Skip to main content

Heat shock chaperone mortalin and carcinogenesis

  • Chapter

Part of the book series: Heat Shock Proteins ((HESP,volume 2))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arbiser, J. L. (2004) Molecular regulation of angiogenesis and tumorigenesis by signal transduction pathways: evidence of predictable and reproducible patterns of synergy in diverse neoplasms. Semin. Cancer Biol. 14, 81–91.

    Article  PubMed  CAS  Google Scholar 

  • Arbiser, J. L., Fan, C. Y., Su, X., et al. (2004) Involvement of p53 and p16 tumor suppressor genes in recessive dystrophic epidermolysis bullosa-associated squamous cell carcinoma. J. Invest. Dermatol. 123, 788–790.

    Article  PubMed  CAS  Google Scholar 

  • Baudet, C., Perret, E., Delpech, B., et al. (1998) Differentially expressed genes in C6.9 glioma cells during vitamin D-induced cell death program. Cell Death Differ. 5, 116–125.

    Article  PubMed  CAS  Google Scholar 

  • Bernal, S. D., Shapiro, H. M. and Chen, L. B. (1982) Monitoring the effect of anti-cancer drugs on L1210 cells by a mitochondrial probe, rhodamine–123. Int. J. Cancer 30, 219–224.

    Article  PubMed  CAS  Google Scholar 

  • Bhat, G. J., Samikkannu, T., Thomas, J. J. and Thekkumkara, T. J. (2004) alpha-thrombin rapidly induces tyrosine phosphorylation of a novel, 74–78-kDa stress response protein(s) in lung fibroblast cells. J. Biol. Chem. 279, 48915–48922.

    Article  PubMed  CAS  Google Scholar 

  • Bhattacharyya, T., Karnezis, A. N., Murphy, S. P., et al. (1995) Cloning and subcellular localization of human mitochondrial hsp70. J. Biol. Chem. 270, 1705–1710.

    Article  PubMed  CAS  Google Scholar 

  • Brandon, M., Baldi, P. and Wallace, D. C. (2006) Mitochondrial mutations in cancer. Oncogene 25, 4647–4662.

    Article  PubMed  CAS  Google Scholar 

  • Campisi, J. (2005a) Aging, tumor suppression and cancer: high wire-act! Mech Ageing Dev 126, 51–58.

    Article  CAS  Google Scholar 

  • Campisi, J. (2005b) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–522.

    Article  CAS  Google Scholar 

  • Chatterjee, A., Mambo, E. and Sidransky, D. (2006) Mitochondrial DNA mutations in human cancer. Oncogene 25, 4663–4674.

    Article  PubMed  CAS  Google Scholar 

  • Cheng, M. Y., Hartl, F. U., Martin, J., et al. (1989) Mitochondrial heat-shock protein hsp60 is essential for assembly of proteins imported into yeast mitochondria. Nature 337, 620–625.

    Article  PubMed  CAS  Google Scholar 

  • Chipuk, J. E., Kuwana, T., Bouchier-Hayes, L., et al. (2004). Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010–1014.

    Article  PubMed  CAS  Google Scholar 

  • Choglay, A. A., Chapple, J. P., Blatch, G. L. and Cheetham, M. E. (2001) Identification and characterization of a human mitochondrial homologue of the bacterial co-chaperone GrpE. Gene 267, 125–134.

    Article  PubMed  CAS  Google Scholar 

  • Choi, H. S., Lin, Z., Li, B. S. and Liu, A. Y. (1990) Age-dependent decrease in the heat-inducible DNA sequence-specific binding activity in human diploid fibroblasts. J. Biol. Chem. 265, 18005–18011.

    PubMed  CAS  Google Scholar 

  • Craig, E. A., Kramer, J. and Kosic-Smithers, J. (1987) SSC1, a member of the 70-kDa heat shock protein multigene family of Saccharomyces cerevisiae, is essential for growth. Proc. Natl. Acad. Sci. USA 84, 4156–4160.

    Article  PubMed  CAS  Google Scholar 

  • Czarnecka, A. M., Campanella, C., Zummo, G. and Cappello, F. (2006) Mitochondrial chaperones in cancer: from molecular biology to clinical diagnostics. Cancer Biol. Ther. 5, 714–720.

