Skip to main content

Involvement of Heat Shock Proteins in Protection of Tumor Cells from Genotoxic Stresses

  • Chapter
Heat Shock Proteins in Cancer

Part of the book series: Heat Shock Proteins ((HESP,volume 2))

Abstract

Anti-apoptotic functions of heat shock proteins Hsp70 and Hsp27 are well established. However, radiation and genotoxic antineoplastic drugs at clinically relevant doses induce apoptosis mostly in lymphoid cells, while in epithelial tumors they evoke different type of response, mainly senescence and mitotic catastrophe, which leads to loss of clonogenic potential of cells. Here we review old and new data showing that upregulation of Hsp27 or Hsp70 levels protect various tumor cell lines from gamma- and UV-radiation and genotoxic anti-neoplastic drugs. Accordingly, downregulation of Hsp27 or Hsp70 levels by antisense or siRNA sensitizes tumor cells to these agents. Importantly, protection and sensitization by modulation of Hsp27 or Hsp70 levels were manifested not only by modulation of apoptosis, but by clonogenic survival as well, and recent data indicate that these Hsps can suppress also drug-induced senescence. Several studies demonstrated that intrinsic and acquired chemo- and radioresistance in tumor cell lines and in patients with certain forms of cancers can be associated with upregulation of Hsp27 and/or Hsp70. Possible mechanisms of Hsp-induced protection, in particular, modulation of p53-dependent and p53-independent DNA-damaging signaling pathways, are discussed

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Annalisa Castagna, P. A., Hubert Astner, Mahmoud Hamdan, Sabina Carla Righetti, Paola Perego, Franco Zunino, Pier Giorgio Righetti, (2004) A proteomic approach to cisplatin resistance in the cervix squamous cell carcinoma cell line A431. PROTEOMICS 4, 3246–3267.

    Article  PubMed  CAS  Google Scholar 

  • Bases, R. (2005) Clonogenicity of human leukemic cells protected from cell-lethal agents by heat shock protein 70. Cell Stress Chaperones 10, 37–45.

    Article  PubMed  CAS  Google Scholar 

  • Bases, R. (2006) Heat shock protein 70 enhanced deoxyribonucleic acid base excision repair in human leukemic cells after ionizing radiation. Cell Stress Chaperones 11, 240–9.

    Article  PubMed  CAS  Google Scholar 

  • Bisht, K. S., Bradbury, C. M., Mattson, D., Kaushal, A., Sowers, A., Markovina, S., Ortiz, K. L., Sieck, L. K., Isaacs, J. S., Brechbiel, M. W., Mitchell, J. B., Neckers, L. M. and Gius, D. (2003) Geldanamycin and 17-allylamino-17-demethoxygeldanamycin potentiate the in vitro and in vivo radiation response of cervical tumor cells via the heat shock protein 90-mediated intracellular signaling and cytotoxicity. Cancer Res 63, 8984–95.

    PubMed  CAS  Google Scholar 

  • Brondani Da Rocha, A., Regner, A., Grivicich, I. and al., e. (2004) Radioresistance is associated to increased Hsp70 content in human glioblastoma cell lines. Int J Oncol 25, 777–785.

    Google Scholar 

  • Buzzard, K. A., Giaccia, A. J., Killender, M. and Anderson, R. L. (1998) Heat shock protein 72 modulates pathways of stress-induced apoptosis. J Biological Chemistry 273, 17147–17153.

    Article  CAS  Google Scholar 

  • Cho, H. N., Lee, S. J., Park, S. H., Lee, Y. J., Cho, C. K. and Lee, Y. S. (2001) Overexpression of heat-shock protein 25 augments radiation-induced cell-cycle arrest in murine L929 cells. Int J Radiat Biol 77, 225–33.

    Article  PubMed  CAS  Google Scholar 

  • Cho, H. N., Lee, Y. J., Cho, C. K., Lee, S. J. and Lee, Y. S. (2002) Downregulation of ERK2 is essential for the inhibition of radiation-induced cell death in HSP25 overexpressed L929 cells. Cell Death Differ 9, 448–56.

    Article  PubMed  CAS  Google Scholar 

  • Ciocca, D. R. and Calderwood, S. K. (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10, 86–103.

