Regulation of Intracellular Signal Transduction Pathways by Mechanosensitive Ion Channels

  • Aladin M. Boriek
  • Ashok Kumar
Part of the Mechanosensitivity in Cells and Tissues book series (MECT, volume 1)


Only in the past five decades have we begun to understand, on the chemical level, what and how mechanosensitive signaling molecules are involved in the physiological regulation of downstream events in response to mechanical stimulation in health and disease. Currently, the forefront of mechanotransduction is focused on mapping an enormous number of signalling and regulatory signalling pathways that are responsible for sensing and transducing mechanical forces. Mechanosensitive ion channels (MSC) are one of the major classes of molecules involved in mechanosensitive signal transduction. MSC have been described in a wide variety of cell types in many different organisms, ranging from bacteria to mammals. MSC participate in several physiological processes such as touch and pain sensation, salt and fluid balance, blood pressure control, cell volume regulation, and turgor control. Abnormal regulation of the structure and function of MSC may contribute to the pathogenesis of quite a few diseases including neuronal degeneration, muscular dystrophy, cardiac arrhythmias, hypertension, kidney disease, and glioma. Accumulating evidence from our and other groups suggests that MSC may play an important role in the activation of several intracellular mechanosensitive signaling pathways. This review summarizes the recent developments and the state of the current thinking regarding the role of MSC in the regulation of different mechanosensitive signaling proteins and signaling pathways


Mechanosensitive ion channels Mechanical stretch Signal transduction Mitogen-activated protein kinase NF-kappa B akt 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alessi, D. R., James, S. R., Downes, C. P., Holmes, A. B., Gaffney, P. R., Reese, C. B. and Cohen, P. (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7: 261–269.PubMedCrossRefGoogle Scholar
  2. Alevriadou, B. R., Eskin, S. G., McIntire, L. V. and Schilling, W. P. (1993) Effect of shear stress on 86Rb+ efflux from calf pulmonary artery endothelial cells. Ann Biomed Eng 21: 1–7.PubMedCrossRefGoogle Scholar
  3. Amma, H., Naruse, K., Ishiguro, N. and Sokabe, M. (2005) Involvement of reactive oxygen species in cyclic stretch-induced NF-kappaB activation in human fibroblast cells. Br J Pharmacol 145: 364–373.PubMedCrossRefGoogle Scholar
  4. Anishkin, A., Gendel, V., Sharifi, N. A., Chiang, C. S., Shirinian, L., Guy, H. R. and Sukharev, S. (2003) On the conformation of the COOH-terminal domain of the large mechanosensitive channel MscL. J Gen Physiol 121: 227–244.PubMedCrossRefGoogle Scholar
  5. Berrier, C., Coulombe, A., Szabo, I., Zoratti, M. and Ghazi, A. (1992) Gadolinium ion inhibits loss of metabolites induced by osmotic shock and large stretch-activated channels in bacteria. Eur J Biochem 206: 559–565.PubMedCrossRefGoogle Scholar
  6. Bialecki, R. A., Kulik, T. J. and Colucci, W. S. (1992) Stretching increases calcium influx and efflux in cultured pulmonary arterial smooth muscle cells. Am J Physiol 263: L602-L606.PubMedGoogle Scholar
  7. Blount, P. (2003) Molecular mechanisms of mechanosensation: big lessons from small cells. Neuron 37: 731–734.PubMedCrossRefGoogle Scholar
  8. Boitano, S., Sanderson, M. J. and Dirksen, E. R. (1994) A role for Ca(2+)-conducting ion channels in mechanically-induced signal transduction of airway epithelial cells. J Cell Sci 107: 3037–3044.PubMedGoogle Scholar
  9. Boitano, S., Woodruff, M. L. and Dirksen, E. R. (1995) Evidence for voltage-sensitive, calcium-conducting channels in airway epithelial cells. Am J Physiol 269: C1547-C1556.PubMedGoogle Scholar
  10. Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., Anderson, M. J., Arden, K. C., Blenis, J. and Greenberg, M. E. (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96: 857–868.PubMedCrossRefGoogle Scholar
  11. Caldwell, R. A., Clemo, H. F. and Baumgarten, C. M. (1998) Using gadolinium to identify stretch-activated channels: technical considerations. Am J Physiol 275: C619-C621.PubMedGoogle Scholar
  12. Chang, L. and Karin, M. (2001) Mammalian MAP kinase signalling cascades. Nature 410: 37–40.PubMedCrossRefGoogle Scholar
  13. Charras, G. T., Williams, B. A., Sims, S. M. and Horton, M. A. (2004) Estimating the sensitivity of mechanosensitive ion channels to membrane strain and tension. Biophys J 87: 2870–2884.PubMedCrossRefGoogle Scholar
  14. Chess, P. R., O’Reilly, M. A., Sachs, F. and Finkelstein, J. N. (2005) Reactive oxidant and p42/44 MAP kinase signaling is necessary for mechanical strain-induced proliferation in pulmonary epithelial cells. J Appl Physiol 99: 1226–1232.PubMedCrossRefGoogle Scholar
