Advertisement

Food selection in Eucypris virens (Crustacea: Ostracoda) under experimental conditions

  • O. Schmit
  • G. Rossetti
  • J. Vandekerkhove
  • F. Mezquita
Part of the Developments in Hydrobiology book series (DIHY, volume 197)

Abstract

Ostracods have long been studied by scientists because their fossil remnants provide a valuable tool for the reconstruction of past environmental changes, including climate change and anthropogenic eutrophication. Relatively little is known about the physiology, behaviour and reproductive ecology of recent forms. We argue that filling this gap in knowledge requires stable cultures that can be used in laboratory studies. Here we provide quantitative information on the food preference of the common non-marine ostracod Eucypris virens. Using an experimental device allowing a free choice of eight food items, including both autoand heterotrophic organisms, observations were carried out on groups of animals from different populations. Our results indicate that E. virens highly prefers spinach and the cyanobacterium Tolypothrix tenuis to other food items. The latter also plays an important role in maintaining the quality of the culture medium and provides a convenient substrate for moulting and egg-laying. As such, we recommend Cyanobacteria like T. tenuis as a food source for long-standing cultures of E. virens, and other non-marine ostracod species.

Keywords

Eucypris virens Freshwater ostracods Culturing Food selection Laboratory experiments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baltanás, A., M. Otero, L. Arqueros, G. Rossetti & V. Rossi, 2000. Ontogenetic changes in the carapace shape of the non-marine ostracod Eucypris virens (Jurine). Hydrobiologia 419: 65–72.CrossRefGoogle Scholar
  2. Chial, B. & G. Persoone, 2002. Cyst-based toxicity tests XII-Development of a short chronic sediment toxicity test with the ostracod crustacean Heterocypris incongruens: Selection of test parameters. Environmental Toxicology 17: 520–527.PubMedCrossRefGoogle Scholar
  3. Cywinska, A. & P. D. N. Hebert, 2002. Origins of clonal diversity in the hypervariable asexual ostracode Cypridopsis vidua. Journal of Evolutionary Biology 15: 134–145.CrossRefGoogle Scholar
  4. Danielopol, D. L., E. Ito, G. Wansard, T. Kamiya, T. M. Cronin & A. Baltanás, 2002. Techniques for collection and study of Ostracoda. Geophysical Monographs 131: 65–97.Google Scholar
  5. Gandolfi, A., E. B. A. Todeschi, V. Rossi & P. Menozzi, 2001. Life history traits in Darwinula stevensoni (Crustacea: Ostracoda) from Southern European populations under controlled conditions and their relationship with genetic features. Journal of Limnology 60: 1–10.Google Scholar
  6. Graber, M. A. & W. H. Gerwick, 1998. Kalkipyrone, a toxic γ-pyrone from an assemblage of the marine cyanobacteria Lyngbya majuscula and Tolypothrix sp. Journal of Natural Products 61: 677–680.PubMedCrossRefGoogle Scholar
  7. Griffiths, H. I., J. A. Holmes, 2000. Non-marine ostracods and quaternary palaeoenvironments. Quaternary Research Association, Technical Guide No. 8, London, UK.Google Scholar
  8. Horne, D. J., A. Baltanás & G. Paris, 1998. Geographical distribution of reproductive modes in living nonmarine ostracods. In Martens, K. (ed.), Sex and parthenogenesis: evolutionary ecology of reproductive modes in non-marine ostracods. Backhuys, Leiden, the Netherlands, 77–99.Google Scholar
  9. Kiss, A., 2004. Field and laboratory observations on the microhabitat and food selection as well as predator avoidance of Notodromas monacha (Crustacea: Ostracoda). Revista Espanñola de Micropaleontología 36: 147–156.Google Scholar