    Article  PubMed  CAS  Google Scholar 

  • Ciocca, D. R., Clark, G. M., Tandon, A. K., Fuqua, S. A., Welch, W. J. and McGuire, W. L. (1993) Heat shock protein hsp70 in patients with axillary lymph node-negative breast cancer: prognostic implications. Journal of the National Cancer Institute 85, 570–4.

    Article  PubMed  CAS  Google Scholar 

  • Ciocca, D. R., Fuqua, S. A., Lock-Lim, S., Toft, D. O., Welch, W. J. and McGuire, W. L. (1992) Response of human breast cancer cells to heat shock and chemotherapeutic drugs. Cancer Res 52, 3648–54.

    PubMed  CAS  Google Scholar 

  • Creagh, E. M. and Cotter, T. G. (1999) Selective protection by hsp 70 against cytotoxic drug-, but not Fas-induced T-cell apoptosis. Immunology 97, 36–44.

    Article  PubMed  CAS  Google Scholar 

  • Daoud, S. S., Munson, P. J., Reinhold, W., Young, L., Prabhu, V. V., Yu, Q., LaRose, J., Kohn, K. W., Weinstein, J. N. and Pommier, Y. (2003) Impact of p53 Knockout and Topotecan Treatment on Gene Expression Profiles in Human Colon Carcinoma Cells: A Pharmacogenomic Study. Cancer Res 63, 2782–2793.

    PubMed  CAS  Google Scholar 

  • Davidovich, I. A. and Roninson, I. B. (2000) Pleiotropic Resistance to DNA-interactive Drugs Is Associated with Increased Expression of Genes Involved in DNA Replication, Repair, and Stress Response. Cancer Res 60, 5027–5030.

    PubMed  Google Scholar 

  • Demidenko, Z. N., Vivo, C., Halicka, H. D., Li, C. J., Bhalla, K., Broude, E. V. and Blagosklonny, M. V. (2005) Pharmacological induction of Hsp70 protects apoptosis-prone cells from doxorubicin: comparison with caspase-inhibitor- and cycle-arrest-mediated cytoprotection. 13, 1434–1441.

    Google Scholar 

  • Ekedahl, J., Joseph, B., Marchetti, P., Fauvel, H., Formstecher, P., Lewensohn, R. and Zhivotovsky, B. (2003) Heat Shock Protein 72 Does Not Modulate Ionizing Radiation-Induced Apoptosis in U1810 Non-Small Cell Lung Carcinoma Cells. Cancer Biol Ther 2, 663–669.

    PubMed  CAS  Google Scholar 

  • Fortin, A., Raybaud-Diogene, H., Tetu, B., Deschenes, R., Huot, J. and Landry, J. (2000) Overexpression of the 27 KDa heat shock protein is associated with thermoresistance and chemoresistance but not with radioresistance. Int J Radiat Oncol Biol Phys 46, 1259–66.

    Article  PubMed  CAS  Google Scholar 

  • Gabai, V. L., Budagova, K. R. and Sherman, M. Y. (2005) Increased expression of the major heat shock protein Hsp72 in human prostate carcinoma cells is dispensable for their viability but confers resistance to a variety of anticancer agents. Oncogene 24, 3328–3338.

    Article  PubMed  CAS  Google Scholar 

  • Gabai, V. L., Meriin, A.B., Mosser, D.D., Caron, A.W., Rits, S. Shifrin, V.I., Sherman, M.Y. (1997) HSP70 prevent activation of stress kinases: a novel pathway of cellular thermotolerance. Journal of Biological Chemistry 272, 18033–18037.

    Article  PubMed  CAS  Google Scholar 

  • Gabai, V. L., Yaglom, J. A., Volloch, V., Meriin, A. B., Force, T., Koutroumanis, M., Massie, B., Mosser, D. D. and Sherman, M. Y. (2000) Hsp72-mediated suppression of c-Jun N-terminal kinase is implicated in development of tolerance to caspase-independent cell death. Mol Cell Biol 20, 6826–6836.

    Article  PubMed  CAS  Google Scholar 

  • Garrido, C., Ottavi, P., Fromentin, A., Hammann, A., Arrigo, A. P., Chauffert, B. and Mehlen, P. (1997) HSP27 as a mediator of confluence-dependent resistance to cell death induced by anticancer drugs. Cancer Res 57, 2661–7.

