Signal Transduction Pathways Involved in Mechanotransduction in Osteoblastic and Mesenchymal Stem Cells

  • Astrid Liedert
  • Lutz Claes
  • Anita Ignatius
Part of the Mechanosensitivity in Cells and Tissues book series (MECT, volume 1)


Bone remodeling, a process in adults that maintains bone mass through the activity of osteoblasts and osteoclasts, is regulated by mechanical forces. Mechanical loading promotes osteoblast function by increasing proliferation and differentiation of these cells. The cellular responses underlying this mechanism are termed mechanotransduction. Mechanotransduction involves various signal transduction pathways, including the activation of ion channels and other mechanoreceptors in the membrane of the bone cell, resulting in gene regulation in the nucleus. Identification and functional characterization of the mechanotransduction components may improve bone tissue engineering


Mechanotransduction Signal transduction pathway Mechanoreceptor Ion channel Bone cell 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ajubi NE, Klein-Nulend J, Alblas MJ, Burger EH, Nijweide PJ (1999) Signal transduction pathways involved in fluid flow-induced PGE2 production by cultured osteocytes. Am J Physiol 276: E171–178PubMedGoogle Scholar
  2. Akhouayri O, Lafage-Proust MH, Rattner A, Laroche N, Caillot-Augusseau A, Alexandre C, Vico L (1999) Effects of static or dynamic mechanical stresses on osteoblast phenotype expression in three-dimensional contractile collagen gels. J Cell Biochem 76: 217–230PubMedCrossRefGoogle Scholar
  3. Bakker AD, Joldersma M, Klein-Nulend J, Burger EH (2003) Interactive effects of PTH and mechanical stress on nitric oxide and PGE2 production by primary mouse osteoblastic cells. Am J Physiol Endocrinol Metab 285: E608–613PubMedGoogle Scholar
  4. Bakker AD, Klein-Nulend J, Tanck E, Albers GH, Lips P, Burger EH (2005) Additive effects of estrogen and mechanical stress on nitric oxide and prostaglandin E2 production by bone cells from osteoporotic donors. Osteoporos Int 16: 983–989PubMedCrossRefGoogle Scholar
  5. Bakker AD, Soejima K, Klein-Nulend J, Burger EH (2001) The production of nitric oxide and prostaglandin E(2) by primary bone cells is shear stress dependent. J Biomech 34: 671–677PubMedCrossRefGoogle Scholar
  6. Basso N, Heersche JN (2006) Effects of hind limb unloading and reloading on nitric oxide synthase expression and apoptosis of osteocytes and chondrocytes. Bone 39: 807–814PubMedCrossRefGoogle Scholar
  7. Burger EH, Klein-Nulen J (1999) Responses of bone cells to biomechanical forces in vitro. Adv Dent Res 13: 93–98PubMedCrossRefGoogle Scholar
  8. Burger EH, Klein-Nulend J, Smit TH (2003) Strain-derived canalicular fluid flow regulates osteoclast activity in a remodelling osteon–a proposal. J Biomech 36: 1453–1459PubMedCrossRefGoogle Scholar
  9. Cartmell SH, Porter BD, Garcia AJ, Guldberg RE (2003) Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro. Tissue Eng 9: 1197–1203PubMedCrossRefGoogle Scholar
  10. Charras GT, Williams BA, Sims SM, Horton MA (2004) Estimating the sensitivity of mechanosensitive ion channels to membrane strain and tension. Biophys J 87: 2870–2884PubMedCrossRefGoogle Scholar
  11. Chen X, Macica CM, Ng KW, Broadus AE (2005) Stretch-induced PTH-related protein gene expression in osteoblasts. J Bone Miner Res 20: 1454–1461PubMedCrossRefGoogle Scholar
  12. Cheng B, Kato Y, Zhao S, Luo J, Sprague E, Bonewald LF, Jiang JX (2001) PGE(2) is essential for gap junction-mediated intercellular communication between osteocyte-like MLO-Y4 cells in response to mechanical strain. Endocrinology 142: 3464–3473PubMedCrossRefGoogle Scholar
