HSF1: An Emerging Factor In Cancer

  • Stuart K. Calderwood
  • Md Abdul Khaleque
  • Ajit Bharti
  • Daniel R. Ciocca
Part of the Heat Shock Proteins book series (HESP, volume 2)

Abstract

Heat shock factor1, the transcriptional activator of the heat shock protein (hsp) genes is expressed to high level in a number of types of malignancy. HSF1 elevation is coupled to the activation of the c-erb-B2 pathway, a common change associated with breast cancer. HSF1 may exert pro-malignant effects through the activation of hsp gene transcription. The resulting elevated levels of Hsp promote cancer growth through inhibition of apoptosis and promotion of autonomous growth. In addition, HSF1 possesses properties other than those of a transcriptional activator. HSF1 is a gene repressor and binds to the gene co-repressor MTA1 (metastasis associated protein 1). HSF1 may thus function in cancer due to repression of genes that deter malignancy. HSF1 activation may also occur secondarily to treatment with current agents used in chemotherapy such as Hsp90 inhibitors and proteasome inhibitors. Such HSF1 activation may be a confounding effect in chemotherapy. HSF1 thus plays a significant role in tumor growth and response to therapy

Keywords

Heat shock transcription factor protein apoptosis autonomous growth glycogen synthase kinase 3 metastasis associated protein one gene co-repressor estrogen receptor chromatin heregulin c-erb-B2 hsp 90 inhibitor chemotherapy proteasome mammary carcinoma 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarraberes, F. A., Terlecky, S. R. and Dice, J. F. (1997) An intralysosomal hsp70 is required for a selective pathway of lysosomal protein degradation. J Cell Biol 137, 825–34.PubMedCrossRefGoogle Scholar
  2. Agoff, S. N., Hou, J., Linzer, D. I. and Wu, B. (1993) Regulation of the human hsp70 promoter by p53. Science 259, 84–7.PubMedCrossRefGoogle Scholar
  3. Aguilar, Z., Akita, R. W., Finn, R. S., Ramos, B. L., Pegram, M. D., Kabbinavar, F. F., Pietras, R. J., Pisacane, P., Sliwkowski, M. X. and Slamon, D. J. (1999) Biologic effects of heregulin/neu differentiation factor on normal and malignant human breast and ovarian epithelial cells. Oncogene 18, 6050–62.PubMedCrossRefGoogle Scholar
  4. Ananthan, J., Goldberg, A. L. and Voellmy, R. (1986) Science 232, 522–524.Google Scholar
  5. Baler, R., Dahl, G. and Voellmy, R. (1993) Activation of human heat shock transcription is accompanied by oligomerization, modification and rapid translocation of heat shock transcription facor HSF-1. Mol. Cell. Biol. 13, 2486–2496.PubMedGoogle Scholar
  6. Beere, H. M. (2004) ‘The stress of dying’: the role of heat shock proteins in the regulation of apoptosis. J Cell Sci 117, 2641–51.PubMedCrossRefGoogle Scholar
  7. Bewick, M., Chadderton, T., Conlon, M., Lafrenie, R., Morris, D., Stewart, D. and Gluck, S. (1999) Expression of C-erbB-2/HER-2 in patients with metastatic breast cancer undergoing high-dose chemotherapy and autologous blood stem cell support. Bone Marrow Transplant 24, 377–84.PubMedCrossRefGoogle Scholar
  8. Bhat-Nakshatri, P., Sweeney, C. J. and Nakshatri, H. (2002) Identification of signal transduction pathways involved in constitutive NF-kappaB activation in breast cancer cells. Oncogene 21, 2066–78.PubMedCrossRefGoogle Scholar