    PubMed  CAS  Google Scholar 

  • Guo, F., Sigua, C., Bali, P., George, P., Fiskus, W., Scuto, A., Annavarapu, S., Mouttaki, A., Sondarva, G., Wei, S., Wu, J., Djeu, J. and Bhalla, K. (2005) Mechanistic role of heat shock protein 70 in Bcr-Abl-mediated resistance to apoptosis in human acute leukemia cells 10.1182/blood-2004–05-2041. Blood 105, 1246–1255.

    Article  PubMed  CAS  Google Scholar 

  • Hansen, R. K., Parra, I., Lemieux, P., Oesterreich, S., Hilsenbeck, S. G. and Fuqua, S. A. (1999) Hsp27 overexpression inhibits doxorubicin-induced apoptosis in human breast cancer cells. Breast Cancer Res Treat 56, 187–96.

    Article  PubMed  CAS  Google Scholar 

  • Harston-Eaton, M., Malcolm, A. W. and Hahn, G. M. (1984) Radiosensitivity and thermosensitization of thermotolerant Chinese hamster cells and RIF-1 tumors. Radiat Res 99, 175–184.

    Article  Google Scholar 

  • Henriette J.G. Arts, H. H., Willy Lemstra, Pax H.B. Willemse, Elisabeth G.E. De Vries, Harm H. Kampinga, Ate G.J. Van der Zee, (1999) Heat-shock-protein-27(HSP27) expression in ovarian carcinoma: Relation in response to chemotherapy and prognosis. International Journal of Cancer 84, 234–238.

    Article  Google Scholar 

  • Hoang, A. T., Huang, J., Rudra-Ganguly, N., Zheng, J., Powell, W. C., Rabindran, S. K., Wu, C. and Roy-Burman, P. (2000) A Novel Association between the Human Heat Shock Transcription Factor 1 (HSF1) and Prostate Adenocarcinoma. Am J Pathol 156, 857–864.

    PubMed  CAS  Google Scholar 

  • Hunt, C. R., Dix, D. J., Sharma, G. G., Pandita, R. K., Gupta, A., Funk, M. and Pandita, T. K. (2004) Genomic instability and enhanced radiosensitivity in Hsp70.1- and Hsp70.3-deficient mice. Mol Cell Biol 24, 899–911.

    Article  PubMed  CAS  Google Scholar 

  • Huot, J., Roy, G., Lambert, H., Chretien, P. and Landry, J. (1991) Increased survival after treatments with anticancer agents of Chinese hamster cells expressing the human Mr 27,000 heat shock protein. Cancer Res 51, 5245–52.

    PubMed  CAS  Google Scholar 

  • Jaattela, M., Wissing, D., Kokholm, K., Kallunki, T. and Egeblad, M. (1998) Hsp70 exerts its anti-apoptotic function downstream of caspase-3-like proteases. EMBO J 17, 6124–6134.

    Article  PubMed  CAS  Google Scholar 

  • Johnsson, A., Zeelenberg, I., Min, Y., Hilinski, J., Berry, C., Howell, S. B. and Los, G. (2000) Identification of genes differentially expressed in association with acquired cisplatin resistanc. Br J Cancer 83, 1047–1054.

    Article  PubMed  CAS  Google Scholar 

  • Kabakov, A. E., Malyutina, Y. V. and Latchman, D. S. (2006) Hsf1-mediated stress response can transiently enhance cellular radioresistance. Radiat Res 165, 410–23.

    Article  PubMed  CAS  Google Scholar 

  • Karlseder, J., Wissing, D., Holzer, G., Orel, L., Sliutz, G., Auer, H., Jaattela, M. and Simon, M. M. (1996) HSP70 overexpression mediates the escape of a doxorubicin-induced G2 cell cycle arrest. Biochemical & Biophysical Research Communications 220, 153–9.

    Article  CAS  Google Scholar 

  • Kassem, H., Sangar, V., Cowan, R., Clarke, N. and Margison, G. P. (2002) A potential role of heat shock proteins and nicotinamide N-methyl transferase in predicting response to radiation in bladder cancer. Int J Cancer 101, 454–60.

