Cytokine secretion of periodontal ligament fibroblasts derived from human deciduous teeth: effect of mechanical stress on the secretion of transforming growth factor-beta 1 and macrophage colony stimulating factor. J Periodontal Res. 34:235–43.PubMedGoogle Scholar
  67. Kimura, K., M. Ito, M. Amano, K. Chihara, Y. Fukata, M. Nakafuku, B. Yamamori, J. Feng, T. Nakano, K. Okawa, A. Iwamatsu, and K. Kaibuchi. (1996). Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science. 273:245–8.PubMedGoogle Scholar
  68. Kjaer, M. (2004). Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev. 84:649–98.PubMedGoogle Scholar
  69. Kjaer, M., H. Langberg, B.F. Miller, R. Boushel, R. Crameri, S. Koskinen, K. Heinemeier, J.L. Olesen, S. Dossing, M. Hansen, S.G. Pedersen, M.J. Rennie, and P. Magnusson. (2005). Metabolic activity and collagen turnover in human tendon in response to physical activity. J Musculoskelet Neuronal Interact. 5:41–52.PubMedGoogle Scholar
  70. Kolodney, M.S., and R.B. Wysolmerski. (1992). Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. J Cell Biol. 117:73–82.PubMedGoogle Scholar
  71. Koob, T.J. (2002). Biomimetic approaches to tendon repair. Comp Biochem Physiol A Mol Integr Physiol. 133:1171–92.PubMedGoogle Scholar
  72. Koob, T.J., P.E. Clark, D.J. Hernandez, F.A. Thurmond, and K.G. Vogel. (1992). Compression loading in vitro regulates proteoglycan synthesis by tendon fibrocartilage. Arch Biochem Biophys. 298:303–12.PubMedGoogle Scholar
  73. Labat-Robert, J., M. Bihari-Varga, and L. Robert. (1990). Extracellular matrix. FEBS Lett. 268:386–93.PubMedGoogle Scholar
  74. Lacampagne, A., F. Gannier, J. Argibay, D. Garnier, and J.Y. Le Guennec. (1994). The stretch-activated ion channel blocker gadolinium also blocks L-type calcium channels in isolated ventricular myocytes of the guinea-pig. Biochim Biophys Acta. 1191:205–8.PubMedGoogle Scholar
  75. Langberg, H., D. Skovgaard, L.J. Petersen, J. Bulow, and M. Kjaer. (1999). Type I collagen synthesis and degradation in peritendinous tissue after exercise determined by microdialysis in humans. J Physiol. 521 Pt 1:299–306.Google Scholar
  76. Lavagnino, M., and S.P. Arnoczky. (2005). In vitro alterations in cytoskeletal tensional homeostasis control gene expression in tendon cells. J Orthop Res. 23:1211–8.PubMedGoogle Scholar
  77. Lee, A.A., T. Delhaas, L.K. Waldman, D.A. MacKenna, F.J. Villarreal, and A.D. McCulloch. (1996). An equibiaxial strain system for cultured cells. Am J Physiol. 271:C1400–8.PubMedGoogle Scholar
  78. Lehoux, S., Y. Castier, and A. Tedgui. (2006). Molecular mechanisms of the vascular responses to haemodynamic forces. J Intern Med. 259:381–92.PubMedGoogle Scholar
  79. Lehoux, S., and A. Tedgui. (2003). Cellular mechanics and gene expression in blood vessels. J Biomech. 36:631–43.PubMedGoogle Scholar
  80. Li, Z., G. Yang, M. Khan, D. Stone, S.L. Woo, and J.H. Wang. (2004). Inflammatory response of human tendon fibroblasts to cyclic mechanical stretching. Am J Sports Med. 32:435–40.PubMedGoogle Scholar
  81. Longaker, M.T., D.J. Whitby, M.W. Ferguson, H.P. Lorenz, M.R. Harrison, and N.S. Adzick. (1994). Adult skin wounds in the fetal environment heal with scar formation. Ann Surg. 219:65–72.PubMedGoogle Scholar