  9. Bowen, N. J., Fujita, N., Kajita, M. and Wade, P. A. (2004) Mi-2/NuRD: multiple complexes for many purposes. Biochim Biophys Acta 1677, 52–7.PubMedGoogle Scholar
  10. Brown, S. A. and Kingston, R. E. (1997) Disruption of downstream chromatin by a transcriptional activator. Genes Dev 11, 3116–3121.PubMedGoogle Scholar
  11. Bruce, J. L., Chen, C., Xie, Y., Zhong, R., Wang, Y., Stevenson, M. A. and Calderwood, S. K. (1999) Activation of heat shock transcription factor 1 during the G1 phase of the cell cycle. Cell Stress Chaperones 4, 36–45.PubMedGoogle Scholar
  12. Brunet, A., Kanai, F., Stehn, J., Xu, J., Sarbassova, D., Frangioni, J. V., Dalal, S. N., DeCaprio, J. A., Greenberg, M. E. and Yaffe, M. B. (2002) 14–3–3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J. Cell Biol. 156, 817–28.PubMedCrossRefGoogle Scholar
  13. Bukau, B., Weissman, J. and Horwich, A. (2006) Molecular chaperones and protein quality control. Cell 125, 443–51.PubMedCrossRefGoogle Scholar
  14. Cahill, C. M., Lin, H. S., Price, B. D., Bruce, J. L. and Calderwood, S. K. (1997) Potential role of heat shock transcription factor in the expression of inflammatory cytokines. Adv. Exp. Med. Biol. 400, 625–630.Google Scholar
  15. Cahill, C. M., Waterman, W. R., Auron, P. E. and Calderwood, S. K. (1996) Transcriptional repression of the prointerleukin1B gene by heat shock factor 1. Journal of Biological Chemistry 271, 24874–24879.PubMedGoogle Scholar
  16. Calderwood, S. K., Khaleque, M. A., Sawyer, D. B. and Ciocca, D. R. (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31, 164–72.PubMedCrossRefGoogle Scholar
  17. Cardozo, T. and Pagano, M. (2004) The SCF ubiquitin ligase: insights into a molecular machine. Nat Rev Mol Cell Biol 5, 739–51.PubMedCrossRefGoogle Scholar
  18. Carroll, P. E., Okuda, M., Horn, H. F., Biddinger, P., Stambrook, P. J., Gleich, L. L., Li, Y.-Q., Tarapore, P. and Fukasawa, K. (1999) Centrosome hyperamplificationin human cancer: chromosome instability induced by p53 mutation and / or Mdm2 overexpression. Oncogene 18, 1935–1944.PubMedCrossRefGoogle Scholar
  19. Chen, C., Xie, Y., Stevenson, M. A., Auron, P. E. and Calderwood, S. K. (1997) Heat shock factor 1 represses ras-induced transcriptional activation of the c-fos gene. J Biol Chem 272, 26803–26806.PubMedCrossRefGoogle Scholar
  20. Chu, B., Soncin, F., Price, B. D., Stevenson, M. A. and Calderwood, S. K. (1996) Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem 271, 30847–57.PubMedCrossRefGoogle Scholar
  21. Chu, B., Zhong, R., Soncin, F., Stevenson, M. A. and Calderwood, S. K. (1998) Transcriptional activity of heat shock factor 1 at 37°C is repressed through phosphorylation on two distinct serine residues by glycogen synthase kinase 3 and protein kinase C α and Cζ. J. Biol. Chem. 273, 18640–18646.PubMedCrossRefGoogle Scholar
  22. Ciocca, D. R. and Calderwood, S. K. (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10, in press.Google Scholar
  23. Ciocca, D. R., Gago, F. E., Fanelli, M. A. and Calderwood, S. K. (2006) Co-expression of steroid receptors (estrogen receptor alpha and/or progesterone receptors) and Her-2/neu: Clinical implications. J Steroid Biochem Mol Biol.Google Scholar