    Article  PubMed  CAS  Google Scholar 

  • Kenny, M. K., Mendez, F., Sandigursky, M., Kureekattil, R. P., Goldman, J. D., Franklin, W. A. and Bases, R. (2001) Heat Shock Protein 70 Binds to Human Apurinic/Apyrimidinic Endonuclease and Stimulates Endonuclease Activity at Abasic Sites 10.1074/jbc.M009297200. J. Biol. Chem. 276, 9532–9536.

    Article  PubMed  CAS  Google Scholar 

  • Kim, B.-J., Ryu, S.-W. and Song, B.-J. (2006) JNK- and p38 Kinase-mediated Phosphorylation of Bax Leads to Its Activation and Mitochondrial Translocation and to Apoptosis of Human Hepatoma HepG2 Cells 10.1074/jbc.M510644200. J. Biol. Chem. 281, 21256–21265.

    Article  PubMed  CAS  Google Scholar 

  • Langdon, S. P., Rabiasz, G. J., Hirst, G. L., King, R. J., Hawkins, R. A., Smyth, J. F. and Miller, W. R. (1995) Expression of the heat shock protein HSP27 in human ovarian cancer. Clin Cancer Res 1, 1603–9.

    PubMed  CAS  Google Scholar 

  • Lee, S. J., Choi, S. A., Lee, K. H., Chung, H. Y., Kim, T. H., Cho, C. K. and Lee, Y. S. (2001) Role of inducible heat shock protein 70 in radiation-induced cell death. Cell Stress Chaperones. 6, 273–281.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. J., Cho, H. N., Jeoung, D. I., Soh, J. W., Cho, C. K., Bae, S., Chung, H. Y., Lee, S. J. and Lee, Y. S. (2004) HSP25 overexpression attenuates oxidative stress-induced apoptosis: roles of ERK1/2 signaling and manganese superoxide dismutase. Free Radic Biol Med 36, 429–44.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. J., Lee, D. H., Cho, C. K., Chung, H. Y., Bae, S., Jhon, G. J., Soh, J. W., Jeoung, D. I., Lee, S. J. and Lee, Y. S. (2005) HSP25 inhibits radiation-induced apoptosis through reduction of PKCdelta-mediated ROS production. Oncogene 24, 3715–25.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y. J., Park, G. H., Cho, H. N., Cho, C. K., Park, Y. M., Lee, S. J. and Lee, Y. S. (2002) Induction of adaptive response by low-dose radiation in RIF cells transfected with Hspb1 (Hsp25) or inducible Hspa (Hsp70). Radiat Res 157, 371–7.

    Article  PubMed  CAS  Google Scholar 

  • Liu, F. F., Miller, N., Levin, W. and al, e. (1996) The potential role of HSP70 as an indicator of response to radiation and hyperthermia treatments for reccurent breast cancer. International Journal of Hyperthermia 12, 197–208.

    PubMed  CAS  Google Scholar 

  • Liu, Y., Liu, H., Han, B. and Zhang, J.-T. (2006) Identification of 14–3-3sigma as a Contributor to Drug Resistance in Human Breast Cancer Cells Using Functional Proteomic Analysis 10.1158/0008-5472.CAN-05-3801. Cancer Res 66, 3248–3255.

    Article  PubMed  CAS  Google Scholar 

  • Machida, H., Matsumoto, Y., Shirai, M. and Kubota, N. (2003) Geldanamycin, an inhibitor of Hsp90, sensitizes human tumour cells to radiation. Int J Radiat Biol 79, 973–80.

    Article  PubMed  CAS  Google Scholar 

  • Mendez, F., Sandigursky, M., Kureekattil, R. P., Kenny, M. K., Franklin, W. A. and Bases, R. (2003) Specific stimulation of human apurinic/apyrimidinic endonuclease by heat shock protein 70. DNA Repair 2, 259–271.

    Article  PubMed  CAS  Google Scholar 

  • Miyazaki, T., Kato, H., Faried, A., Sohda, M., Nakajima, M., Fukai, Y., Masuda, N., Manda, R., Fukuchi, M., Ojima, H., Tsukada, K. and Kuwano, H. (2005) Predictors of response to chemo-radiotherapy and radiotherapy for esophageal squamous cell carcinoma. Anticancer Res 25, 2749–2755.