    PubMed  CAS  Google Scholar 

  • Dahlseid, J. N., Lill, R., Green, J. M., Xu, X., Qiu, Y. and Pierce, S. K. (1994). PBP74, a new member of the mammalian 70-kDa heat shock protein family, is a mitochondrial protein. Mol. Biol. Cell 5, 1265–1275.

    PubMed  CAS  Google Scholar 

  • Dai, W. and Wang, X. (2006) Aging in check. Sci. Aging Knowledge Environ. 2006, 9.

    Article  Google Scholar 

  • Deocaris, C. C., Taira, K., Kaul, S. C. and Wadhwa, R. (2005) Mimotope-hormesis and mortalin/grp75/mthsp70: a new hypothesis on how infectious disease-associated epitope mimicry may explain low cancer burden in developing nations. FEBS Lett. 579, 586–590.

    Article  PubMed  CAS  Google Scholar 

  • Deocaris, C. C., Kaul, S. C. and Wadhwa, R. (2006) On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones 11, 116–128.

    Article  PubMed  CAS  Google Scholar 

  • Deocaris, C. C., Widodo, N., Shrestha, B. G., et al. (2007) Mortalin sensitizes human cancer cells to MKT-077-induced senescence - revisiting a drug that had failed clinical trials. Cancer Lett. 252, 259–269.

    Article  PubMed  CAS  Google Scholar 

  • Domanico, S. Z., DeNagel, D. C., Dahlseid, J. N., Green, J. M. and Pierce, S. K. (1993) Cloning of the gene encoding peptide-binding protein 74 shows that it is a new member of the heat shock protein 70 family. Mol. Cell. Biol. 13, 3598–3610.

    PubMed  CAS  Google Scholar 

  • Don, A. S. and Hogg, P. J. (2004) Mitochondria as cancer drug targets. Trends Mol. Med. 10, 372–378.

    Article  PubMed  CAS  Google Scholar 

  • Dundas, S. R., Lawrie, L. C., Rooney, P. H. and Murray, G. I. (2004) Mortalin is over-expressed by colorectal adenocarcinomas and correlates with poor survival. J. Pathol. 205, 74–81.

    Article  CAS  Google Scholar 

  • Feng, Y., Ariza, M. E., Goulet, A. C., Shi, J. and Nelson, M. A. (2005) Death signal induced relocalization of cyclin dependent kinase 11 to mitochondria. Biochem. J. 392,65–73.

    Article  PubMed  CAS  Google Scholar 

  • Gao, C. X., Zhang, S. Q., Yin, Z. and Liu, W. (2003) Molecular chaperone GRP75 reprove cells from injury caused by glucose deprivation. Shi Yan Sheng Wu Xue Bao 36, 381–387.

    PubMed  CAS  Google Scholar 

  • Geissler, A., Krimmer, T., Bomer, U., Guiard, B., Rassow, J. and Pfanner, N. (2000) Membrane potential-driven protein import into mitochondria. The sorting sequence of cytochrome b(2) modulates the deltapsi-dependence of translocation of the matrix-targeting sequence. Mol. Biol. Cell 11, 3977–3991.

    PubMed  CAS  Google Scholar 

  • Grigoriev, S. M., Jensen, R. E. and Kinnally, K. W. (2003) Control of mitochondrial protein import by pH. FEBS Lett. 553, 163–166.

    Article  PubMed  CAS  Google Scholar 

  • Hadari, Y. R., Haring, H. U. and Zick, Y. (1997) p75, a member of the heat shock protein family, undergoes tyrosine phosphorylation in response to oxidative stress. J. Biol. Chem. 272, 657–662.

    Article  PubMed  CAS  Google Scholar 

  • Hanahan, D. and Weinberg, R. A. (2000) The hallmarks of cancer. Cell 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, C. J., Hayer-Hartl, M., Di Liberto, M., Hartl, F. and Kuriyan, J. (1997) Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science 276, 431–435.

    Article  PubMed  CAS  Google Scholar 

  • Harrison, C. (2003) GrpE, a nucleotide exchange factor for DnaK. Cell Stress Chaperones 8, 218–224.