  24. Ciucci, A., Gianferretti, P., Piva, R., Guyot, T., Snape, T. J., Roberts, S. M. and Santoro, M. G. (2006) Induction of apoptosis in estrogen receptor-negative breast cancer cells by natural and synthetic cyclopentenones: role of the IkappaB kinase/nuclear factor-kappaB pathway. Mol Pharmacol 70, 1812–21.PubMedCrossRefGoogle Scholar
  25. Corey, L. L., Weirich, C. S., Benjamin, I. J. and Kingston, R. E. (2003) Localized recruitment of a chromatin-remodeling activity by an activator in vivo drives transcriptional elongation. Genes Dev 17, 1392–401.PubMedCrossRefGoogle Scholar
  26. Davis, P. K. and Brackmann, R. K. (2003) Chromatin remodeling and cancer. Cancer Biol Ther 2, 22–9.PubMedGoogle Scholar
  27. Downward, J. (2004) PI 3-kinase, Akt and cell survival. Semin Cell Dev Biol 15, 177–82.PubMedCrossRefGoogle Scholar
  28. Fivaz, J., Bassi, M. C., Pinaud, S. and Mirkovitch, J. (2000) RNA polymerase II promoter-proximal pausing upregulates c-fos gene expression. Gene 255, 185–194.PubMedCrossRefGoogle Scholar
  29. Gottlieb, T. M., Leal, J. F., Seger, R., Taya, Y. and Oren, M. (2002) Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis. Oncogene 21, 1299–303.PubMedCrossRefGoogle Scholar
  30. Green, M. T., Schuetz, T. J., Sullivan, E. K. and Kingston, R. E. (1995) A heat shock -responsive domain of human HSF1 that regulates transcription activation domain function. Molecular and Cellular Biology 15, 3354–3362.PubMedGoogle Scholar
  31. Guettouche, T., Boellmann, F., Lane, W. S. and Voellmy, R. (2005) Analysis of phosphorylation of human heat shock factor 1 in cells experiencing a stress. BMC Biochem 6, 4.PubMedCrossRefGoogle Scholar
  32. Guo, Y., Guettouche, T., Fenna, M., Boellmann, F., Pratt, W. B., Toft, D. O., Smith, D. F. and Voellmy, R. (2001) Evidence for a mechanism of repression of heat shock factor 1 transcriptional activity by a multichaperone complex. J. Biol. Chem. 276, 45791–45799.PubMedCrossRefGoogle Scholar
  33. Ha, N. C., Tonozuka, T., Stamos, J. L., Choi, H. J. and Weis, W. I. (2004) Mechanism of phosphorylation-dependent binding of APC to beta-catenin and its role in beta-catenin degradation. Mol Cell 15, 511–21.PubMedCrossRefGoogle Scholar
  34. Hanahan, D. and Weinberg, R. A. (2000) The hallmarks of cancer. Cell 100, 57–70.PubMedCrossRefGoogle Scholar
  35. He, B., Meng, Y. H. and Mivechi, N. H. (1998) Glycogen synthase kinase 3b and extracellular signal-regulated protein kinase inactivate heat shock transcription factor 1 by facilitating the disappearance of transcriptionally active granules after heat shock. Mol. Cell. Biol. 18, 6624–6632.PubMedGoogle Scholar
  36. He, H., Soncin, F., Grammatikakis, N., Li, Y., Siganou, A., Gong, J., Brown, S. A., Kingston, R. E. and Calderwood, S. K. (2003) Elevated expression of heat shock factor 2a stimulates HSF1-induced transcription during stress. J Biol Chem 278, 35465–35475.PubMedCrossRefGoogle Scholar
  37. Hensold, J. O., Hunt, C. R., Calderwood, S. K., Houseman, D. E. and Kingston, R. E. (1990) DNA binding of heat shock factor to the heat shock element is insufficient for transcriptional activation in murine erythroleukemia cells. Mol Cell Biol 10, 1600–1608.PubMedGoogle Scholar