  13. Cheng MZ, Rawlinson SC, Pitsillides AA, Zaman G, Mohan S, Baylink DJ, Lanyon LE (2002) Human osteoblasts’ proliferative responses to strain and 17beta-estradiol are mediated by the estrogen receptor and the receptor for insulin-like growth factor I. J Bone Miner Res 17: 593–602PubMedCrossRefGoogle Scholar
  14. Cherian PP, Cheng B, Gu S, Sprague E, Bonewald LF, Jiang JX (2003) Effects of mechanical strain on the function of Gap junctions in osteocytes are mediated through the prostaglandin EP2 receptor. J Biol Chem 278: 43146–43156PubMedCrossRefGoogle Scholar
  15. Cherian PP, Siller-Jackson AJ, Gu S, Wang X, Bonewald LF, Sprague E, Jiang JX (2005) Mechanical strain opens connexin 43 hemichannels in osteocytes: a novel mechanism for the release of prostaglandin. Mol Biol Cell 16: 3100–3106PubMedCrossRefGoogle Scholar
  16. Datta N, Pham QP, Sharma U, Sikavitsas VI, Jansen JA, Mikos AG (2006) In vitro generated extracellular matrix and fluid shear stress synergistically enhance 3D osteoblastic differentiation. Proc Natl Acad Sci USA 103: 2488–2493PubMedCrossRefGoogle Scholar
  17. Davidson RM, Tatakis DW, Auerbach AL (1990) Multiple forms of mechanosensitive ion channels in osteoblast-like cells. Pflugers Arch 416: 646–651PubMedCrossRefGoogle Scholar
  18. Di Palma F, Guignandon A, Chamson A, Lafage-Proust MH, Laroche N, Peyroche S, Vico L, Rattner A (2005) Modulation of the responses of human osteoblast-like cells to physiologic mechanical strains by biomaterial surfaces. Biomaterials 26: 4249–4257PubMedCrossRefGoogle Scholar
  19. Duncan RL, Kizer N, Barry EL, Friedman PA, Hruska KA (1996) Antisense oligodeoxynucleotide inhibition of a swelling-activated cation channel in osteoblast-like osteosarcoma cells. Proc Natl Acad Sci USA 93: 1864–1869PubMedCrossRefGoogle Scholar
  20. Duncan RL, Turner CH (1995) Mechanotransduction and the functional response of bone to mechanical strain. Calcif Tissue Int 57: 344–358PubMedCrossRefGoogle Scholar
  21. Ehrlich PJ, Lanyon LE (2002) Mechanical strain and bone cell function: a review. Osteoporos Int 13: 688–700PubMedCrossRefGoogle Scholar
  22. El Haj AJ, Wood MA, Thomas P, Yang Y (2005) Controlling cell biomechanics in orthopaedic tissue engineering and repair. Pathol Biol (Paris) 53: 581–589Google Scholar
  23. Fan X, Rahnert JA, Murphy TC, Nanes MS, Greenfield EM, Rubin J (2006) Response to mechanical strain in an immortalized pre-osteoblast cell is dependent on ERK1/2. J Cell Physiol 207: 454–460PubMedCrossRefGoogle Scholar
  24. Fan X, Roy E, Zhu L, Murphy TC, Ackert-Bicknell C, Hart CM, Rosen C, Nanes MS, Rubin J (2004) Nitric oxide regulates receptor activator of nuclear factor-kappaB ligand and osteoprotegerin expression in bone marrow stromal cells. Endocrinology 145: 751–759PubMedCrossRefGoogle Scholar
  25. Ferraro JT, Daneshmand M, Bizios R, Rizzo V (2004) Depletion of plasma membrane cholesterol dampens hydrostatic pressure and shear stress-induced mechanotransduction pathways in osteoblast cultures. Am J Physiol Cell Physiol 286: C831–839PubMedCrossRefGoogle Scholar
  26. Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423: 349–355PubMedCrossRefGoogle Scholar
  27. Honda A, Sogo N, Nagasawa S, Shimizu T, Umemura Y (2003) High-impact exercise strengthens bone in osteopenic ovariectomized rats with the same outcome as Sham rats. J Appl Physiol 95: 1032–1037PubMedGoogle Scholar
  28. Hughes-Fulford M (2004) Signal transduction and mechanical stress. Sci STKE 2004: RE12PubMedCrossRefGoogle Scholar
  29. Ignatius A, Blessing H, Liedert A, Schmidt C, Neidlinger-Wilke C, Kaspar D, Friemert B, Claes L (2005) Tissue engineering of bone: effects of mechanical strain on osteoblastic cells in type I collagen matrices. Biomaterials 26: 311–318PubMedCrossRefGoogle Scholar