    Article  PubMed  CAS  Google Scholar 

  • Hartl, F. U., Martin, J. and Neupert, W. (1992) Protein folding in the cell: the role of molecular chaperones Hsp70 and Hsp60. Annu. Rev. Biophys. Biomol. Struct. 21, 293–322.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, J., Prasad, K., Lafer, E. M. and Sousa, R. (2005) Structural basis of interdomain communication in the Hsc70 chaperone. Mol. Cell 20, 513–524.

    Article  PubMed  CAS  Google Scholar 

  • Jin, J., Li, G. J., Davis, J., et al. (2007) Identification of novel proteins interacting with both a-synuclein and DJ-1. Mol. Cell Proteomics 6, 845–859.

    Article  PubMed  CAS  Google Scholar 

  • Kahlem, P., Dorken, B., Schmitt, C. A. (2004) Cellular senescence in cancer treatment: friend or foe? J. Clin. Invest. 113, 169–174.

    Google Scholar 

  • Kaul, S. C., Wadhwa, R., Matsuda, Y., et al. (1995) Mouse and human chromosomal assignments of mortalin, a novel member of the murine hsp70 family of proteins. FEBS Lett. 361, 269–272.

    Article  PubMed  CAS  Google Scholar 

  • Kaul, S. C., Duncan, E. L., Englezou, A., et al. (1998) Malignant transformation of NIH3T3 cells by overexpression of mot-2 protein. Oncogene 17, 907–911.

    Article  PubMed  CAS  Google Scholar 

  • Kaul, S. C., Duncan, E., Sugihara, T., Reddel, R. R., Mitsui, Y. and Wadhwa, R. (2000a) Structurally and functionally distinct mouse hsp70 family members Mot-1 and Mot-2 proteins are encoded by two alleles. DNA Res. 7, 229–231.

    Article  CAS  Google Scholar 

  • Kaul, S. C., Takano, S., Reddel, R. R., Mitsui, Y. and Wadhwa, R. (2000b) Transcriptional inactivation of p53 by deletions and single amino acid changes in mouse mot-1 protein. Biochem. Biophys. Res. Commun. 279, 602–606.

    Article  CAS  Google Scholar 

  • Kaul, S. C., Reddel, R. R., Mitsui, Y. and Wadhwa, R. (2001) An N-terminal region of mot-2 binds to p53 in vitro. Neoplasia 3, 110–114.

    Article  PubMed  CAS  Google Scholar 

  • Kaul, S. C., Yaguchi, T., Taira, K., Reddel, R. R. and Wadhwa, R. (2003) Overexpressed mortalin (mot-2)/mthsp70/GRP75 and hTERT cooperate to extend the in vitro lifespan of human fibroblasts. Exp. Cell Res. 286, 96–101.

    Article  PubMed  CAS  Google Scholar 

  • Kaul, S. C., Aida, S., Yaguchi, T., Kaur, K. and Wadhwa, R. (2005). Activation of wild type p53 function by its mortalin-binding, cytoplasmically localizing carboxyl terminus peptides. J. Biol. Chem. 280, 39373–39379.

    Article  PubMed  CAS  Google Scholar 

  • Kaul, S. C., Deocaris, C. C. and Wadhwa, R. (2007) Three faces of mortalin: A housekeeper, guardian and killer. Exp. Gerontol. 42, 263–274.

    Article  PubMed  CAS  Google Scholar 

  • Kawai, A., Nishikawa, S., Hirata, A. and Endo, T. (2001) Loss of the mitochondrial Hsp70 functions causes aggregation of mitochondria in yeast cells. J. Cell Sci. 114, 3565–3574.

    PubMed  CAS  Google Scholar 

  • Kim, K. B., Lee, J. W., Lee, C. S., et al. (2006) Oxidation-reduction respiratory chains and ATP synthase complex are localized in detergent-resistant lipid rafts. Proteomics 6, 2444–2453.

    Article  PubMed  CAS  Google Scholar 

  • Koehler, C. M. (2004) New developments in mitochondrial assembly. Annu. Rev. Cell Dev. Biol. 20, 309–335.

    Article  PubMed  CAS  Google Scholar 

  • Kregel, K. C., Moseley, P. L., Skidmore, R., Gutierrez, J. A. and Guerriero, V. Jr. (1995) HSP70 accumulation in tissues of heat-stressed rats is blunted with advancing age. J. Appl. Physiol. 79, 1673–1678.