  38. Hoang, A. T., Huang, J., Rudra-Ganguly, N., Zheng, J., Powell, W. C., Rabindran, S. K., Wu, C. and Roy-Burman, P. (2000) A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma. Am J Pathol 156, 857–64.PubMedGoogle Scholar
  39. Holmberg, C. I., Hietakangas, V., Mikhailov, A., Rantanen, J. O., Kallio, M., Meinander, A., Hellman, J., Miorrice, N., Mackintosh, C., Morimoto, R. I., Ericksson, J. E. and Sistonen, L. (2001) Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. EMBO J. 20, 3800–3810.PubMedCrossRefGoogle Scholar
  40. Jung, M. S., Yun, J., Chae, H. D., Kim, J. M., Kim, S. C., Choi, T. S. and Shin, D. Y. (2001) p53 and its homologues, p63 and p73, induce a replicative senescence through inactivation of NF-Y transcription factor. Oncogene 20, 5818–25.PubMedCrossRefGoogle Scholar
  41. Kampinga, H. H. (1995) Hyperthermia, thermotolerance and topoisomerase II inhibitors. Br J Cancer 72, 333–8.PubMedGoogle Scholar
  42. Kampinga, H. H., Brunsting, J. F., Stege, G. J., Burgman, P. W. and Konings, A. W. (1995) Thermal protein denaturation and protein aggregation in cells made thermotolerant by various chemicals: role of heat shock proteins. Exp Cell Res 219, 536–46.PubMedCrossRefGoogle Scholar
  43. Karim, R., Tse, G., Putti, T., Scolyer, R. and Lee, S. (2004) The significance of the Wnt pathway in the pathology of human cancers. Pathology 36, 120–8.PubMedCrossRefGoogle Scholar
  44. Khaleque, M. A., Bharti, A., Sawyer, D., Gong, J., Benjamin, I. J., Stevenson, M. A. and Calderwood, S. K. (2005) Induction of heat shock proteins by heregulin beta1 leads to protection from apoptosis and anchorage-independent growth. Oncogene 24, 6564–73.PubMedGoogle Scholar
  45. Kim, S. A., Yoon, J. H., Lee, S. H. and Ahn, S. G. (2005) Polo-like kinase 1 phosphorylates heat shock transcription factor 1 and mediates its nuclear translocation during heat stress. J Biol Chem 280, 12653–7.PubMedCrossRefGoogle Scholar
  46. Kline, M. P. and Morimoto, R. I. (1997) Repression of the heat shock factor1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol. Cell. Biol. 17, 2107–2115.PubMedGoogle Scholar
  47. Knauf, U., Newton, E. M., Kyriakis, J. and Kingston, R. E. (1996) Repression of heat shock factor 1 activity at control temperature by phosphorylation. Genes Dev. 10, 2782–2793.PubMedCrossRefGoogle Scholar
  48. Kumar, R., Wang, R. A. and Bagheri-Yarmand, R. (2003) Emerging roles of MTA family members in human cancers. Semin Oncol 30, 30–7.PubMedCrossRefGoogle Scholar
  49. Li, Y., Tennekoon, G. I., Birnbaum, M., Marchionni, M. A. and Rutkowski, J. L. (2001) Neuregulin signaling through a PI3K/Akt/Bad pathway in Schwann cell survival. Mol Cell Neurosci 17, 761–7.PubMedCrossRefGoogle Scholar
  50. Lindquist, S. and Craig, E. A. (1988) The heat shock proteins. Ann. Rev. Genet. 22, 631–637.PubMedCrossRefGoogle Scholar
  51. Lis, J. T. and Wu, C. (1993) Protein traffic on the heat shock promoter: parking, stalling, and trucking along. Cell 74, 1–4.PubMedCrossRefGoogle Scholar
  52. Madden, S. L., Galella, E. A., Zhu, J., Bertelsen, A. H. and Beaudry, G. A. (1997) SAGE transcript profiles for p53-dependent growth regulation. Oncogene 15, 1079–85.PubMedCrossRefGoogle Scholar
  53. Marmorstein, R. (2001) Protein modules that manipulate histone tails for chromatin regulation. Nat Rev Mol Cell Biol 2, 422–32.PubMedCrossRefGoogle Scholar