  15. Choi, Y. S. and Jeong, S. (2005) PI3-kinase and PDK-1 regulate HDAC1-mediated transcriptional repression of transcription factor NF-kappaB. Mol Cells 20: 241–246.PubMedGoogle Scholar
  16. Correa-Meyer, E., Pesce, L., Guerrero, C. and Sznajder, J. I. (2002) Cyclic stretch activates ERK1/2 via G proteins and EGFR in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 282: L883-L891.PubMedGoogle Scholar
  17. Corry, B., Rigby, P., Liu, Z. W. and Martinac, B. (2005) Conformational changes involved in MscL channel gating measured using FRET spectroscopy. Biophys J 89: L49-L51.PubMedCrossRefGoogle Scholar
  18. Craig, S. W. and Pardo, J. V. (1983) Gamma actin spectrin and intermediate. Cell Motil 3: 449–462.PubMedCrossRefGoogle Scholar
  19. Danciu, T. E., Adam, R. M., Naruse, K., Freeman, M. R. and Hauschka, P. V. (2003) Calcium regulates the PI3K-Akt pathway in stretched osteoblasts. FEBS Lett 536: 193–197.PubMedCrossRefGoogle Scholar
  20. Dassouli, A., Sulpice, J. C., Roux, S. and Crozatier, B. (1993) Stretch-induced inositol trisphosphate and tetrakisphosphate production in rat cardiomyocytes. J Mol Cell Cardiol 25: 973–982.PubMedCrossRefGoogle Scholar
  21. Datta, S. R., Brunet, A. and Greenberg, M. E. (1999) Cellular survival: a play in three Akts. Genes Dev 13: 2905–2927.PubMedCrossRefGoogle Scholar
  22. Datta, S. R., Dudek, H., Tao, X., Masters, S., Fu, H., Gotoh, Y. and Greenberg, M. E. (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91: 231–241.PubMedCrossRefGoogle Scholar
  23. Davidson, R. M., Tatakis, D. W. and Auerbach, A. L. (1990) Multiple forms of mechanosensitive ion channels in osteoblast-like cells. Pflugers Arch 416: 646–651.PubMedCrossRefGoogle Scholar
  24. Davis, M. J., Donovitz, J. A. and Hood, J. D. (1992a) Stretch-activated single-channel and whole cell currents in vascular smooth muscle cells. Am J Physiol 262: C1083-C1088.Google Scholar
  25. Davis, M. J., Meininger, G. A. and Zawieja, D. C. (1992b) Stretch-induced increases in intracellular calcium of isolated vascular smooth muscle cells. Am J Physiol 263: H1292-H299.Google Scholar
  26. Driscoll, M. and Chalfie, M. (1991) The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349: 588–593.PubMedCrossRefGoogle Scholar
  27. Duggan, A., Garcia-Anoveros, J. and Corey, D. P. (2000) Insect mechanoreception: what a long, strange TRP it’s been. Curr Biol 10: R384-R387.PubMedCrossRefGoogle Scholar
  28. Duncan, R. L. and Hruska, K. A. (1994) Chronic, intermittent loading alters mechanosensitive channel characteristics in osteoblast-like cells. Am J Physiol 267: F909-F916.PubMedGoogle Scholar
  29. Duncan, R. L., Kizer, N., Barry, E. L., Friedman, P. A. and Hruska, K. A. (1996) Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells. Proc Natl Acad Sci U S A 93: 1864–1869.PubMedCrossRefGoogle Scholar
  30. Erickson, G. R., Alexopoulos, L. G. and Guilak, F. (2001) Hyper-osmotic stress induces volume change and calcium transients in chondrocytes by transmembrane, phospholipid, and G-protein pathways. J Biomech 34: 1527–1535.PubMedCrossRefGoogle Scholar
  31. Formigli, L., Meacci, E., Sassoli, C., Chellini, F., Giannini, R., Quercioli, F., Tiribilli, B., Squecco, R., Bruni, P., Francini, F. and Zecchi-Orlandini, S. (2005) Sphingosine 1-phosphate induces cytoskeletal reorganization in C2C12 myoblasts: physiological relevance for stress fibres in the modulation of ion current through stretch-activated channels. J Cell Sci 118: 1161–1171.PubMedCrossRefGoogle Scholar
  32. Franco, A., Jr. and Lansman, J. B. (1990) Calcium entry through stretch-inactivated ion channels in mdx myotubes. Nature 344: 670–673.PubMedCrossRefGoogle Scholar
  33. Franke, T. F., Kaplan, D. R. and Cantley, L. C. (1997) PI3K: downstream AKTion blocks apoptosis. Cell 88: 435–437.PubMedCrossRefGoogle Scholar
  34. Franz, M. R., Cima, R., Wang, D., Profitt, D. and Kurz, R. (1992) Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation 86: 968–978.PubMedGoogle Scholar
  35. Gannier, F., White, E., Lacampagne, A., Garnier, D. and Le Guennec, J. Y. (1994) Streptomycin reverses a large stretch induced increases in [Ca2+]i in isolated guinea pig ventricular myocytes. Cardiovasc Res 28: 1193–1198.PubMedGoogle Scholar
  36. Garcia-Anoveros, J. and Corey, D. P. (1997) The molecules of mechanosensation. Annu Rev Neurosci 20: 567–594.PubMedCrossRefGoogle Scholar
  37. Garrington, T. P. and Johnson, G. L. (1999) Organization and regulation of mitogen-activated protein kinase signaling pathways. Curr Opin Cell Biol 11: 211–218.PubMedCrossRefGoogle Scholar