    PubMed  CAS  Google Scholar 

  • Lampidis, T. J., Bernal, S. D., Summerhayes, I. C. and Chen, L. B. (1983) Selective toxicity of rhodamine 123 in carcinoma cells in vitro. Cancer Res. 43, 716–720.

    PubMed  CAS  Google Scholar 

  • Langer, T. and Neupert, W. (1991) Heat shock proteins hsp60 and hsp70: their roles in folding, assembly and membrane translocation of proteins. Curr. Top. Microbiol. Immunol. 167, 3–30.

    PubMed  CAS  Google Scholar 

  • Lau, A. T., He, Q. Y. and Chiu, J. F. (2004) A proteome analysis of the arsenite response in cultured lung cells: evidence for in vitro oxidative stress-induced apoptosis. Biochem. J. 382, 641–650.

    Article  PubMed  CAS  Google Scholar 

  • Leonhard, K., Stiegler, A., Neupert, W. and Langer, T. (1999) Chaperone-like activity of the AAA domain of the yeast Yme1 AAA protease. Nature 398, 348–351.

    Article  PubMed  CAS  Google Scholar 

  • Lim, Y. P., Wong, C. Y., Ooi, L. L., Druker, B. J. and Epstein, R. J. (2004) Selective tyrosine hyperphosphorylation of cytoskeletal and stress proteins in primary human breast cancers: implications for adjuvant use of kinase-inhibitory drugs. Clin. Cancer Res. 10, 3980–3987.

    Article  PubMed  CAS  Google Scholar 

  • Liu, A. Y., Lin, Z., Choi, H. S., Sorhage, F. and Li, B. (1989) Attenuated induction of heat shock gene expression in aging diploid fibroblasts. J. Biol. Chem. 264, 12037–12045.

    PubMed  CAS  Google Scholar 

  • Liu, Y., Liu, W., Song, X. D. and Zuo, J. (2005) Effect of GRP75/mthsp70/PBP74/mortalin overexpression on intracellular ATP level, mitochondrial membrane potential and ROS accumulation following glucose deprivation in PC12 cells. Mol. Cell. Biochem. 268, 45–51.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Z., Izumi, H., Kanai, M., Kabuyama, Y., Ahn, N. G. and Fukasawa, K. (2006) Mortalin controls centrosome duplication via modulating centrosomal localization of p53. Oncogene 25, 5377–5390.

    Article  PubMed  CAS  Google Scholar 

  • Mahlke, K., Pfanner, N., Martin, J., Horwich, A. L., Hartl, F. U. and Neupert, W. (1990) Sorting pathways of mitochondrial inner membrane proteins. Eur. J. Biochem. 192, 551–555.

    Article  PubMed  CAS  Google Scholar 

  • Marchenko, N. D., Zaika, A. and Moll, U. M. (2000) Death signal-induced localization of p53 protein to mitochondria. A potential role in apoptotic signaling. J. Biol. Chem. 275, 16202–16212.

    Google Scholar 

  • Mayer, M. P. and Bukau, B. (1998) Hsp70 chaperone systems: diversity of cellular functions and mechanism of action. Biol. Chem. 379, 261–268.

    Google Scholar 

  • Mayer, M. P., Rudiger, S. and Bukau, B. (2000) Molecular basis for interactions of the DnaK chaperone with substrates. Biol. Chem. 381, 877–885.

    Article  PubMed  CAS  Google Scholar 

  • Merrick, B. A., Walker, V. R., He, C., Patterson, R. M. and Selkirk, J. K. (1997) Induction of novel Grp75 isoforms by 2-deoxyglucose in human and murine fibroblasts. Cancer Lett. 119, 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Michishita, E., Nakabayashi, K., Suzuki, T., et al. (1999) 5-Bromodeoxyuridine induces senescence-like phenomena in mammalian cells regardless of cell type or species. J. Biochem. 126, 1052–1059.

    PubMed  CAS  Google Scholar 

  • Mihara, M., Erster, S., Zaika, A., et al. (2003) p53 has a direct apoptogenic role at the mitochondria. Mol. Cell 11, 577–590.

