Ultrastructure of hepatopancreas and its possible role as a hematopoietic organ in non-marine cypridoidean ostracods (Crustacea)

  • Radka Symonová
Part of the Developments in Hydrobiology book series (DIHY, volume 197)


The arrangement of hepatopancreas and associated cells was examined in freshwater cypridoidean ostracods in the context of comparative microanatomy and cytology using light (LM) and transmission electron microscopy (TEM).

A compact, short, subpyriform hepatopancreas located at the sides of the front part of the fore gut has been observed in the following species of the family Candonidae: Candona candida, C. neglecta, Cyclocypris ovum, Cypria ophtalmica, Fabaeformiscandona fabaeformis, Pseudocandona compressa. Within the families Cyprididae (in species Cypridopsis vidua, Herpetocypris reptans, Heterocypris incongruens, Potamocypris unicaudata and Psychrodromus olivaceus), Ilyocyprididae (Ilyocypris gibba) and Notodromadidae (Notodromas monacha, N. persica) a completely different arrangement of the hepatopancreas was observed. In these families the hepatopancreas is tubular and remarkably elongated. Hepatopancreatic cells (sometimes very large) are scattered within a more or less developed layer of other cell types. This organ is also connected to the fore gut. However, it stretches, in comparison with the candonids, much further in the rear part of the body cavity and in the interlamellar space. In transversal and longitudinal sections this organ forms typical lacunae. The lacunae are often longitudinally further subdivided forming a lacunary system. It means that there are often distinct constrictions in some parts of the tubular hepatopancreas. The hepatopancreas verges into multilayer cellular formations (MCFs) in caudal and more peripheral areas. The MCFs can occupy large spaces in the periphery of the body cavity, within the bases of appendages or in the interlamellar space. The morphology of the hepatopancreatic cells in the part close to the fore gut distinctly differs in appearance from the cells in the more caudal areas. The cells in the MCFs strongly resemble “Subdermalzellen” in earlier literature. The development of MCFs often reflects the amount of food in the both parts of the middle gut. The extent and spatial arrangement of the MCF is subject to a high variability. In TEM the hepatopancreatic cells resemble oenocytoid cells described for example in insects. The ultrastructure of some parts of the hepatopancreas viewed in TEM represents typical cecal cells forming a basal labyrinth and microvilli. These specialized cells most probably originate from the hepatopancreatic cells, which are also able to give rise to plasmatocytes.