  10. Lawrence, J. R., B. Scharf, G. Packroff & T. R. Neu, 2002. Microscale evaluation of the effects of grazing by invertebrates with contrasting feeding modes on river biofilm architecture and composition. Microbial Ecology 44: 199–207.PubMedCrossRefGoogle Scholar
  11. Liperovskaya, E. S., 1948. On the feeding of freshwater ostracods. Zoologicheskie Zhurnal 27: 125–136 [InRussian].Google Scholar
  12. Lirås, V., M. Lindberg, P. Nystrom, H. Annadotter, L. A. Lawton & B. Graf, 1998. Can ingested cyanobacteria be harmful to the signal crayfish (Pacifastacus leniusculus)? Freshwater Biology 39: 233–242.CrossRefGoogle Scholar
  13. Margalef, R., 1953. Los crustáceos de las aguas continentales ibéricas. Instituto Forestal de Investigaciones y Experiencias, Madrid.Google Scholar
  14. Margalef, R., 1983. Limnología. Omega, Barcelona, Spain.Google Scholar
  15. Meisch, C., 2000. Freshwater Ostracoda of Western and Central Europe. Spektrum Akademischer Verlag, Gustav Fischer, Heidelberg, Germany.Google Scholar
  16. Mezquita, F., J. R. Roca & G. Wansard, 1999. Moulting, survival and calcification: the effects of temperature and water chemistry on an ostracod crustacean (Herpetocypris intermedia) under experimental conditions. Archiv für Hydrobiologie 146: 219–238.Google Scholar
  17. Otero, M., V. Rossi, A. Baltanás & P. Menozzi, 1998. Effect of genotype and photoperiod on diapause strategies in Eucypris virens (Jurine, 1820) (Crustacea: Ostracoda). Archiv für Hydrobiologie 52: 229–236.Google Scholar
  18. Roca, J. R., A. Baltanás & F. Uiblein, 1993. Adaptive responses in Cypridopsis vidua (Crustacea, Ostracoda) to food and shelter offered by a macrophyte (Chara fragilis). Hydrobiologia 262: 127–131.CrossRefGoogle Scholar
  19. Schön, I., A. Gandolfi, E. Di Masso, V. Rossi, H. I. Griffiths, K. Martens & R. K. Butlin, 2000. Persistence of asexuality through mixed reproduction in Eucypris virens (Crustacea, Ostracoda). Heredity 84: 161–169.PubMedCrossRefGoogle Scholar
  20. Sokal, R. R. & F. J. Rohlf, 2003. Biometry: the principles and practice of statistics in biological research, 3rd edn. Freeman and Co., New York, NY, USA.Google Scholar
  21. StatSoft Inc., 2003. Electronic statistics textbook. Tulsa, OK: Statsoft. WEB: http://www.statsoft.com/textbook/stathome.html.Google Scholar
  22. Uiblein, F., J. R. Roca & D. L. Danielopol, 1994. Experimental observations on the behaviour of the ostracode Cypridopsis vidua. Verhandlungen der Internationalen Vereinigung für Limnologie 25: 2418–2420.Google Scholar
  23. Uiblein, F., J. R. Roca, A. Baltanás & D. L. Danielopol, 1996. Tradeoff between foraging and antipredator behaviour in a macrophyte dwelling ostracod. Archiv für Hydrobiologie 137: 119–133.Google Scholar
  24. Van Doninck, K., I. Schön, F. Maes, L. De Bruyn & K. Martens, 2003. Ecological strategies in the ancient asexual animal group Darwinulidae (Crustacea, Ostracoda). Freshwater Biology 48: 1285–1294.CrossRefGoogle Scholar
  25. Xia, J., E. Ito & D. R. Engstrom, 1997. Geochemistry of ostracode calcite: Part 1. An experimental determination of oxygen isotope fractionation. Geochimica et Cosmochimica Acta 61: 377–382.CrossRefGoogle Scholar
  26. Yin, Y., W. Geiger & K. Martens, 1999. Effects of genotype and environment on phenotypic variability in Limnocythere inopinata (Crustacea: Ostracoda). Hydrobiologia 400: 85–114.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • O. Schmit
    • 1
    • 2
  • G. Rossetti
    • 2
  • J. Vandekerkhove
    • 1
    • 2
  • F. Mezquita
    • 1
    • 2
  1. 1.Department of Microbiology and EcologyUniversity of ValènciaBurjassot ValenciaSpain
  2. 2.Department of Environmental SciencesUniversity of ParmaParmaItaly

Personalised recommendations