    Article  PubMed  CAS  Google Scholar 

  • Mizukoshi, E., Suzuki, M., Loupatov, A., et al. (1999) Fibroblast growth factor-1 interacts with the glucose-regulated protein GRP75/mortalin. Biochem. J. 2, 461–466.

    Article  Google Scholar 

  • Mizukoshi, E., Suzuki, M., Misono, T., et al. (2001) Cell-cycle dependent tyrosine phosphorylation on mortalin regulates its interaction with fibroblast growth factor-1. Biochem. Biophys. Res. Commun. 280, 1203–1209.

    Article  PubMed  CAS  Google Scholar 

  • Modica-Napolitano, J. S. and Singh, K. (2002) Mitochondria as targets for detection and treatment of cancer. Expert Rev. Mol. Med. 2002, 1–19.

    Article  PubMed  Google Scholar 

  • Nardai, G., Csermely, P. and Soti, C. (2002) Chaperone function and chaperone overload in the aged. A preliminary analysis. Exp. Gerontol. 37,1257–1262.

    Article  PubMed  CAS  Google Scholar 

  • Naylor, D. J., Stines, A. P., Hoogenraad, N. J. and Hoj, P. B. (1998) Evidence for the existence of distinct mammalian cytosolic, microsomal, and two mitochondrial GrpE-like proteins, the Co-chaperones of specific Hsp70 members. J. Biol. Chem. 273, 21169–21177.

    Article  PubMed  CAS  Google Scholar 

  • Ohta, S. (2006) Contribution of somatic mutations in the mitochondrial genome to the development of cancer and tolerance against anticancer drugs. Oncogene 25, 4768–4776.

    Article  PubMed  CAS  Google Scholar 

  • Orlov, S. N. and Hamet, P. (2006) The death of cardiotonic steroid-treated cells: evidence of Na+i,K+i-independent H+i-sensitive signalling. Acta Physiol. (Oxf) 187, 231–240.

    CAS  Google Scholar 

  • Orsini, F., Migliaccio, E., Moroni, M., et al. (2004) The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential. J. Biol. Chem. 279, 25689–25695.

    Google Scholar 

  • Ostermann, J., Horwich, A. L., Neupert, W. and Hartl, F. U. (1989) Protein folding in mitochondria requires complex formation with hsp60 and ATP hydrolysis. Nature 341, 125–130.

    Article  PubMed  CAS  Google Scholar 

  • Ostermann, J., Voos, W., Kang, P. J., Craig, E. A., Neupert, W. and Pfanner, N. (1990) Precursor proteins in transit through mitochondrial contact sites interact with hsp70 in the matrix. FEBS Lett. 277, 281–284.

    Article  PubMed  CAS  Google Scholar 

  • Ostermeyer, A. G., Runko, E., Winkfield, B., Ahn, B. and Moll, U. M. (1996) Cytoplasmically sequestered wild-type p53 protein in neuroblastoma is relocated to the nucleus by a C-terminal peptide. Proc. Natl. Acad. Sci. USA 93, 15190–15194.

    Article  PubMed  CAS  Google Scholar 

  • Pellegrini, M., Pacini, S. and Baldari, C. T. (2005) p66SHC: the apoptotic side of Shc proteins. Apoptosis 10, 13–18.

    Article  PubMed  CAS  Google Scholar 

  • Poindexter, B. J., Pereira-Smith, O., Wadhwa, R., Buja, L.M., Bick, R.J. (2002) 3D reconstruction and localization of mortalin by deconvolution microscopy. Micros. Anal. 89, 21–23.

    Google Scholar 

  • Polyak, K., Li, Y., Zhu, H., et al. (1998) Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat. Genet. 20, 291–293.

    Article  PubMed  CAS  Google Scholar 

  • Pshezhetsky, A. V. (2006) Proteomic analysis of vascular smooth muscle cells treated with ouabain. Methods Mol. Biol. 357, 253–270.

    Google Scholar 

  • Ran, Q., Wadhwa, R., Kawai, R., et al. (2000) Extramitochondrial localization of mortalin/mthsp70/ PBP74/GRP75. Biochem. Biophys. Res. Commun. 275, 174–179.