  38. Ghosh, S. and Karin, M. (2002) Missing pieces in the NF-kappaB puzzle. Cell 109 Suppl: S81–96.PubMedCrossRefGoogle Scholar
  39. Gillespie, P. G. and Walker, R. G. (2001) Molecular basis of mechanosensory transduction. Nature 413: 194–202.PubMedCrossRefGoogle Scholar
  40. Gong, G., Waris, G., Tanveer, R. and Siddiqui, A. (2001) Human hepatitis C virus NS5A protein alters intracellular calcium levels, induces oxidative stress, and activates STAT-3 and NF-kappa B. Proc Natl Acad Sci U S A 98: 9599–9604.PubMedCrossRefGoogle Scholar
  41. Gottlieb, P. A., Suchyna, T. M., Ostrow, L. W. and Sachs, F. (2004) Mechanosensitive ion channels as drug targets. Curr Drug Targets CNS Neurol Disord 3: 287–295.PubMedCrossRefGoogle Scholar
  42. Gudi, S., Huvar, I., White, C. R., McKnight, N. L., Dusserre, N., Boss, G. R. and Frangos, J. A. (2003) Rapid activation of Ras by fluid flow is mediated by Galpha(q) and Gbetagamma subunits of heterotrimeric G proteins in human endothelial cells. Arterioscler Thromb Vasc Biol 23: 994–1000.PubMedCrossRefGoogle Scholar
  43. Gudi, S., Nolan, J. P. and Frangos, J. A. (1998) Modulation of GTPase activity of G proteins by fluid shear stress and phospholipid composition. Proc Natl Acad Sci U S A 95: 2515–2519.PubMedCrossRefGoogle Scholar
  44. Gustin, M. C., Zhou, X. L., Martinac, B. and Kung, C. (1988) A mechanosensitive ion channel in the yeast plasma membrane. Science 242: 762–765.PubMedCrossRefGoogle Scholar
  45. Gutkind, J. S. (1998) The pathways connecting G protein-coupled receptors to the nucleus through divergent mitogen-activated protein kinase cascades. J Biol Chem 273: 1839–1842.PubMedCrossRefGoogle Scholar
  46. Gysembergh, A., Margonari, H., Loufoua, J., Ovize, A., Andre-Fouet, X., Minaire, Y. and Ovize, M. (1998) Stretch-induced protection shares a common mechanism with ischemic preconditioning in rabbit heart. Am J Physiol 274: H955-H964.PubMedGoogle Scholar
  47. Hamill, O. P. and Martinac, B. (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81: 685–740.PubMedGoogle Scholar
  48. Hamill, O. P. and McBride, D. W., Jr. (1996) The pharmacology of mechanogated membrane ion channels. Pharmacol Rev 48: 231–252.PubMedGoogle Scholar
  49. Hamill, O. P. and McBride, D. W., Jr. (1997) Induced membrane hypo/hyper-mechanosensitivity: a limitation of patch-clamp recording. Annu Rev Physiol 59: 621–631.PubMedCrossRefGoogle Scholar
  50. Hansen, D. E., Craig, C. S. and Hondeghem, L. M. (1990) Stretch-induced arrhythmias in the isolated canine ventricle. Evidence for the importance of mechanoelectrical feedback. Circulation 81: 1094–1105.PubMedGoogle Scholar
  51. Hase, C. C., Le Dain, A. C. and Martinac, B. (1995) Purification and functional reconstitution of the recombinant large mechanosensitive ion channel (MscL) of Escherichia coli. J Biol Chem 270: 18329–18334.PubMedCrossRefGoogle Scholar
  52. Hong, K. and Driscoll, M. (1994) A transmembrane domain of the putative channel subunit MEC-4 influences mechanotransduction and neurodegeneration in C. elegans. Nature 367: 470–473.PubMedCrossRefGoogle Scholar
  53. Hornberger, T. A., Armstrong, D. D., Koh, T. J., Burkholder, T. J. and Esser, K. A. (2005) Intracellular signaling specificity in response to uniaxial vs. multiaxial stretch: implications for mechanotransduction. Am J Physiol Cell Physiol 288: C185-C194.PubMedGoogle Scholar
  54. Hu, H. and Sachs, F. (1996) Mechanically activated currents in chick heart cells. J Membr Biol 154: 205–216.PubMedCrossRefGoogle Scholar
  55. Hu, H. and Sachs, F. (1997) Stretch-activated ion channels in the heart. J Mol Cell Cardiol 29: 1511–1523.PubMedCrossRefGoogle Scholar
  56. Huang, H., Kamm, R. D. and Lee, R. T. (2004) Cell mechanics and mechanotransduction: pathways, probes, and physiology. Am J Physiol Cell Physiol 287: C1-C11.PubMedCrossRefGoogle Scholar
  57. Inoh, H., Ishiguro, N., Sawazaki, S., Amma, H., Miyazu, M., Iwata, H., Sokabe, M. and Naruse, K. (2002) Uni-axial cyclic stretch induces the activation of transcription factor nuclear factor kappaB in human fibroblast cells. FASEB J 16: 405–407.PubMedGoogle Scholar
  58. Ivanchenko, E. and Markwardt, F. (2005) Characterization of large-conductance Ca2+-dependent and -independent K+ channels in HaCaT keratinocytes. Skin Pharmacol Physiol 18: 115–122.PubMedCrossRefGoogle Scholar
  59. Iwasaki, H., Eguchi, S., Ueno, H., Marumo, F. and Hirata, Y. (2000) Mechanical stretch stimulates growth of vascular smooth muscle cells via epidermal growth factor receptor. Am J Physiol Heart Circ Physiol 278: H521-H529.PubMedGoogle Scholar
  60. Janmey, P. A. (1998) The cytoskeleton and cell signaling: component localization and mechanical coupling. Physiol Rev 78: 763–781.PubMedGoogle Scholar