  30. Iqbal J, Zaidi M (2005) Molecular regulation of mechanotransduction. Biochem Biophys Res Commun 328: 751–755PubMedCrossRefGoogle Scholar
  31. Jessop HL, Rawlinson SC, Pitsillides AA, Lanyon LE (2002) Mechanical strain and fluid movement both activate extracellular regulated kinase (ERK) in osteoblast-like cells but via different signaling pathways. Bone 31: 186–194PubMedCrossRefGoogle Scholar
  32. Jessop HL, Suswillo RF, Rawlinson SC, Zaman G, Lee K, Das-Gupta V, Pitsillides AA, Lanyon LE (2004) Osteoblast-like cells from estrogen receptor alpha knockout mice have deficient responses to mechanical strain. J Bone Miner Res 19: 938–946PubMedCrossRefGoogle Scholar
  33. Kanzaki H, Chiba M, Shimizu Y, Mitani H (2002) Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res 17: 210–220PubMedCrossRefGoogle Scholar
  34. Kapur S, Baylink DJ, Lau KH (2003) Fluid flow shear stress stimulates human osteoblast proliferation and differentiation through multiple interacting and competing signal transduction pathways. Bone 32: 241–251PubMedCrossRefGoogle Scholar
  35. Kapur S, Mohan S, Baylink DJ, Lau KH (2005) Fluid shear stress synergizes with insulin-like growth factor-I (IGF-I) on osteoblast proliferation through integrin-dependent activation of IGF-I mitogenic signaling pathway. J Biol Chem 280: 20163–20170PubMedCrossRefGoogle Scholar
  36. Kaspar D, Seidl W, Neidlinger-Wilke C, Claes L (2000) In vitro effects of dynamic strain on the proliferative and metabolic activity of human osteoblasts. J Musculoskelet Neuronal Interact 1: 161–164PubMedGoogle Scholar
  37. Kizer N, Guo XL, Hruska K (1997) Reconstitution of stretch-activated cation channels by expression of the alpha-subunit of the epithelial sodium channel cloned from osteoblasts. Proc Natl Acad Sci USA 94: 1013–1018PubMedCrossRefGoogle Scholar
  38. Klein-Nulend J, Bacabac RG, Mullender MG (2005) Mechanobiology of bone tissue. Pathol Biol (Paris) 53: 576–580Google Scholar
  39. Klein-Nulend J, Van der Plas A, Semeins C, Nasser E, Frangos J, Nijweide P, Burger E (1995) Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J 9: 441–445PubMedGoogle Scholar
  40. Lau KH, Kapur S, Kesavan C, Baylink DJ (2006) Up-regulation of the Wnt, estrogen receptor, insulin-like growth factor-I, and bone morphogenetic protein pathways in C57BL/6J osteoblasts as opposed to C3H/HeJ osteoblasts in part contributes to the differential anabolic response to fluid shear. J Biol Chem 281: 9576–9588PubMedCrossRefGoogle Scholar
  41. Leclerc E, David B, Griscom L, Lepioufle B, Fujii T, Layrolle P, Legallaisa C (2006) Study of osteoblastic cells in a microfluidic environment. Biomaterials 27: 586–595PubMedCrossRefGoogle Scholar
  42. Lee MH, Kwon TG, Park HS, Wozney JM, Ryoo HM (2003) BMP-2-induced Osterix expression is mediated by Dlx5 but is independent of Runx2. Biochem Biophys Res Commun 309: 689–694PubMedCrossRefGoogle Scholar
  43. Li J, Duncan RL, Burr DB, Gattone VH, Turner CH (2003) Parathyroid hormone enhances mechanically induced bone formation, possibly involving L-type voltage-sensitive calcium channels. Endocrinology 144: 1226–1233PubMedCrossRefGoogle Scholar
  44. Li J, Duncan RL, Burr DB, Turner CH (2002) L-type calcium channels mediate mechanically induced bone formation in vivo. J Bone Miner Res 17: 1795–1800PubMedCrossRefGoogle Scholar
  45. Li J, Liu D, Ke HZ, Duncan RL, Turner CH (2005) The P2X7 nucleotide receptor mediates skeletal mechanotransduction. J Biol Chem 280: 42952–42959PubMedCrossRefGoogle Scholar
  46. Liedert A, Augat P, Ignatius A, Hausser HJ, Claes L (2004) Mechanical regulation of HB-GAM expression in bone cells. Biochem Biophys Res Commun 319: 951–958PubMedCrossRefGoogle Scholar