  82. MacKenna, D., S.R. Summerour, and F.J. Villarreal. (2000). Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc Res. 46:257–63.PubMedGoogle Scholar
  83. Middleton, J., M. Jones, and A. Wilson. (1996). The role of the periodontal ligament in bone modeling: the initial development of a time-dependent finite element model. Am J Orthod Dentofacial Orthop. 109:155–62.PubMedGoogle Scholar
  84. Mostafavi-Pour, Z., J.A. Askari, S.J. Parkinson, P.J. Parker, T.T. Ng, and M.J. Humphries. (2003). Integrin-specific signaling pathways controlling focal adhesion formation and cell migration. J Cell Biol. 161:155–67.PubMedGoogle Scholar
  85. Munevar, S., Y.L. Wang, and M. Dembo. (2004). Regulation of mechanical interactions between fibroblasts and the substratum by stretch-activated Ca2+ entry. J Cell Sci. 117:85–92.PubMedGoogle Scholar
  86. Nakano, K., K. Takaishi, A. Kodama, A. Mammoto, H. Shiozaki, M. Monden, and Y. Takai. (1999). Distinct actions and cooperative roles of ROCK and mDia in Rho small G protein-induced reorganization of the actin cytoskeleton in Madin-Darby canine kidney cells. Mol Biol Cell. 10:2481–91.PubMedGoogle Scholar
  87. Nedelec, B., A. Ghahary, P.G. Scott, and E.E. Tredget. (2000). Control of wound contraction. Basic and clinical features. Hand Clin. 16:289–302.PubMedGoogle Scholar
  88. Ng, K.W., D.W. Hutmacher, J.T. Schantz, C.S. Ng, H.P. Too, T.C. Lim, T.T. Phan, and S.H. Teoh. (2001). Evaluation of ultra-thin poly(epsilon-caprolactone) films for tissue-engineered skin. Tissue Eng. 7:441–55.PubMedGoogle Scholar
  89. Nicolas, A., B. Geiger, and S.A. Safran. (2004). Cell mechanosensitivity controls the anisotropy of focal adhesions. Proc Natl Acad Sci U S A. 101:12520–5.PubMedGoogle Scholar
  90. Nicolas, A., and S.A. Safran. (2004). Elastic deformations of grafted layers with surface stress. Phys Rev E Stat Nonlin Soft Matter Phys. 69:051902.PubMedGoogle Scholar
  91. Olesen, J.L., K.M. Heinemeier, C. Gemmer, M. Kjaer, A. Flyvbjerg, and H. Langberg. (2006). Exercise dependent IGF-I, IGFBPs and type-I collagen changes in human peritendinous connective tissue determined by microdialysis. J Appl Physiol.Google Scholar
  92. Parsons, J.T., and S.J. Parsons. (1997). Src family protein tyrosine kinases: cooperating with growth factor and adhesion signaling pathways. Curr Opin Cell Biol. 9:187–92.PubMedGoogle Scholar
  93. Parsons, M., E. Kessler, G.J. Laurent, R.A. Brown, and J.E. Bishop. (1999). Mechanical load enhances procollagen processing in dermal fibroblasts by regulating levels of procollagen C-proteinase. Exp Cell Res. 252:319–31.PubMedGoogle Scholar
  94. Plopper, G.E., H.P. McNamee, L.E. Dike, K. Bojanowski, and D.E. Ingber. (1995). Convergence of integrin and growth factor receptor signaling pathways within the focal adhesion complex. Mol Biol Cell. 6:1349–65.PubMedGoogle Scholar
  95. Ralphs, J.R., A.D. Waggett, and M. Benjamin. (2002). Actin stress fibres and cell-cell adhesion molecules in tendons: organisation in vivo and response to mechanical loading of tendon cells in vitro. Matrix Biol. 21:67–74.PubMedGoogle Scholar
  96. Reitan, K. (1967). Clinical and histologic observations on tooth movement during and after orthodontic treatment. Am J Orthod. 53:721–45.PubMedGoogle Scholar