  61. Kandarian, S. C. and Jackman, R. W. (2006) Intracellular signaling during skeletal muscle atrophy. Muscle Nerve 33: 155–165.PubMedCrossRefGoogle Scholar
  62. Karin, M. and Delhase, M. (2000) The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signaling. Semin Immunol 12: 85–98.PubMedCrossRefGoogle Scholar
  63. Karin, M. and Lin, A. (2002) NF-kappaB at the crossroads of life and death. Nat Immunol 3: 221–227.PubMedCrossRefGoogle Scholar
  64. Kent, R. L., Hoober, J. K. and Cooper, G. t. (1989) Load responsiveness of protein synthesis in adult mammalian myocardium: role of cardiac deformation linked to sodium influx. Circ Res 64: 74–85.PubMedGoogle Scholar
  65. Kim, C. H., Cho, Y. S., Chun, Y. S., Park, J. W. and Kim, M. S. (2002) Early expression of myocardial HIF-1alpha in response to mechanical stresses: regulation by stretch-activated channels and the phosphatidylinositol 3-kinase signaling pathway. Circ Res 90: E25-E33.PubMedCrossRefGoogle Scholar
  66. Kirber, M. T., Walsh, J. V., Jr. and Singer, J. J. (1988) Stretch-activated ion channels in smooth muscle: a mechanism for the initiation of stretch-induced contraction. Pflugers Arch 412: 339–345.PubMedCrossRefGoogle Scholar
  67. Kizer, N., Guo, X. L. and Hruska, K. (1997) Reconstitution of stretch-activated cation channels by expression of the alpha-subunit of the epithelial sodium channel cloned from osteoblasts. Proc Natl Acad Sci U S A 94: 1013–1018.PubMedCrossRefGoogle Scholar
  68. Kloda, A. and Martinac, B. (2001a) Mechanosensitive channel of Thermoplasma, the cell wall-less archaea: cloning and molecular characterization. Cell Biochem Biophys 34: 321–347.CrossRefGoogle Scholar
  69. Kloda, A. and Martinac, B. (2001b) Structural and functional differences between two homologous mechanosensitive channels of Methanococcus jannaschii. EMBO J 20: 1888–1896.CrossRefGoogle Scholar
  70. Kohl, P., Bollensdorff, C. and Garny, A. (2006) Effects of mechanosensitive ion channels on ventricular electrophysiology: experimental and theoretical models. Exp Physiol 91: 307–321.PubMedCrossRefGoogle Scholar
  71. Komuro, I., Kudo, S., Yamazaki, T., Zou, Y., Shiojima, I. and Yazaki, Y. (1996) Mechanical stretch activates the stress-activated protein kinases in cardiac myocytes. FASEB J 10: 631–636.PubMedGoogle Scholar
  72. Kuebler, W. M., Ying, X. and Bhattacharya, J. (2002) Pressure-induced endothelial Ca(2+) oscillations in lung capillaries. Am J Physiol Lung Cell Mol Physiol 282: L917-L923.PubMedGoogle Scholar
  73. Kulik, G., Klippel, A. and Weber, M. J. (1997) Antiapoptotic signalling by the insulin-like growth factor I receptor, phosphatidylinositol 3-kinase, and Akt. Mol Cell Biol 17: 1595–1606.PubMedGoogle Scholar
  74. Kumar, A., Chaudhry, I., Reid, M. B. and Boriek, A. M. (2002) Distinct signaling pathways are activated in response to mechanical stress applied axially and transversely to skeletal muscle fibers. J Biol Chem 277: 46493–46503.PubMedCrossRefGoogle Scholar
  75. Kumar, A., Khandelwal, N., Malya, R., Reid, M. B. and Boriek, A. M. (2004) Loss of dystrophin causes aberrant mechanotransduction in skeletal muscle fibers. FASEB J 18: 102–13.PubMedCrossRefGoogle Scholar
  76. Kumar, A., Knox, A. J. and Boriek, A. M. (2003a) CCAAT/enhancer-binding protein and activator protein-1 transcription factors regulate the expression of interleukin-8 through the mitogen-activated protein kinase pathways in response to mechanical stretch of human airway smooth muscle cells. J Biol Chem 278: 18868–18876.CrossRefGoogle Scholar
  77. Kumar, A., Lnu, S., Malya, R., Barron, D., Moore, J., Corry, D. B. and Boriek, A. M. (2003b) Mechanical stretch activates nuclear factor-kappaB, activator protein-1, and mitogen-activated protein kinases in lung parenchyma: implications in asthma. FASEB J 17:1800–1811.CrossRefGoogle Scholar
  78. Kung, C. (2005) A possible unifying principle for mechanosensation. Nature 436: 647–654.PubMedCrossRefGoogle Scholar
  79. Kushida, N., Kabuyama, Y., Yamaguchi, O. and Homma, Y. (2001) Essential role for extracellular Ca2+ in JNK activation by mechanical stretch in bladder smooth muscle cells. Am J Physiol Cell Physiol 281: C1165-C1172.PubMedGoogle Scholar
  80. Lansman, J. B. (1990) Blockade of current through single calcium channels by trivalent lanthanide cations. Effect of ionic radius on the rates of ion entry and exit. J Gen Physiol 95: 679–696.PubMedCrossRefGoogle Scholar
  81. Lavandero, S., Cartagena, G., Guarda, E., Corbalan, R., Godoy, I., Sapag-Hagar, M. and Jalil, J. E. (1993) Changes in cyclic AMP dependent protein kinase and active stiffness in the rat volume overload model of heart hypertrophy. Cardiovasc Res 27: 1634–1638.PubMedGoogle Scholar
  82. Lawlor, M. and Alessi, D. (2001) PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 114: 2903–2910.PubMedGoogle Scholar