  54. Matzke, M. A., Scheid, O. M. and Matzke, A. J. M. (1999) Rapid structural and epigenetic changes in polyploid and aneup[loid genomes. Bioessays 21, 761–767.PubMedCrossRefGoogle Scholar
  55. Mazumdar, A., Wang, R. A., Mishra, S. K., Adam, L., Bagheri-Yarmand, R., Mandal, M., Vadlamudi, R. K. and Kumar, R. (2001) Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nat Cell Biol 3, 30–7.PubMedCrossRefGoogle Scholar
  56. McMillan, D. R., Xiao, X., Shao, L., Graves, K. and Benjamin, I. J. (1998) Targeted disruption of heat shock transcription factor 1 abolishes thermotolerance and protection against heat-inducible apoptosis. J Biol Chem 273, 7523–7528.PubMedCrossRefGoogle Scholar
  57. Mishra, S. K., Mazumdar, A., Vadlamudi, R. K., Li, F., Wang, R. A., Yu, W., Jordan, V. C., Santen, R. J. and Kumar, R. (2003) MICoA, a novel metastasis-associated protein 1 (MTA1) interacting protein coactivator, regulates estrogen receptor-alpha transactivation functions. J Biol Chem 278, 19209–19.PubMedCrossRefGoogle Scholar
  58. Myers, S. M. and Mulligan, L. M. (2004) The RET receptor is linked to stress response pathways. Cancer Res 64, 4453–63.PubMedCrossRefGoogle Scholar
  59. Nakai, A., Tanabe, M., Kawazoe, Y., Inazawa, J., Morimoto, R. I. and Nagata, K. (1997) HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol. Cell. Biol. 17, 469–481.PubMedGoogle Scholar
  60. Neubauer, B. L., McNulty, A. M., Chedid, M., Chen, K., Goode, R. L., Johnson, M. A., Jones, C. D., Krishnan, V., Lynch, R., Osborne, H. E. and Graff, J. R. (2003) The selective estrogen receptor modulator trioxifene (LY133314) inhibits metastasis and extends survival in the PAIII rat prostatic carcinoma model. Cancer Res 63, 6056–62.PubMedGoogle Scholar
  61. Newton, E. M., Knauf, U., Green, M. and Kingston, R. E. (1996) The regulatory domain of human heat shock factor 1 is sufficient to sense heat stress. Molecular and Cellular Biology 16, 839–846.PubMedGoogle Scholar
  62. Nicolson, G. L. and Moustafa, A. S. (1998) Metastasis-Associated genes and metastatic tumor progression. In Vivo 12, 579–88.PubMedGoogle Scholar
  63. Nowak, S. J. and Corces, V. G. (2000) Phosphorylation of histone H3 correlates with transcriptionally active loci. Genes Dev 14, 3003–13.PubMedCrossRefGoogle Scholar
  64. Nueda, A., Hudson, F., Mivechi, N. F. and Dynan, W. S. (1999) DNA-dependent protein kinase protects against heat-induced apoptosis. J Biol Chem 274, 14988–96.PubMedCrossRefGoogle Scholar
  65. Peters, J. M. (2006) The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol 7, 644–56.PubMedCrossRefGoogle Scholar
  66. Peterson, S. R., Jesch, S. A., Chamberlin, T. N., Dvir, A., Rabindran, S. K., Wu, C. and Dynan, W. S. (1995) Stimulation of the DNA-dependent protein kinase by RNA polymerase II transcriptional activator proteins. J Biol Chem 270, 1449–54.PubMedCrossRefGoogle Scholar
  67. Price, B. D. and Calderwood, S. K. (1991) Calcium is essential for multistep activation of the heat shock factor in permeabilized cells. Mol Cell Biol 11, 3365–3368.PubMedGoogle Scholar
  68. Rabindran, S. K., Haroun, R. I., Clos, J., Wisniewski, J. and Wu, C. (1993) Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259, 230–234.PubMedCrossRefGoogle Scholar