Hepatopancreas Gastric ceca Hemocytic cells Hematopoietic organ 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bergold, A., 1910. Beiträge zu Kenntnis des innern Baues der Süsswasserostracoden. Zoologische Jahrbücher Abteilung für Anatomie und Ontogenie der Tiere 30: 1–42.Google Scholar
  2. Butt, T. M. & K. S. Shields, 1996. The Structure and behavior of Gypsy moth (Lymantria dispar) hemocytes. Journal of Invertebrate Pathology 68: 1–14.PubMedCrossRefGoogle Scholar
  3. Claus, C., 1895. Beiträge zur Kenntnis der Süsswasser-Ostracoden II. Arbeiten aus dem Zoologischen Institute der Universität Wien und der Zoologischen Station in Triest 11: 17–48.Google Scholar
  4. Foster, J. A. & A. F. Wolfe, 1986. Electron microscopic study of the ceca, intestine and associated peritrophic membrane of the brine shrimp, Artemia. Proceedings of the Pennsylvania Academy of Sciences 60: 29–32.Google Scholar
  5. Hartmann, G., 1968. Ostracoda (2. Lieferung). In Gruner, H.-E. (ed), Dr. H. G. Bronns Klassen und Ordnungen des Tierreichs. Band 5 (Arthropoda), Abteilung I (Crustacea), Buch 2, Teil IV (Ostracoda) Akademische Verlagsgesellschaft, Leipzig, 217–408.Google Scholar
  6. Kesling, R. V., 1965. Anatomy and dimorphism of adult Candona suburbana Hoff. In Kesling, R. V., D. G. Darby, D. D. Hall (eds), Four Reports of Ostracod Investigations (NSF-Project GB-26), 1, University of Michigan Publications, Ann Arbor, Michigan.Google Scholar
  7. Lochhead, J. H. & M. S. Lochhead, 1941. Studies on the blood and related tissues in Artemia (Crustacea, Anostraca). Journal of Morphology 68: 593–632.CrossRefGoogle Scholar
  8. Maddocks, R. F., 1992. Ostracoda. In Harrison, F. E. & A. G. Humes (eds), Microscopic Anatomy of Invertebrates, Vol. 9. Wiley-Liss: 415–441.Google Scholar
  9. Martin, J. W., 1992. Branchiopoda. In Harrison, F. E. & A. G. Humes (eds), Microscopic Anatomy of Invertebrates, Vol. 9. Wiley-Liss: 25–224.Google Scholar
  10. Martin, J. W. & J. E. Hose, 1992. Vascular Elements and Blood (Hemolymph). In Harrison, F. E. & A.G. Humes (eds), Microscopic Anatomy of Invertebrates, Vol.10. Wiley-Liss: 117–146.Google Scholar
  11. Matzke-Karasz, R. & K. Martens, 2005. The female reproductive organ in podocopid ostracods is homologous to 5 appendages: histological evidence from Liocypris grandis (Crustacea, Ostracoda). Hydrobiologia 542: 249–259.CrossRefGoogle Scholar
  12. McGregor, D. L., 1967. Rhythmic pulsation of the hepatopancreas in freshwater ostracods. Transaction of American Microscopic Society 86: 166–169.CrossRefGoogle Scholar
  13. Meisch, C., 2000. Freshwater Ostracoda of western and central Europe. In Schwoerbel, J., & P. Zwick (eds), Süßwasserfauna von Mitteleuropa 8/3. Spektrum Akademischer Verlag, Heidelberg.Google Scholar
  14. Müller, G. W., 1894. Die Ostracoden des Golfes von Neapel und der angrenzenden Meeres-Abschnitte. Fauna und Flora des Golfes von Neapel, 21 Friedländer und Sohn, Berlin.Google Scholar
  15. Romeis, B., 1989: Mikroskopische Technik. Neubearbeitet und herausgegeben von Böck, P., 17. Auflage, Urban und Schwarzenberg, München, Wien, Baltimore.Google Scholar
  16. Schrehardt, 1978. Ultrastructural investigations of the filter-feeding apparatus and the alimentary canal of Artemia. In Sorgeloos, P., D. A. Bengtson, W. Declair & E. Jaspers (eds), Artemia Research and Applications, Vol. 1. Morphology, Genetics, Strain Characterization, Toxicology. Universa Press, Wetteren, Belgium.Google Scholar
  17. Smrž, J., 1989. Internal anatomy of Hypochthonius rufulus (Acari: Oribatida). Journal of Morphology 200: 215–230.CrossRefGoogle Scholar
  18. Ude, J. & M. Koch, 1994. Die Zelle, Atlas der Ultrastruktur. Fischer, Jena, Stuttgart.Google Scholar
  19. Weygoldt, P., 1960. Embryologische Untersuchungen an Ostrakoden: Die Entwicklung von Cyprideis litoralis (G.S. Brady) (Ostracoda, Podocopa, Cytheridae). Zoologische Jahrbücher Abteilung für Anatomie und Ontogenie der Tiere 78: 369–426.Google Scholar
  20. Willingham, M. C. & I. Pastan, 1984. Endocytosis and exocytosis: current concepts of vesicle traffic in animal cells. International Review of Cytology 92: 51–92.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Radka Symonová
    • 1
  1. 1.Department Biologie II - Anthropologie und HumangenetikLudwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany

Personalised recommendations