  97. Reitan, K. (1969). Principles of retention and avoidance of posttreatment relapse. Am J Orthod. 55:776–90.PubMedGoogle Scholar
  98. Reitan, K. (1970). Evaluation of orthodontic forces as related to histologic and mechanical factors. SSO Schweiz Monatsschr Zahnheilkd. 80:579–96.PubMedGoogle Scholar
  99. Riley, G. (2004). The pathogenesis of tendinopathy. A molecular perspective. Rheumatology (Oxford). 43:131–42.Google Scholar
  100. Riley, G.P. (2005). Gene expression and matrix turnover in overused and damaged tendons. Scand J Med Sci Sports. 15:241–51.PubMedGoogle Scholar
  101. Riveline, D., E. Zamir, N.Q. Balaban, U.S. Schwarz, T. Ishizaki, S. Narumiya, Z. Kam, B. Geiger, and A.D. Bershadsky. (2001). Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J Cell Biol. 153:1175–86.PubMedGoogle Scholar
  102. Ruknudin, A., F. Sachs, and J.O. Bustamante. (1993). Stretch-activated ion channels in tissue-cultured chick heart. Am J Physiol. 264:H960–72.PubMedGoogle Scholar
  103. Ruoslahti, E. (1988). Structure and biology of proteoglycans. Annu Rev Cell Biol. 4:229–55.PubMedGoogle Scholar
  104. Ruwhof, C., and A. van der Laarse. (2000). Mechanical stress-induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res. 47:23–37.PubMedGoogle Scholar
  105. Rygh, P., and K. Reitan. (1972). Ultrastructural changes in the periodontal ligament incident to orthodontic tooth movement. Trans Eur Orthod Soc:393–405.Google Scholar
  106. Sadoshima, J., and S. Izumo. (1993). Mechanotransduction in stretch-induced hypertrophy of cardiac myocytes. J Recept Res. 13:777–94.PubMedGoogle Scholar
  107. Sadoshima, J., and S. Izumo. (1997). The cellular and molecular response of cardiac myocytes to mechanical stress. Annu Rev Physiol. 59:551–71.PubMedGoogle Scholar
  108. Sadoshima, J., T. Takahashi, L. Jahn, and S. Izumo. (1992). Roles of mechano-sensitive ion channels, cytoskeleton, and contractile activity in stretch-induced immediate-early gene expression and hypertrophy of cardiac myocytes. Proc Natl Acad Sci U S A. 89:9905–9.PubMedGoogle Scholar
  109. Sarasa-Renedo, A., and M. Chiquet. (2005). Mechanical signals regulating extracellular matrix gene expression in fibroblasts. Scand J Med Sci Sports. 15:223–30.PubMedGoogle Scholar
  110. Sarasa-Renedo, A., V. Tunc-Civelek, and M. Chiquet. (2006). Role of RhoA/ROCK-dependent actin contractility in the induction of tenascin-C by cyclic tensile strain. Exp Cell Res.Google Scholar
  111. Schwartz, M.A., M.D. Schaller, and M.H. Ginsberg. (1995). Integrins: emerging paradigms of signal transduction. Annu Rev Cell Dev Biol. 11:549–99.PubMedGoogle Scholar
  112. Shimizu, N., Y. Ozawa, M. Yamaguchi, T. Goseki, K. Ohzeki, and Y. Abiko. (1998). Induction of COX-2 expression by mechanical tension force in human periodontal ligament cells. J Periodontol. 69:670–7.PubMedGoogle Scholar
  113. Shimizu, N., M. Yamaguchi, T. Goseki, Y. Ozawa, K. Saito, H. Takiguchi, T. Iwasawa, and Y. Abiko. (1994). Cyclic-tension force stimulates interleukin-1 beta production by human periodontal ligament cells. J Periodontal Res. 29:328–33.PubMedGoogle Scholar
  114. Skutek, M., M. van Griensven, J. Zeichen, N. Brauer, and U. Bosch. (2001a). Cyclic mechanical stretching enhances secretion of Interleukin 6 in human tendon fibroblasts. Knee Surg Sports Traumatol Arthrosc. 9:322–6.Google Scholar