  83. Lehoux, S. and Tedgui, A. (2003) Cellular mechanics and gene expression in blood vessels. J Biomech 36: 631–643.PubMedCrossRefGoogle Scholar
  84. Li, C., Hu, Y., Mayr, M. and Xu, Q. (1999) Cyclic strain stress-induced mitogen-activated protein kinase (MAPK) phosphatase 1 expression in vascular smooth muscle cells is regulated by Ras/Rac-MAPK pathways. J Biol Chem 274: 25273–25280.PubMedCrossRefGoogle Scholar
  85. Li, J., Duncan, R. L., Burr, D. B. and Turner, C. H. (2002) L-type calcium channels mediate mechanically induced bone formation in vivo. J Bone Miner Res 17: 1795–1800.PubMedCrossRefGoogle Scholar
  86. Li, Y. J., Batra, N. N., You, L., Meier, S. C., Coe, I. A., Yellowley, C. E. and Jacobs, C. R. (2004) Oscillatory fluid flow affects human marrow stromal cell proliferation and differentiation. J Orthop Res 22: 1283–1289.PubMedCrossRefGoogle Scholar
  87. Liao, X., Liu, J. M., Du, L., Tang, A., Shang, Y., Wang, S. Q., Chen, L. Y. and Chen, Q. (2006) Nitric oxide signaling in stretch-induced apoptosis of neonatal rat cardiomyocytes. FASEB J 20: 1883–1885.PubMedCrossRefGoogle Scholar
  88. Lin, E. C. and Cantiello, H. F. (1993) A novel method to study the electrodynamic behavior of actin filaments. Evidence for cable-like properties of actin. Biophys J 65, 1371–1378.PubMedGoogle Scholar
  89. Liu, M., Xu, J., Liu, J., Kraw, M. E., Tanswell, A. K. and Post, M. (1995a) Mechanical strain-enhanced fetal lung cell proliferation is mediated by phospholipase C and D and protein kinase C. Am J Physiol 268: L729-L738.Google Scholar
  90. Liu, M., Xu, J., Souza, P., Tanswell, B., Tanswell, A. K. and Post, M. (1995b) The effect of mechanical strain on fetal rat lung cell proliferation: comparison of two- and three-dimensional culture systems. In Vitro Cell Dev Biol Anim 31: 858–866.CrossRefGoogle Scholar
  91. Liu, M., Xu, J., Tanswell, A. K. and Post, M. (1994) Inhibition of mechanical strain-induced fetal rat lung cell proliferation by gadolinium, a stretch-activated channel blocker. J Cell Physiol 161: 501–507.PubMedCrossRefGoogle Scholar
  92. Luo, J. L., Kamata, H. and Karin, M. (2005) IKK/NF-kappaB signaling: balancing life and death–a new approach to cancer therapy. J Clin Invest 115: 2625–2632.PubMedCrossRefGoogle Scholar
  93. Madrid, L. V., Mayo, M. W., Reuther, J. Y. and Baldwin, A. S., Jr. (2001) Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J Biol Chem 276: 18934–18940.PubMedCrossRefGoogle Scholar
  94. Madrid, L. V., Wang, C. Y., Guttridge, D. C., Schottelius, A. J., Baldwin, A. S., Jr. and Mayo, M. W. (2000) Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB. Mol Cell Biol 20: 1626–1638.PubMedCrossRefGoogle Scholar
  95. Malek, A. M. and Izumo, S. (1996) Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. J Cell Sci 109: 713–726.PubMedGoogle Scholar
  96. Markin, V. S. and Hudspeth, A. J. (1995) Gating-spring models of mechanoelectrical transduction by hair cells of the internal ear. Annu Rev Biophys Biomol Struct 24: 59–83.PubMedCrossRefGoogle Scholar
  97. Maroto, R., Raso, A., Wood, T. G., Kurosky, A., Martinac, B. and Hamill, O. P. (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7: 179–185.PubMedCrossRefGoogle Scholar
  98. Martinac, B. (2004) Mechanosensitive ion channels: molecules of mechanotransduction. J Cell Sci 117: 2449–2460.PubMedCrossRefGoogle Scholar
  99. Martinac, B., Adler, J. and Kung, C. (1990) Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348: 261–263.PubMedCrossRefGoogle Scholar
  100. Matsumoto, H., Baron, C. B. and Coburn, R. F. (1995) Smooth muscle stretch-activated phospholipase C activity. Am J Physiol 268: C458-C465.PubMedGoogle Scholar
  101. McBride, T. A. (2003) Stretch-activated ion channels and c-fos expression remain active after repeated eccentric bouts. J Appl Physiol 94: 2296–2302.PubMedGoogle Scholar
  102. McBride, T. A., Stockert, B. W., Gorin, F. A. and Carlsen, R. C. (2000) Stretch-activated ion channels contribute to membrane depolarization after eccentric contractions. J Appl Physiol 88: 91–101.PubMedGoogle Scholar
  103. McCarron, J. G., Crichton, C. A., Langton, P. D., MacKenzie, A. and Smith, G. L. (1997) Myogenic contraction by modulation of voltage-dependent calcium currents in isolated rat cerebral arteries. J Physiol 498: 371–379.PubMedGoogle Scholar
  104. Morris, C. E. and Horn, R. (1991) Failure to elicit neuronal macroscopic mechanosensitive currents anticipated by single-channel studies. Science 251: 1246–1249.PubMedCrossRefGoogle Scholar
  105. Morris, C. E. and Sigurdson, W. J. (1989) Stretch-inactivated ion channels coexist with stretch-activated ion channels. Science 243: 807–809.PubMedCrossRefGoogle Scholar