    Article  PubMed  CAS  Google Scholar 

  • Rehling, P., Brandner, K. and Pfanner, N. (2004) Mitochondrial import and the twin-pore translocase. Nat. Rev. Mol. Cell Biol. 5, 519–530.

    Article  PubMed  CAS  Google Scholar 

  • Ristow, M. (2006) Oxidative metabolism in cancer growth. Curr. Opin. Clin. Nutr. Metab. Care 9, 339–345.

    Article  PubMed  CAS  Google Scholar 

  • Roninson, I. B., Broude, E. V., Chang, B. D. (2001) If not apoptosis, then what? Treatment-induced senescence and mitotic catastrophe in tumor cells. Drug Resist. Updat. 4, 303–313.

    Article  PubMed  CAS  Google Scholar 

  • Rudiger, S., Mayer, M. P., Schneider-Mergener, J. and Bukau, B. (2000) Modulation of substrate specificity of the DnaK chaperone by alteration of a hydrophobic arch. J. Mol. Biol. 304, 245–251.

    Article  PubMed  CAS  Google Scholar 

  • Sacht, G., Brigelius-Flohe, R., Kiess, M., Sztajer, H. and Flohe, L. (1999) ATP-sensitive association of mortalin with the IL-1 receptor type I. Biofactors 9, 49–60.

    PubMed  CAS  Google Scholar 

  • Savel’ev, A. S., Novikova, L. A., Kovaleva, I. E., Luzikov, V. N., Neupert, W. and Langer, T. (1998) ATP-dependent proteolysis in mitochondria. m-AAA protease and PIM1 protease exert overlapping substrate specificities and cooperate with the mtHsp70 system. J. Biol. Chem. 273, 20596–20602.

    Article  PubMed  CAS  Google Scholar 

  • Saveliev, A. S., Kovaleva, I. E., Novikova, L. A., Isaeva, L. V. and Luzikov, V. N. (1999) Can foreign proteins imported into yeast mitochondria interfere with PIM1p protease and/or chaperone function? Arch. Biochem. Biophys. 363, 373–376.

    Article  PubMed  CAS  Google Scholar 

  • Schmitt, C. A., Fridman, J. S., Yang, M., et al. (2002) A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109, 335–346.

    Article  PubMed  CAS  Google Scholar 

  • Schneider, H. C., Berthold, J., Bauer, M. F., et al. (1994) Mitochondrial Hsp70/MIM44 complex facilitates protein import. Nature 371, 768–774.

    Article  PubMed  CAS  Google Scholar 

  • Shin, B. K., Wang, H., Yim, A. M., et al. (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J. Biol. Chem. 278, 7607–7616.

    Article  PubMed  CAS  Google Scholar 

  • Singh, B., Soltys, B. J., Wu, Z. C., Patel, H. V., Freeman, K. B. and Gupta, R. S. (1997) Cloning and some novel characteristics of mitochondrial Hsp70 from Chinese hamster cells. Exp. Cell Res. 234, 205–216.

    Article  PubMed  CAS  Google Scholar 

  • Smith, D. L., Evans, C. A., Pierce, A., Gaskell, S. J. and Whetton, A. D. (2002) Changes in the proteome associated with the action of Bcr-Abl tyrosine kinase are not related to transcriptional regulation. Mol. Cell Proteomics 1, 876–884.

    Article  PubMed  CAS  Google Scholar 

  • Soltys, B. J. and Gupta, R. S. (1999) Mitochondrial-matrix proteins at unexpected locations: are they exported? Trends Biochem. Sci. 24, 174–177.

    Article  PubMed  CAS  Google Scholar 

  • Soltys, B. J. and Gupta, R. S. (2000) Mitochondrial proteins at unexpected cellular locations: export of proteins from mitochondria from an evolutionary perspective. Int. Rev. Cytol. 194, 133–196.

    Article  PubMed  CAS  Google Scholar 

  • Soti, C. and Csermely, P. (2000) Molecular chaperones and the aging process. Biogerontol. 1, 225–233.

    Article  CAS  Google Scholar 

  • Soti, C. and Csermely, P. (2002) Chaperones and aging: role in neurodegeneration and in other civilizational diseases. Neurochem. Int. 41, 383–389.