  115. Skutek, M., M. van Griensven, J. Zeichen, N. Brauer, and U. Bosch. (2001b). Cyclic mechanical stretching modulates secretion pattern of growth factors in human tendon fibroblasts. Eur J Appl Physiol. 86:48–52.Google Scholar
  116. Sokabe, M., K. Naruse, S. Sai, T. Yamada, K. Kawakami, M. Inoue, K. Murase, and M. Miyazu. (1997). Mechanotransduction and intracellular signaling mechanisms of stretch-induced remodeling in endothelial cells. Heart Vessels. Suppl 12:191–3.Google Scholar
  117. Stockbridge, L.L., and A.S. French. (1988). Stretch-activated cation channels in human fibroblasts. Biophys J. 54:187–90.PubMedGoogle Scholar
  118. Thampatty, B.P., H. Li, H-J. Im, and J. H-C., Wang. (2007). EP4 receptor regulates collagen type-I, MMP-1, and MMP-3 gene expression in human tendon fibroblasts in response to IL-1 beta treatment. Gene. 386: 154–61.PubMedGoogle Scholar
  119. Tomasek, J.J., G. Gabbiani, B. Hinz, C. Chaponnier, and R.A. Brown. (2002). Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol. 3:349–63.PubMedGoogle Scholar
  120. Trachslin, J., M. Koch, and M. Chiquet. (1999). Rapid and reversible regulation of collagen XII expression by changes in tensile stress. Exp Cell Res. 247:320–8.PubMedGoogle Scholar
  121. Tsuji, K., K. Uno, G.X. Zhang, and M. Tamura. (2004). Periodontal ligament cells under intermittent tensile stress regulate mRNA expression of osteoprotegerin and tissue inhibitor of matrix metalloprotease-1 and -2. J Bone Miner Metab. 22:94–103.PubMedGoogle Scholar
  122. Tsuzaki, M., D. Bynum, L. Almekinders, X. Yang, J. Faber, and A.J. Banes. (2003a). ATP modulates load-inducible IL-1beta, COX 2, and MMP-3 gene expression in human tendon cells. J Cell Biochem. 89:556–62.Google Scholar
  123. Tsuzaki, M., G. Guyton, W. Garrett, J.M. Archambault, W. Herzog, L. Almekinders, D. Bynum, X. Yang, and A.J. Banes. (2003b). IL-1 beta induces COX2, MMP-1, -3 and -13, ADAMTS-4, IL-1 beta and IL-6 in human tendon cells. J Orthop Res. 21:256–64.Google Scholar
  124. Visse, R., and H. Nagase. (2003). Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 92:827–39.PubMedGoogle Scholar
  125. Von den Hoff, J.W. (2003). Effects of mechanical tension on matrix degradation by human periodontal ligament cells cultured in collagen gels. J Periodontal Res. 38:449–57.PubMedGoogle Scholar
  126. Vunjak-Novakovic, G., G. Altman, R. Horan, and D.L. Kaplan. (2004). Tissue engineering of ligaments. Annu Rev Biomed Eng. 6:131–56.PubMedGoogle Scholar
  127. Wall, M.E., and A.J. Banes. (2005). Early responses to mechanical load in tendon: role for calcium signaling, gap junctions and intercellular communication. J Musculoskelet Neuronal Interact. 5:70–84.PubMedGoogle Scholar
  128. Wang, J.H., and B.P. Thampatty. (2006). Mechanoregulation of fibroblast function. Encyclopedia of Biomaterials and Biomedical Engineering. pp. 1–11 Taylor and Francis.Google Scholar
  129. Wang, J.H. (2006). Mechanobiology of tendon. J Biomech. 39:1563–82.PubMedGoogle Scholar
  130. Wang, J.H., F. Jia, G. Yang, S. Yang, B.H. Campbell, D. Stone, and S.L. Woo. (2003). Cyclic mechanical stretching of human tendon fibroblasts increases the production of prostaglandin E2 and levels of cyclooxygenase expression: a novel in vitro model study. Connect Tissue Res. 44:128–33.PubMedGoogle Scholar