  47. Ma HP, Li L, Zhou ZH, Eaton DC, Warnock DG (2002) ATP masks stretch activation of epithelial sodium channels in A6 distal nephron cells. Am J Physiol Renal Physiol 282: F501–505PubMedGoogle Scholar
  48. Marie PJ (2002) Role of N-cadherin in bone formation. J Cell Physiol 190: 297–305PubMedCrossRefGoogle Scholar
  49. Martin I, Miot S, Barbero A, Jakob M, Wendt D (2006) Osteochondral tissue engineering. J BiomechGoogle Scholar
  50. Mason DJ, Huggett JF (2002) Glutamate transporters in bone. J Musculoskelet Neuronal Interact 2: 406–414PubMedGoogle Scholar
  51. Mauney JR, Sjostorm S, Blumberg J, Horan R, O’Leary JP, Vunjak-Novakovic G, Volloch V, Kaplan DL (2004) Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro. Calcif Tissue Int 74: 458–468PubMedCrossRefGoogle Scholar
  52. McGarry JG, Klein-Nulend J, Prendergast PJ (2005) The effect of cytoskeletal disruption on pulsatile fluid flow-induced nitric oxide and prostaglandin E2 release in osteocytes and osteoblasts. Biochem Biophys Res Commun 330: 341–348PubMedCrossRefGoogle Scholar
  53. Mikuni-Takagaki Y (1999) Mechanical responses and signal transduction pathways in stretched osteocytes. J Bone Miner Metab 17: 57–60PubMedCrossRefGoogle Scholar
  54. Mullender MG, Dijcks SJ, Bacabac RG, Semeins CM, Van Loon JJ, Klein-Nulend J (2006) Release of nitric oxide, but not prostaglandin E2, by bone cells depends on fluid flow frequency. J Orthop Res 24: 1170–1177PubMedCrossRefGoogle Scholar
  55. Muramatsu T (2002) Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem (Tokyo) 132: 359–371Google Scholar
  56. Nomura S, Takano-Yamamoto T (2000) Molecular events caused by mechanical stress in bone. Matrix Biol 19: 91–96PubMedCrossRefGoogle Scholar
  57. Norvell SM, Alvarez M, Bidwell JP, Pavalko FM (2004) Fluid shear stress induces beta-catenin signaling in osteoblasts. Calcif Tissue Int 75: 396–404PubMedCrossRefGoogle Scholar
  58. Pavalko FM, Norvell SM, Burr DB, Turner CH, Duncan RL, Bidwell JP (2003) A model for mechanotransduction in bone cells: the load-bearing mechanosomes. J Cell Biochem 88: 104–112PubMedCrossRefGoogle Scholar
  59. Ponik SM, Pavalko FM (2004) Formation of focal adhesions on fibronectin promotes fluid shear stress induction of COX-2 and PGE2 release in MC3T3-E1 osteoblasts. J Appl Physiol 97: 135–142PubMedCrossRefGoogle Scholar
  60. Rawlinson SC, Pitsillides AA, Lanyon LE (1996) Involvement of different ion channels in osteoblasts’ and osteocytes’ early responses to mechanical strain. Bone 19: 609–614PubMedCrossRefGoogle Scholar
  61. Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27: 3413–3431PubMedCrossRefGoogle Scholar
  62. Rezzonico R, Cayatte C, Bourget-Ponzio I, Romey G, Belhacene N, Loubat A, Rocchi S, Van Obberghen E, Girault JA, Rossi B, Schmid-Antomarchi H (2003) Focal adhesion kinase pp125FAK interacts with the large conductance calcium-activated hSlo potassium channel in human osteoblasts: potential role in mechanotransduction. J Bone Miner Res 18: 1863–1871PubMedCrossRefGoogle Scholar
  63. Rezzonico R, Schmid-Alliana A, Romey G, Bourget-Ponzio I, Breuil V, Breittmayer V, Tartare-Deckert S, Rossi B, Schmid-Antomarchi H (2002) Prostaglandin E2 induces interaction between hSlo potassium channel and Syk tyrosine kinase in osteosarcoma cells. J Bone Miner Res 17: 869–878PubMedCrossRefGoogle Scholar
  64. Rubin CT, Lanyon LE (1984) Regulation of bone formation by applied dynamic loads. J Bone Joint Surg 66-A: 397–402Google Scholar
  65. Rubin CT, Lanyon LE (1985) Regulation of bone mass by mechanical strain magnitude. Calcif Tissue Int 37: 411–417PubMedCrossRefGoogle Scholar