    Article  PubMed  CAS  Google Scholar 

  • Soti, C., Sreedhar, A. S. and Csermely, P. (2003) Apoptosis, necrosis and cellular senescence: chaperone occupancy as a potential switch. Aging Cell 2, 39–45.

    Article  PubMed  CAS  Google Scholar 

  • Sriram, M., Osipiuk, J., Freeman, B., et al. (1997) Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain. Structure 5, 403–414.

    Article  PubMed  CAS  Google Scholar 

  • Stacchiotti, A., Borsani, E., Ricci, F., et al. (2006) Bimoclomol ameliorates mercuric chloride nephrotoxicity through recruitment of stress proteins. Toxicol. Lett. 166, 168–177.

    Article  PubMed  CAS  Google Scholar 

  • Strano, S., Dell’orso, S., Mongiovi, A. M., et al. (2007) Mutant p53 proteins: Between loss and gain of function. Head Neck. 29, 488–496.

    Google Scholar 

  • Sullivan, P. G., Dragicevic, N. B., Deng, J. H., et al. (2004) Proteasome inhibition alters neural mitochondrial homeostasis and mitochondria turnover. J. Biol. Chem. 279, 20699–20707.

    Article  PubMed  CAS  Google Scholar 

  • Takano, S., Wadhwa, R., Yoshii, Y., et al. (1997) Elevated levels of mortalin expression in human brain tumors. Exp. Cell Res. 237, 38–45.

    Article  PubMed  CAS  Google Scholar 

  • Takano, S., Wadhwa, R., Mitsui, Y. and Kaul, S. C. (2001) Identification and characterization of molecular interactions between glucose-regulated proteins (GRPs) mortalin/GRP75/peptide-binding protein 74 (PBP74) and GRP94. Biochem. J. 357, 393–398.

    Article  PubMed  CAS  Google Scholar 

  • te Poele, R. H., Okorokov, A. L., Jardine, L., Cummings, J. and Joel, S. P. (2002) DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res. 62, 1876–1883.

    Google Scholar 

  • Terada, K., Kanazawa, M., Bukau, B. and Mori, M. (1997) The human DnaJ homologue dj2 facilitates mitochondrial protein import and luciferase refolding. J. Cell Biol. 139, 1089–1095.

    Article  PubMed  CAS  Google Scholar 

  • Terada, K. and Mori, M. (2000) Human DnaJ homologs dj2 and dj3, and bag-1 are positive cochaperones of hsc70. J. Biol. Chem. 275, 24728–24734.

    Article  PubMed  CAS  Google Scholar 

  • Truscott, K. N., Pfanner, N. and Voos, W. (2001) Transport of proteins into mitochondria. Rev. Physiol. Biochem. Pharmacol. 143, 81–136.

    PubMed  CAS  Google Scholar 

  • Van Remmen, H., Ikeno, Y., Hamilton, M., et al. (2003) Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol. Genomics 16, 29–37.

    Article  PubMed  CAS  Google Scholar 

  • Vandermoere, F., El Yazidi-Belkoura, I., Demont, Y., et al. (2007) Proteomic exploration reveals that actin is a signaling target of the kinase akt. Mol. Cell Proteomics 6, 114–124.

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa, R., Kaul, S. C., Ikawa, Y. and Sugimoto, Y. (1993a) Identification of a novel member of mouse hsp70 family. Its association with cellular mortal phenotype. J. Biol. Chem. 268, 6615–6621.

    CAS  Google Scholar 

  • Wadhwa, R., Kaul, S. C., Mitsui, Y. and Sugimoto, Y. (1993b) Differential subcellular distribution of mortalin in mortal and immortal mouse and human fibroblasts. Exp. Cell Res. 207, 442–448.

    Article  CAS  Google Scholar 

  • Wadhwa, R., Kaul, S. C., Sugimoto, Y. and Mitsui, Y. (1993c) Induction of cellular senescence by transfection of cytosolic mortalin cDNA in NIH 3T3 cells. J. Biol. Chem. 268, 22239–22242.

    CAS  Google Scholar 

  • Wadhwa, R., Pereira-Smith, O. M., Reddel, R. R., Sugimoto, Y., Mitsui, Y. and Kaul, S. C. (1995) Correlation between complementation group for immortality and the cellular distribution of mortalin. Exp. Cell Res. 216, 101–106.