  69. Rasnick, D. and Duesberg, P. (1999) How aneuploidy affects metabolic control and causes cancer. Biochem. J. 340.Google Scholar
  70. Sarge, K. D., Murphy, S. P. and Morimoto, R. I. (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell. Biol. 13, 1392–1407.PubMedGoogle Scholar
  71. Schneider, E. E., Albert, T., Wolf, D. A. and Eick, D. (1999) Regulation of c-Myc and immunoglobulin kappa gene transcription by promoter proximal pausing of RNA polymerase II. Curr Top Microbiol Immunol 246, 225–231.PubMedGoogle Scholar
  72. Schulze-Bergkamen, H. and Krammer, P. H. (2004) Apoptosis in cancer–implications for therapy. Semin Oncol 31, 90–119.PubMedCrossRefGoogle Scholar
  73. Singh, I. S., Calderwood, S. K., Kalvokalanu, I., Viscardi, R. M. and Hasday, J. D. (2000) Inhibition of tumor necrosis factor-alpha in macrophages exposed to febrile range temperatutre: A possible role for heat shock factor 1. J. Biol. Chem. 275, 9841–9848.PubMedCrossRefGoogle Scholar
  74. Singh, I. S., He, J. R., Calderwood, S. and Hasday, J. D. (2002) A high affinity HSF-1 binding site in the 5’-untranslated region of the murine tumor necrosis factor-alpha gene is a transcriptional repressor. J Biol Chem 277, 4981–8.PubMedCrossRefGoogle Scholar
  75. Smith, S. T., Petruk, S., Sedkov, Y., Cho, E., Tillib, S., Canaani, E. and Mazo, A. (2004) Modulation of heat shock gene expression by the TAC1 chromatin-modifying complex. Nat Cell Biol 6, 162–7.PubMedCrossRefGoogle Scholar
  76. Soncin, F., Zhang, X., Chu, B., Wang, X., Asea, A., Ann Stevenson, M., Sacks, D. B. and Calderwood, S. K. (2003) Transcriptional activity and DNA binding of heat shock factor-1 involve phosphorylation on threonine 142 by CK2. Biochem Biophys Res Commun 303, 700–6.PubMedCrossRefGoogle Scholar
  77. Sorger, P. K. and Nelson, H. C. M. (1989) Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 59, 807–813.PubMedCrossRefGoogle Scholar
  78. Stevenson, M. A., Zhao, M. J., Asea, A., Coleman, C. N. and Calderwood, S. K. (1999) Salicylic acid and aspirin inhibit the activity of RSK2 kinase and RSK2-dependent transcription of Cyclic AMP response element binding protein and NF-κB responsisve genes. J. Immunol. 163, 5608–5616.PubMedGoogle Scholar
  79. Sullivan, E. K., Weirich, C. S., Guyon, J. R., Sif, S. and Kingston, R. E. (2001) Transcriptional activation domains of human heat shock factor 1 recruit human SWI/SNF. Mol Cell Biol 21, 5826–5837.PubMedCrossRefGoogle Scholar
  80. Tchenio, T., Havard, M., Martinez, L. A. and Dautry, F. (2006) Heat shock-independent induction of multidrug resistance by heat shock factor 1. Mol Cell Biol 26, 580–91.PubMedCrossRefGoogle Scholar
  81. Thomson, S., Hollis, A., Hazzalin, C. A. and Mahadevan, L. C. (2004) Distinct stimulus-specific histone modifications at hsp70 chromatin targeted by the transcription factor heat shock factor-1. Mol Cell 15, 585–94.PubMedCrossRefGoogle Scholar
  82. Toh, Y., Pencil, S. D. and Nicolson, G. L. (1994) A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. J Biol Chem 269, 22958–63.PubMedGoogle Scholar
  83. Tsai, M. S., Shamon-Taylor, L. A., Mehmi, I., Tang, C. K. and Lupu, R. (2003) Blockage of heregulin expression inhibits tumorigenicity and metastasis of breast cancer. Oncogene 22, 761–8.PubMedCrossRefGoogle Scholar