  106. Moule, S. K., Welsh, G. I., Edgell, N. J., Foulstone, E. J., Proud, C. G. and Denton, R. M. (1997) Regulation of protein kinase B and glycogen synthase kinase-3 by insulin and beta-adrenergic agonists in rat epididymal fat cells. Activation of protein kinase B by wortmannin-sensitive and -insensitive mechanisms. J Biol Chem 272: 7713–7719.PubMedCrossRefGoogle Scholar
  107. Naruse, K., Sai, X., Yokoyama, N. and Sokabe, M. (1998a) Uni-axial cyclic stretch induces c-src activation and translocation in human endothelial cells via SA channel activation. FEBS Lett 441: 111–115.CrossRefGoogle Scholar
  108. Naruse, K., Yamada, T., Sai, X. R., Hamaguchi, M. and Sokabe, M. (1998b) Pp125FAK is required for stretch dependent morphological response of endothelial cells. Oncogene 17: 455–463.CrossRefGoogle Scholar
  109. Nicolosi, A. C., Kwok, C. S. and Bosnjak, Z. J. (2004) Antagonists of stretch-activated ion channels restore contractile function in hamster dilated cardiomyopathy. J Heart Lung Transplant 23: 1003–1007.PubMedCrossRefGoogle Scholar
  110. Ohya, Y., Adachi, N., Nakamura, Y., Setoguchi, M., Abe, I. and Fujishima, M. (1998) Stretch-activated channels in arterial smooth muscle of genetic hypertensive rats. Hypertension 31: 254–258.PubMedGoogle Scholar
  111. Olesen, S. P., Clapham, D. E. and Davies, P. F. (1988) Haemodynamic shear stress activates a K+ current in vascular endothelial cells. Nature 331: 168–170.PubMedCrossRefGoogle Scholar
  112. Oliet, S. H. and Bourque, C. W. (1993) Mechanosensitive channels transduce osmosensitivity in supraoptic neurons. Nature 364: 341–343.PubMedCrossRefGoogle Scholar
  113. Opsahl, L. R. and Webb, W. W. (1994) Transduction of membrane tension by the ion channel alamethicin. Biophys J 66: 71–74.PubMedGoogle Scholar
  114. Oswald, R. E., Suchyna, T. M., McFeeters, R., Gottlieb, P. and Sachs, F. (2002) Solution structure of peptide toxins that block mechanosensitive ion channels. J Biol Chem 277: 34443–34450.PubMedCrossRefGoogle Scholar
  115. Ozes, O. N., Mayo, L. D., Gustin, J. A., Pfeffer, S. R., Pfeffer, L. M. and Donner, D. B. (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401: 82–85.PubMedCrossRefGoogle Scholar
  116. Paintal, A. S. (1964) Effects of Drugs on Vertebrate Mechanoreceptors. Pharmacol Rev 16: 341–380.PubMedGoogle Scholar
  117. Pan, J., Fukuda, K., Saito, M., Matsuzaki, J., Kodama, H., Sano, M., Takahashi, T., Kato, T. and Ogawa, S. (1999) Mechanical stretch activates the JAK/STAT pathway in rat cardiomyocytes. Circ Res 84: 1127–1136.PubMedGoogle Scholar
  118. Park, J. Y., Lee, D., Maeng, J. U., Koh, D. S. and Kim, K. (2002) Hyperpolarization, but not depolarization, increases intracellular Ca(2+) level in cultured chick myoblasts. Biochem Biophys Res Commun 290: 1176–1182.PubMedCrossRefGoogle Scholar
  119. Patel, A. J., Lazdunski, M. and Honore, E. (2001) Lipid and mechano-gated 2P domain K(+) channels. Curr Opin Cell Biol 13: 422–428.PubMedCrossRefGoogle Scholar
  120. Perozo, E., Cortes, D. M., Sompornpisut, P., Kloda, A. and Martinac, B. (2002a) Open channel structure of MscL and the gating mechanism of mechanosensitive channels. Nature 418: 942–948.CrossRefGoogle Scholar
  121. Perozo, E., Kloda, A., Cortes, D. M. and Martinac, B. (2002b) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol 9: 696–703.CrossRefGoogle Scholar
  122. Perozo, E. and Rees, D. C. (2003) Structure and mechanism in prokaryotic mechanosensitive channels. Curr Opin Struct Biol 13, 432–42.PubMedCrossRefGoogle Scholar
  123. Peyssonnaux, C. and Eychene, A. (2001) The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell 93: 53–62.PubMedCrossRefGoogle Scholar
  124. Pivetti, C. D., Yen, M. R., Miller, S., Busch, W., Tseng, Y. H., Booth, I. R. and Saier, M. H., Jr. (2003) Two families of mechanosensitive channel proteins. Microbiol Mol Biol Rev 67: 66–85.PubMedCrossRefGoogle Scholar
  125. Rawlinson, S. C., Pitsillides, A. A. and Lanyon, L. E. (1996) Involvement of different ion channels in osteoblasts’ and osteocytes’ early responses to mechanical strain. Bone 19: 609–614.PubMedCrossRefGoogle Scholar
  126. Romashkova, J. A. and Makarov, S. S. (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401: 86–90.PubMedCrossRefGoogle Scholar
  127. Rubin, J., Murphy, T. C., Fan, X., Goldschmidt, M. and Taylor, W. R. (2002) Activation of extracellular signal-regulated kinase is involved in mechanical strain inhibition of RANKL expression in bone stromal cells. J Bone Miner Res 17: 1452–1460.PubMedCrossRefGoogle Scholar
  128. Rubin, J., Rubin, C. and Jacobs, C. R. (2006) Molecular pathways mediating mechanical signaling in bone. Gene 367: 1–16.PubMedCrossRefGoogle Scholar