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa, R., Akiyama, S., Sugihara, T., Reddel, R. R., Mitsui, Y. and Kaul, S. C. (1996) Genetic differences between the pancytosolic and perinuclear forms of murine mortalin. Exp. Cell Res. 226, 381–386.

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa, R., Takano, S., Robert, M., et al. (1998) Inactivation of tumor suppressor p53 by mot-2, a hsp70 family member. J. Biol. Chem. 273, 29586–29591.

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa, R., Sugihara, T., Yoshida, A., et al. (2000) Selective toxicity of MKT-077 to cancer cells is mediated by its binding to the hsp70 family protein mot-2 and reactivation of p53 function. Cancer Res. 60, 6818–6821.

    PubMed  CAS  Google Scholar 

  • Wadhwa, R., Colgin, L., Yaguchi, T., Taira, K., Reddel, R. R. and Kaul, S. C. (2002a) Rhodacyanine dye MKT-077 inhibits in vitro telomerase assay but has no detectable effects on telomerase activity in vivo. Cancer Res. 62, 4434–4438.

    CAS  Google Scholar 

  • Wadhwa, R., Yaguchi, T., Hasan, M. K., Mitsui, Y., Reddel, R. R. and Kaul, S. C. (2002b) Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein. Exp. Cell Res. 274, 246–253.

    Article  CAS  Google Scholar 

  • Wadhwa, R., Ando, H., Kawasaki, H., Taira, K. and Kaul, S. C. (2003a) Targeting mortalin using conventional and RNA-helicase-coupled hammerhead ribozymes. EMBO Rep. 4, 595–601.

    Article  CAS  Google Scholar 

  • Wadhwa, R., Yaguchi, T., Hasan, M. K., Taira, K. and Kaul, S. C. (2003b) Mortalin-MPD (mevalonate pyrophosphate decarboxylase) interactions and their role in control of cellular proliferation. Biochem. Biophys. Res. Commun. 302, 735–742.

    Article  CAS  Google Scholar 

  • Wadhwa, R., Takano, S., Taira, K. and Kaul, S. C. (2004) Reduction in mortalin level by its antisense expression causes senescence-like growth arrest in human immortalized cells. J. Gene Med. 6, 439–444.

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa, R., Takano, S., Kaur, K., et al. (2005) Identification and characterization of molecular interactions between mortalin/mtHsp70 and HSP60. Biochem. J. 391, 185–190.

    Article  PubMed  CAS  Google Scholar 

  • Walker, C., Bottger, S. and Low, B. (2006) Mortalin-based cytoplasmic sequestration of p53 in a nonmammalian cancer model. Am. J. Pathol. 168, 1526–1530.

    Article  PubMed  CAS  Google Scholar 

  • Wallace, D. C. (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407.

    Article  PubMed  CAS  Google Scholar 

  • Webster, T. J., Naylor, D. J., Hartman, D. J., Hoj, P. B. and Hoogenraad, N. J. (1994) cDNA cloning and efficient mitochondrial import of pre-mtHSP70 from rat liver. DNA Cell Biol. 13, 1213–1220.

    Article  PubMed  CAS  Google Scholar 

  • Widodo, N., Deocaris, C. C., Kaur, K., et al. (2007) Stress chaperones, mortalin/mthsp70 and Pex19p, mediate 5-aza-2’ deoxycytidine-induced senescence of cancer cells by DNA-methylation independent pathway. J. Gerontol. A Biol. Sci. Med. Sci. 62, 246–255.

    Google Scholar 

  • Wiedemann, N., Frazier, A. E. and Pfanner, N. (2004) The protein import machinery of mitochondria. J. Biol. Chem. 279, 14473–14476.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, X., Zhao, X., Burkholder, W. F., et al. (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272, 1606–1614.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Deocaris, C.C., Kaul, S.C., Wadhwa, R. (2007). Heat shock chaperone mortalin and carcinogenesis. In: Calderwood, S.K., Sherman, M.Y., Ciocca, D.R. (eds) Heat Shock Proteins in Cancer. Heat Shock Proteins, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6401-2_7

Download citation

Publish with us

Policies and ethics