    PubMed  Google Scholar 

  • Musch, M. W., Kaplan, B. and Chang, E. B. (2001) Role of increased basal expression of heat shock protein 72 in colonic epithelial c2BBE adenocarcinoma cells. Cell Growth Differ 12, 419–26.

    PubMed  CAS  Google Scholar 

  • Nadin, S. B., Vargas-Roig, L. M., Cuello-Carrion, F. D. and Ciocca, D. R. (2003) Deoxyribonucleic acid damage induced by doxorubicin in peripheral blood mononuclear cells: possible roles for the stress response and the deoxyribonucleic acid repair process. Cell Stress Chaperones 8, 361–72.

    Article  PubMed  CAS  Google Scholar 

  • Niu, P., Liu, L., Gong, Z., Tan, H., Wang, F., Yuan, J., Feng, Y., Wei, Q., Tanguay, R. M. and Wu, T. (2006) Overexpressed heat shock protein 70 protects cells against DNA damage caused by ultraviolet C in a dose-dependent manner. Cell Stress Chaperones 11, 162–169.

    Article  PubMed  CAS  Google Scholar 

  • Norbury, C. J. and Zhivotovsky, B. (2004) DNA damage-induced apoptosis. Oncogene 23, 2797–2808.

    Article  PubMed  CAS  Google Scholar 

  • Nylandsted, J., Gyrd-Hansen, M., Danielewicz, A., Fehrenbacher, N., Lademann, U., Hoyer-Hansen, M., Weber, E., Multhoff, G., Rohde, M. and Jaattela, M. (2004) Heat Shock Protein 70 Promotes Cell Survival by Inhibiting Lysosomal Membrane Permeabilization. J. Exp. Med. 200, 425–435.

    Article  PubMed  CAS  Google Scholar 

  • Oesterreich, S., Weng, C. N., Qiu, M., Hilsenbeck, S. G., Osborne, C. K. and Fuqua, S. A. (1993) The small heat shock protein hsp27 is correlated with growth and drug resistance in human breast cancer cell lines. Cancer Res 53, 4443–8.

    PubMed  CAS  Google Scholar 

  • Parcellier, A., Schmitt, E., Gurbuxani, S., Seigneurin-Berny, D., Pance, A., Chantome, A., Plenchette, S., Khochbin, S., Solary, E. and Garrido, C. (2003) HSP27 is a ubiquitin-binding protein involved in I-kappaBalpha proteasomal degradation. Mol Cell Biol 23, 5790–802.

    Article  PubMed  CAS  Google Scholar 

  • Park, S. H., Cho, H. N., Lee, S. J., Kim, T. H., Lee, Y., Park, Y. M., Lee, Y. J., Cho, C. K., Yoo, S. Y. and Lee, Y. S. (2000a) Hsp25-induced radioresistance is associated with reduction of death by apoptosis: involvement of Bcl2 and the cell cycle. Radiat Res 154, 421–8.

    Article  CAS  Google Scholar 

  • Park, S.-H., Lee, S.-J., Chung, H.-Y., Kim, T.-H., Cho, C.-K., Yoo, S.-Y. and Lee, Y.-S. (2000b) Inducible Heat-Shock Protein 70 Is Involved in the Radioadaptive Response. Radiation Research, 318–326.

    Google Scholar 

  • Pranav Sinha, J. P., Sandro Kohl, Martina Schnölzer, Heike Helmbach, Gero HĂĽtter, Hermann Lage, Dirk Schadendorf, (2003) Study of the development of chemoresistance in melanoma cell lines using proteome analysis. ELECTROPHORESIS 24, 2386–2404.

    Article  PubMed  CAS  Google Scholar 

  • Robles, A. I., Wright, M. H., Gandhi, B., Feis, S. S., Hanigan, C. L., Wiestner, A. and Varticovski, L. (2006) Schedule-Dependent Synergy between the Heat Shock Protein 90 Inhibitor 17-(Dimethylaminoethylamino)-17-Demethoxygeldanamycin and Doxorubicin Restores Apoptosis to p53-Mutant Lymphoma Cell Lines 10.1158/1078–0432.CCR-06–1178. Clin Cancer Res 12, 6547–6556.

    Article  PubMed  CAS  Google Scholar 

  • Roninson, I. B. (2003) Tumor Cell Senescence in Cancer Treatment. Cancer Res 63, 2705–2715.