  129. Ryder, K. D. and Duncan, R. L. (2001) Parathyroid hormone enhances fluid shear-induced [Ca2+]i signaling in osteoblastic cells through activation of mechanosensitive and voltage-sensitive Ca2+ channels. J Bone Miner Res 16: 240–248.PubMedCrossRefGoogle Scholar
  130. Sachs, F. (1992) Stretch-sensitive ion channels: an update. Soc Gen Physiol Ser 47: 241–260.PubMedGoogle Scholar
  131. Sadoshima, J. and Izumo, S. (1993) Mechanical stretch rapidly activates multiple signal transduction pathways in cardiac myocytes: potential involvement of an autocrine/paracrine mechanism. EMBO J 12: 1681–1692.PubMedGoogle Scholar
  132. Sadoshima, J., Qiu, Z., Morgan, J. P. and Izumo, S. (1996) Tyrosine kinase activation is an immediate and essential step in hypotonic cell swelling-induced ERK activation and c-fos gene expression in cardiac myocytes. EMBO J 15: 5535–5546.PubMedGoogle Scholar
  133. Sakaue, H., Ogawa, W., Takata, M., Kuroda, S., Kotani, K., Matsumoto, M., Sakaue, M., Nishio, S., Ueno, H. and Kasuga, M. (1997) Phosphoinositide 3-kinase is required for insulin-induced but not for growth hormone- or hyperosmolarity-induced glucose uptake in 3T3-L1 adipocytes. Mol Endocrinol 11: 1552–1562.PubMedCrossRefGoogle Scholar
  134. Salmon, A. H., Mays, J. L., Dalton, G. R., Jones, J. V. and Levi, A. J. (1997) Effect of streptomycin on wall-stress-induced arrhythmias in the working rat heart. Cardiovasc Res 34: 493–503.PubMedCrossRefGoogle Scholar
  135. Schilling, W. P., Mo, M. and Eskin, S. G. (1992) Effect of shear stress on cytosolic Ca2+ of calf pulmonary artery endothelial cells. Exp Cell Res 198: 31–35.PubMedCrossRefGoogle Scholar
  136. Scott, P. H., Brunn, G. J., Kohn, A. D., Roth, R. A. and Lawrence, J. C., Jr. (1998) Evidence of insulin-stimulated phosphorylation and activation of the mammalian target of rapamycin mediated by a protein kinase B signaling pathway. Proc Natl Acad Sci U S A 95: 7772–7777.PubMedCrossRefGoogle Scholar
  137. Shaw, A. and Xu, Q. (2003) Biomechanical stress-induced signaling in smooth muscle cells: an update. Curr Vasc Pharmacol 1: 41–58.PubMedCrossRefGoogle Scholar
  138. Shimada, M., Nakamura, Y., Iwanaga, S., Asakura, K., Hattori, S., Takahashi, M. and Ogawa, S. (1999) Stretch-activated ion channel blocker gadolinium attenuates ischemic ST-segment elevation in canine myocardium. Jpn Circ J 63: 624–628.PubMedGoogle Scholar
  139. Shin, K. S., Park, J. Y., Ha, D. B., Chung, C. H. and Kang, M. S. (1996) Involvement of K(Ca) channels and stretch-activated channels in calcium influx, triggering membrane fusion of chick embryonic myoblasts. Dev Biol 175: 14–23.PubMedCrossRefGoogle Scholar
  140. Soderling, T. R. and Stull, J. T. (2001) Structure and regulation of calcium/calmodulin-dependent protein kinases. Chem Rev 101: 2341–2352.PubMedCrossRefGoogle Scholar
  141. Sokabe, M., Sachs, F. and Jing, Z. Q. (1991) Quantitative video microscopy of patch clamped membranes stress, strain, capacitance, and stretch channel activation. Biophys J 59: 722–728.PubMedGoogle Scholar
  142. Song, G., Ouyang, G. and Bao, S. (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9: 59–71.PubMedCrossRefGoogle Scholar
  143. Spangenburg, E. E. and McBride, T. A. (2006) Inhibition of stretch-activated channels during eccentric muscle contraction attenuates p70S6K activation. J Appl Physiol 100: 129–135.PubMedCrossRefGoogle Scholar
  144. Strege, P. R., Ou, Y., Sha, L., Rich, A., Gibbons, S. J., Szurszewski, J. H., Sarr, M. G. and Farrugia, G. (2003) Sodium current in human intestinal interstitial cells of Cajal. Am J Physiol Gastrointest Liver Physiol 285: G1111-G1121.PubMedGoogle Scholar
  145. Stula, M., Orzechowski, H. D., Gschwend, S., Vetter, R., von Harsdorf, R., Dietz, R. and Paul, M. (2000) Influence of sustained mechanical stress on Egr-1 mRNA expression in cultured human endothelial cells. Mol Cell Biochem 210: 101–108.PubMedCrossRefGoogle Scholar
  146. Stull, J. T. (2001) Ca2+-dependent cell signaling through calmodulin-activated protein phosphatase and protein kinases minireview series. J Biol Chem 276: 2311–2312.PubMedCrossRefGoogle Scholar
  147. Suchyna, T. M., Johnson, J. H., Hamer, K., Leykam, J. F., Gage, D. A., Clemo, H. F., Baumgarten, C. M. and Sachs, F. (2000) Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol 115: 583–598.PubMedCrossRefGoogle Scholar
  148. Suchyna, T. M., Tape, S. E., Koeppe, R. E., 2nd, Andersen, O. S., Sachs, F. and Gottlieb, P. A. (2004) Bilayer-dependent inhibition of mechanosensitive channels by neuroactive peptide enantiomers. Nature 430: 235–240.PubMedCrossRefGoogle Scholar
  149. Sukharev, S. and Anishkin, A. (2004) Mechanosensitive channels: what can we learn from ‘simple’ model systems? Trends Neurosci 27: 345–351.PubMedCrossRefGoogle Scholar