  131. Wang, J.H., Z. Li, G. Yang, and M. Khan. (2004). Repetitively stretched tendon fibroblasts produce inflammatory mediators. Clin Orthop Relat Res:243–50.Google Scholar
  132. Wang, J.H., G. Yang, and Z. Li. (2005). Controlling cell responses to cyclic mechanical stretching. Ann Biomed Eng. 33:337–42.PubMedGoogle Scholar
  133. Watanabe, N., T. Kato, A. Fujita, T. Ishizaki, and S. Narumiya. (1999). Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol. 1:136–43.PubMedGoogle Scholar
  134. Webb, K., R.W. Hitchcock, R.M. Smeal, W. Li, S.D. Gray, and P.A. Tresco. (2006). Cyclic strain increases fibroblast proliferation, matrix accumulation, and elastic modulus of fibroblast-seeded polyurethane constructs. J Biomech. 39:1136–44.PubMedGoogle Scholar
  135. Woo, S.L., M.A. Gomez, T.J. Sites, P.O. Newton, C.A. Orlando, and W.H. Akeson. (1987). The biomechanical and morphological changes in the medial collateral ligament of the rabbit after immobilization and remobilization. J Bone Joint Surg Am. 69:1200–11.PubMedGoogle Scholar
  136. Woo, S.L., K. Hildebrand, N. Watanabe, J.A. Fenwick, C.D. Papageorgiou, and J.H. Wang. (1999). Tissue engineering of ligament and tendon healing. Clin Orthop Relat Res:S312–23.Google Scholar
  137. Yamaguchi, M., N. Shimizu, T. Goseki, Y. Shibata, H. Takiguchi, T. Iwasawa, and Y. Abiko. (1994). Effect of different magnitudes of tension force on prostaglandin E2 production by human periodontal ligament cells. Arch Oral Biol. 39:877–84.PubMedGoogle Scholar
  138. Yamamoto, E., W. Iwanaga, H. Miyazaki, and K. Hayashi. (2002). Effects of static stress on the mechanical properties of cultured collagen fascicles from the rabbit patellar tendon. J Biomech Eng. 124:85–93.PubMedGoogle Scholar
  139. Yang, G., R.C. Crawford, and J.H. Wang. (2004). Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J Biomech. 37:1543–50.PubMedGoogle Scholar
  140. Yang, G., H.J. Im, and J.H. Wang. (2005). Repetitive mechanical stretching modulates IL-1beta induced COX-2, MMP-1 expression, and PGE2 production in human patellar tendon fibroblasts. Gene. 363:166–72.PubMedGoogle Scholar
  141. Yasuda, T., M. Kinoshita, M. Abe, and Y. Shibayama. (2000). Unfavorable effect of knee immobilization on Achilles tendon healing in rabbits. Acta Orthop Scand. 71:69–73.PubMedGoogle Scholar
  142. Yost, M.J., D. Simpson, K. Wrona, S. Ridley, H.J. Ploehn, T.K. Borg, and L. Terracio. (2000). Design and construction of a uniaxial cell stretcher. Am J Physiol Heart Circ Physiol. 279:H3124–30.PubMedGoogle Scholar
  143. Zeichen, J., M. van Griensven, and U. Bosch. (2000). The proliferative response of isolated human tendon fibroblasts to cyclic biaxial mechanical strain. Am J Sports Med. 28:888–92.PubMedGoogle Scholar
  144. Zhou, D., H.S. Lee, F. Villarreal, A. Teng, E. Lu, S. Reynolds, C. Qin, J. Smith, and K.L. Sung. (2005). Differential MMP-2 activity of ligament cells under mechanical stretch injury: an in vitro study on human ACL and MCL fibroblasts. J Orthop Res. 23:949–57.PubMedGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Bhavani P. Thampatty
  • James H-C. Wang

There are no affiliations available

Personalised recommendations