    PubMed  CAS  Google Scholar 

  • Roninson, I. B., Broude, E. V. and Chang, B.-D. (2001) If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resistance Updates 4, 303–313.

    Article  PubMed  CAS  Google Scholar 

  • Roos, W. P. and Kaina, B. (2006) DNA damage-induced cell death by apoptosis. Trends in Molecular Medicine 12, 440–450.

    Article  PubMed  CAS  Google Scholar 

  • Ruchalski, K., Mao, H., Li, Z., Wang, Z., Gillers, S., Wang, Y., Mosser, D. D., Gabai, V., Schwartz, J. H. and Borkan, S. C. (2006) Distinct hsp70 Domains Mediate Apoptosis-inducing Factor Release and Nuclear Accumulation 10.1074/jbc.M513728200. J. Biol. Chem. 281, 7873–7880.

    Article  PubMed  CAS  Google Scholar 

  • Russell, J. S., Burgan, W., Oswald, K. A., Camphausen, K. and Tofilon, P. J. (2003) Enhanced Cell Killing Induced by the Combination of Radiation and the Heat Shock Protein 90 Inhibitor 17-Allylamino-17- Demethoxygeldanamycin: A Multitarget Approach to Radiosensitization. Clin Cancer Res 9, 3749–3755.

    PubMed  CAS  Google Scholar 

  • Salvioli, S., Storci, G., Pinti, M. and al., e. (2003) Apoptosis-resistant phenotype in HL-60-derived cells HCW-2 is related to changes in expression of stress-induced proteins that impact on redox status and mitochondrial metabolism. Cell Death Differ 10, 163–174.

    Article  PubMed  CAS  Google Scholar 

  • Samali, A. and Cotter, T. G. (1996) Heat shock proteins increase resistance to apoptosis. Exp Cell Res 223, 163–70.

    Article  PubMed  CAS  Google Scholar 

  • Schepers, H., Geugien, M., van der Toorn, M., Bryantsev, A. L., Kampinga, H. H., Eggen, B. J. and Vellenga, E. (2005) HSP27 protects AML cells against VP-16-induced apoptosis through modulation of p38 and c-Jun. Exp Hematol 33, 660–70.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, C. A. (2007) Cellular senescence and cancer treatment. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer 1775, 5–20.

    Article  CAS  Google Scholar 

  • Schmitt, E., Maingret, L., Puig, P.-E., Rerole, A.-L., Ghiringhelli, F., Hammann, A., Solary, E., Kroemer, G. and Garrido, C. (2006) Heat Shock Protein 70 Neutralization Exerts Potent Antitumor Effects in Animal Models of Colon Cancer and Melanoma 10.1158/0008–5472.CAN-05–3778. Cancer Res 66, 4191–4197.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, E., Parcellier, A., Gurbuxani, S., Cande, C., Hammann, A., Morales, M. C., Hunt, C. R., Dix, D. J., Kroemer, R. T., Giordanetto, F., Jaattela, M., Penninger, J. M., Pance, A., Kroemer, G. and Garrido, C. (2003) Chemosensitization by a Non-apoptogenic Heat Shock Protein 70-Binding Apoptosis-Inducing Factor Mutant. Cancer Res 63, 8233–8240.

    PubMed  CAS  Google Scholar 

  • Simon, M. M., Reikerstorfer, A., Schwarz, A., Krone, C., Luger, T. A., Jaattela, M. and Schwarz, T. (1995) Heat shock protein 70 overexpression affects the response to ultraviolet light in murine fibroblasts. Evidence for increased cell viability and suppression of cytokine release. Journal of Clinical Investigation 95, 926–33.

    Article  PubMed  CAS  Google Scholar 

  • Sliutz, G., Karlseder, J., Tempfer, C., Orel, L., Holzer, G. and Simon, M. M. (1996) Drug resistance against gemcitabine and topotecan mediated by constititive hsp70 overexpression in vitro: implication of quercetin as sensitiser in chemotherapy. Br J Cancer 74, 172–177.

    PubMed  CAS  Google Scholar 

  • Stankiewicz, A. R., Lachapelle, G., Foo, C. P. Z., Radicioni, S. M. and Mosser, D. D. (2005) Hsp70 Inhibits Heat-induced Apoptosis Upstream of Mitochondria by Preventing Bax Translocation. J. Biol. Chem. 280, 38729–38739.