  150. Sukharev, S. I., Blount, P., Martinac, B., Blattner, F. R. and Kung, C. (1994) A large-conductance mechanosensitive channel in E. coli encoded by mscL alone. Nature 368: 265–268.PubMedCrossRefGoogle Scholar
  151. Sukharev, S. I., Martinac, B., Arshavsky, V. Y. and Kung, C. (1993) Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys J 65: 177–183.PubMedCrossRefGoogle Scholar
  152. Sun, S. and Cho, M. (2004) Human fibroblast migration in three-dimensional collagen gel in response to noninvasive electrical stimulus. II. Identification of electrocoupling molecular mechanisms. Tissue Eng 10: 1558–1565.PubMedGoogle Scholar
  153. Takano, H. and Glantz, S. A. (1995) Gadolinium attenuates the upward shift of the left ventricular diastolic pressure-volume relation during pacing-induced ischemia in dogs. Circulation 91: 1575–1587.PubMedGoogle Scholar
  154. Takeda, H., Komori, K., Nishikimi, N., Nimura, Y., Sokabe, M. and Naruse, K. (2006) Bi-phasic activation of eNOS in response to uni-axial cyclic stretch is mediated by differential mechanisms in BAECs. Life Sci 79: 233–239.PubMedCrossRefGoogle Scholar
  155. Tavernarakis, N. and Driscoll, M. (2001) Mechanotransduction in Caenorhabditis elegans: the role of DEG/ENaC ion channels. Cell Biochem Biophys 35: 1–18.PubMedGoogle Scholar
  156. Tsai, I. J., Liu, Z. W., Rayment, J., Norman, C., McKinley, A. and Martinac, B. (2005) The role of the periplasmic loop residue glutamine 65 for MscL mechanosensitivity. Eur Biophys J 34: 403–412.PubMedCrossRefGoogle Scholar
  157. Wedhas, N., Klamut, H. J., Dogra, C., Srivastava, A. K., Mohan, S. and Kumar, A. (2005) Inhibition of mechanosensitive cation channels inhibits myogenic differentiation by suppressing the expression of myogenic regulatory factors and caspase-3 activity. FASEB J 19: 1986–1997.PubMedCrossRefGoogle Scholar
  158. Whitmarsh, A. J. and Davis, R. J. (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 74: 589–607.PubMedCrossRefGoogle Scholar
  159. Widmann, C., Gerwins, P., Johnson, N. L., Jarpe, M. B. and Johnson, G. L. (1998) MEK kinase 1, a substrate for DEVD-directed caspases, is involved in genotoxin-induced apoptosis. Mol Cell Biol 18: 2416–2429.PubMedGoogle Scholar
  160. Widmann, C., Gibson, S., Jarpe, M. B. and Johnson, G. L. (1999) Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev 79: 143–180.PubMedGoogle Scholar
  161. Winston, F. K., Thibault, L. E. and Macarak, E. J. (1993) An analysis of the time-dependent changes in intracellular calcium concentration in endothelial cells in culture induced by mechanical stimulation. J Biomech Eng 115: 160–168.PubMedGoogle Scholar
  162. Wu, Q. Q. and Chen, Q. (2000) Mechanoregulation of chondrocyte proliferation, maturation, and hypertrophy: ion-channel dependent transduction of matrix deformation signals. Exp Cell Res 256: 383–391.PubMedCrossRefGoogle Scholar
  163. Yamazaki, T., Komuro, I., Kudoh, S., Zou, Y., Nagai, R., Aikawa, R., Uozumi, H. and Yazaki, Y. (1998a) Role of ion channels and exchangers in mechanical stretch-induced cardiomyocyte hypertrophy. Circ Res 82: 430–437.Google Scholar
  164. Yamazaki, T., Komuro, I., Kudoh, S., Zou, Y., Shiojima, I., Mizuno, T., Takano, H., Hiroi, Y., Ueki, K., Tobe, K. and et al. (1995) Mechanical stress activates protein kinase cascade of phosphorylation in neonatal rat cardiac myocytes. J Clin Invest 96: 438–446.PubMedCrossRefGoogle Scholar
  165. Yamazaki, T., Komuro, I., Shiojima, I. and Yazaki, Y. (1999) The molecular mechanism of cardiac hypertrophy and failure. Ann N Y Acad Sci 874: 38–48.PubMedCrossRefGoogle Scholar
  166. Yang, X. C. and Sachs, F. (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243: 1068–1071.PubMedCrossRefGoogle Scholar
  167. Yano, S., Komine, M., Fujimoto, M., Okochi, H. and Tamaki, K. (2006) Activation of Akt by mechanical stretching in human epidermal keratinocytes. Exp Dermatol 15: 356–361.PubMedCrossRefGoogle Scholar
  168. Yano, S., Tokumitsu, H. and Soderling, T. R. (1998) Calcium promotes cell survival through CaM-K kinase activation of the protein-kinase-B pathway. Nature 396: 584–587.PubMedCrossRefGoogle Scholar
  169. Yeung, E. W., Head, S. I. and Allen, D. G. (2003) Gadolinium reduces short-term stretch-induced muscle damage in isolated mdx mouse muscle fibres. J Physiol 552: 449–458.PubMedCrossRefGoogle Scholar
  170. Yeung, E. W., Whitehead, N. P., Suchyna, T. M., Gottlieb, P. A., Sachs, F. and Allen, D. G. (2005) Effects of stretch-activated channel blockers on [Ca2+]i and muscle damage in the mdx mouse. J Physiol 562: 367–380.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Aladin M. Boriek
  • Ashok Kumar

There are no affiliations available

Personalised recommendations