  66. Rubin J, Rubin C, Jacobs CR (2006) Molecular pathways mediating mechanical signaling in bone. Gene 367: 1–16PubMedCrossRefGoogle Scholar
  67. Ryder KD, Duncan RL (2000) Parathyroid hormone modulates the response of osteoblast-like cells to mechanical stimulation. Calcif Tissue Int 67: 241–246PubMedCrossRefGoogle Scholar
  68. Ryder KD, Duncan RL (2001) Parathyroid hormone enhances fluid shear-induced [Ca2+]i signaling in osteoblastic cells through activation of mechanosensitive and voltage-sensitive Ca2+ channels. J Bone Miner Res 16: 240–248PubMedCrossRefGoogle Scholar
  69. Shin J, Jo H, Park H (2006) Caveolin-1 is transiently dephosphorylated by shear stress-activated protein tyrosine phosphatase mu. Biochem Biophys Res Commun 339: 737–741PubMedCrossRefGoogle Scholar
  70. Tanaka SM, Sun HB, Roeder RK, Burr DB, Turner CH, Yokota H (2005) Osteoblast responses one hour after load-induced fluid flow in a three-dimensional porous matrix. Calcif Tissue Int 76: 261–271PubMedCrossRefGoogle Scholar
  71. Tanno M, Furukawa KI, Ueyama K, Harata S, Motomura S (2003) Uniaxial cyclic stretch induces osteogenic differentiation and synthesis of bone morphogenetic proteins of spinal ligament cells derived from patients with ossification of the posterior longitudinal ligaments. Bone 33: 475–484PubMedCrossRefGoogle Scholar
  72. Tarbell JM, Weinbaum S, Kamm RD (2005) Cellular fluid mechanics and mechanotransduction. Ann Biomed Eng 33: 1719–1723PubMedCrossRefGoogle Scholar
  73. Turner CH, Pavalko FM (1998) Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation. J Orthop Sci 3: 346–355PubMedCrossRefGoogle Scholar
  74. Van’t Hof RJ, Ralston SH (2001) Nitric oxide and bone. Immunology 103: 255–261PubMedCrossRefGoogle Scholar
  75. Weiss S, Baumgart R, Jochum M, Strasburger CJ, Bidlingmaier M (2002) Systemic regulation of distraction osteogenesis: a cascade of biochemical factors. J Bone Miner Res 17: 1280–1289PubMedCrossRefGoogle Scholar
  76. Wendt D, Jakob M, Martin I (2005) Bioreactor-based engineering of osteochondral grafts: from model systems to tissue manufacturing. J Biosci Bioeng 100: 489–494PubMedCrossRefGoogle Scholar
  77. Weyts FA, Li YS, van Leeuwen J, Weinans H, Chien S (2002) ERK activation and alpha v beta 3 integrin signaling through Shc recruitment in response to mechanical stimulation in human osteoblasts. J Cell Biochem 87: 85–92PubMedCrossRefGoogle Scholar
  78. Wood MA, Hughes S, Yang Y, El Haj AJ (2006) Characterizing the efficacy of calcium channel agonist-release strategies for bone tissue engineering applications. J Control Release v112: 96–102CrossRefGoogle Scholar
  79. Wood MA, Yang Y, Thomas PB, Haj AJ (2006) Using dihydropyridine-release strategies to enhance load effects in engineered human bone constructs. Tissue Eng 12: 2489–2497PubMedCrossRefGoogle Scholar
  80. Zaman G, Pitsillides AA, Rawlinson SC, Suswillo RF, Mosley JR, Cheng MZ, Platts LA, Hukkanen M, Polak JM, Lanyon LE (1999) Mechanical strain stimulates nitric oxide production by rapid activation of endothelial nitric oxide synthase in osteocytes. J Bone Miner Res 14: 1123–1131PubMedCrossRefGoogle Scholar
  81. Zhang C, Zhang X, Wu H, Han D, Guan J (2006) Direct compression as an appropriately mechanical environment in bone tissue reconstruction in vitro. Med Hypotheses 67: 1414–1418CrossRefGoogle Scholar
  82. Zhou HY, Ohnuma Y, Takita H, Fujisawa R, Mizuno M, Kuboki Y (1992) Effects of a bone lysine-rich 18 kDa protein on osteoblast-like MC3T3-E1 cells. Biochem Biophys Res Commun 186: 1288–1293PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Astrid Liedert
  • Lutz Claes
  • Anita Ignatius

There are no affiliations available

Personalised recommendations