    Article  PubMed  CAS  Google Scholar 

  • Steel, R., Doherty, J. P., Buzzard, K., Clemons, N., Hawkins, C. J. and Anderson, R. L. (2004) Hsp72 Inhibits Apoptosis Upstream of the Mitochondria and Not through Interactions with Apaf-1. J. Biol. Chem. 279, 51490–51499.

    Article  PubMed  CAS  Google Scholar 

  • Tchenio, T., Havard, M., Martinez, L. A. and Dautry, F. (2006) Heat Shock-Independent Induction of Multidrug Resistance by Heat Shock Factor 1. Mol. Cell. Biol. 26, 580–591.

    Article  PubMed  CAS  Google Scholar 

  • Teimourian, S., Jalal, R., Sohrabpour, M. and Goliaei, B. (2006) Down-regulation of Hsp27 radiosensitizes human prostate cancer cells. Int J Urol 13, 1221–5.

    Article  PubMed  CAS  Google Scholar 

  • Vargas-Roig, L. M., Gago, F. E., Tello, O., Aznar, J. C. and Ciocca, D. R. (1998) Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int J Cancer 79, 468–75.

    Article  PubMed  CAS  Google Scholar 

  • Wano, C., Kita, K., Takahashi, S., Sugaya, S., Hino, M., Hosoya, H. and Suzuki, N. (2004) Protective role of HSP27 against UVC-induced cell death in human cells. Exp Cell Res 298, 584–92.

    Article  PubMed  CAS  Google Scholar 

  • Wittig, R., Nessling, M., Will, R. D., Mollenhauer, J., Salowsky, R., Munstermann, E., Schick, M., Helmbach, H., Gschwendt, B., Korn, B., Kioschis, P., Lichter, P., Schadendorf, D. and Poustka, A. (2002) Candidate Genes for Cross-Resistance against DNA-damaging Drugs . Cancer Res 62, 6698–6705.

    PubMed  CAS  Google Scholar 

  • Wu, G., Osada, M., Guo, Z., Fomenkov, A., Begum, S., Zhao, M., Upadhyay, S., Xing, M., Wu, F., Moon, C., Westra, W. H., Koch, W. M., Mantovani, R., Califano, J. A., Ratovitski, E., Sidransky, D. and Trink, B. (2005) ΔNp63α Up-Regulates the Hsp70 Gene in Human Cancer. Cancer Res 65, 758–766.

    PubMed  CAS  Google Scholar 

  • Yaglom, J.A., Gabai, V.L., Sherman, M.Y. (2007) High levels of heat shock protein Hsp72 in cancer cells suppress default senescence pathways. Cancer Res 67, 2378–81

    Article  CAS  Google Scholar 

  • Yi, M. J., Park, S. H., Cho, H. N., Yong Chung, H., Kim, J. I., Cho, C. K., Lee, S. J. and Lee, Y. S. (2002) Heat-shock protein 25 (Hspb1) regulates manganese superoxide dismutase through activation of Nfkb (NF-kappaB). Radiat Res 158, 641–9.

    Article  PubMed  CAS  Google Scholar 

  • Zaarur, N. G., VL. Porco, J, Calderwood, S., Sherman, M. (2006) Targeting Heat Shock Response to Sensitize Cancer Cell to Proteasome and Hsp90 Inhibitors. Cancer Research 66, 1783–1791.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, P., Castedo, M., Tao, Y., Violot, D., Metivier, D., Deutsch, E., Kroemer, G. and Bourhis, J. (2006) Caspase independence of radio-induced cell death. 25, 7758–7770.

    Google Scholar 

  • Zhivotovsky, B. and Orrenius, S. (2005) Caspase-2 function in response to DNA damage. Biochemical and Biophysical Research Communications 331, 859–867.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

O’Callaghan-Sunol, C., Gabai, V.L. (2007). Involvement of Heat Shock Proteins in Protection of Tumor Cells from Genotoxic Stresses. In: Calderwood, S.K., Sherman, M.Y., Ciocca, D.R. (eds) Heat Shock Proteins in Cancer. Heat Shock Proteins, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6401-2_9

Download citation

Publish with us

Policies and ethics