  84. Venkateswarlu, S., Dawson, D. M., StClair, P., Gupta, A., Willson, J. K. and Brattain, M. G. (2002) Autocrine heregulin generates growth factor independence and blocks apoptosis in colon cancer cells. Oncogene 21, 78–86.PubMedCrossRefGoogle Scholar
  85. Viatour, P., Dejardin, E., Warnier, M., Lair, F., Claudio, E., Bureau, F., Marine, J. C., Merville, M. P., Maurer, U., Green, D., Piette, J., Siebenlist, U., Bours, V. and Chariot, A. (2004) GSK3-mediated BCL-3 phosphorylation modulates its degradation and its oncogenicity. Mol Cell 16, 35–45.PubMedCrossRefGoogle Scholar
  86. Vignali, M., Hassan, A. H., Neely, K. E. and Workman, J. L. (2000) ATP-dependent chromatin-remodeling complexes. Mol Cell Biol 20, 1899–910.PubMedCrossRefGoogle Scholar
  87. Voellmy, R. (1994) Transduction of the stress signal and mechanisms of transcriptional regulation of heat shock / stress protein expression in higher eukaryotes. Crit. Rev. Eukaryotic Gene Expr. 4, 357–401.Google Scholar
  88. Volloch, V. Z. and Sherman, M. Y. (1999) Oncogenic potential of Hsp72. Oncogene 18, 3648–51.PubMedCrossRefGoogle Scholar
  89. Wang, L., Lin, H. K., Hu, Y. C., Xie, S., yang, L. and Chang, C. (2004a) Suppression of androgen receptor-mediated transactivation and cell growth by the glycogen synthase kinase 3 beta in prostate cells. J. Biol. Chem. 279, 32444–32452.Google Scholar
  90. Wang, X., Grammatikakis, N., Siganou, A. and Calderwood, S. K. (2003) Regulation of molecular chaperone gene transcription involves the serine phosphorylation, 14-3-3 epsilon binding, and cytoplasmic sequestration of heat shock factor 1. Mol Cell Biol 23, 6013–26.PubMedCrossRefGoogle Scholar
  91. Wang, X., Grammatikakis, N., Siganou, A., Stevenson, M. A. and Calderwood, S. K. (2004b) Interactions between extracellular signal regulated protein kinase 1 (ERK1), 14–3–3 epsilon and heat shock factor 1 during stress. J Biol Chem.Google Scholar
  92. Wang, X., Khaleque, M. A., Zhao, M. J., Zhong, R., Gaestel, M. and Calderwood, S. K. (2006) Phosphorylation of HSF1 by MAPK-activated protein kinase 2 on serine 121, inhibits transcriptional activity and promotes HSP90 binding. J Biol Chem 281, 782–91.PubMedCrossRefGoogle Scholar
  93. Wang, Y., Theriault, J. R., He, H., Gong, J. and Calderwood, S. K. (2004c) Expression of a dominant negative heat shock factor-1 construct inhibits aneuploidy in prostate carcinoma cells. J Biol Chem 279, 32651–9.CrossRefGoogle Scholar
  94. Wang, Y., Theriault, J. R., He, H., Gong, J. and Calderwood, S. K. (2004d) Expression of a dominant negative heat shock factor-1 construct inhibits aneuploidy in prostate carcinoma cells. J Biol Chem (Epub).Google Scholar
  95. Westwood, T. and Wu, C. (1993) Activation of drosophila heat shock factor: conformational changes associated with monomer-to-trimer transition. Mol. Cell. Biol. 13, 3481–3486.PubMedGoogle Scholar
  96. Westwood, T. J., Clos, J. and Wu, C. (1991) Stress-induced oligomerization and chromosomal relocation of heat shock factor. Nature 353, 822–827.PubMedCrossRefGoogle Scholar
  97. Whitesell, L. and Lindquist, S. L. (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5, 761–72.PubMedCrossRefGoogle Scholar
  98. Wu, C. (1995) Heat shock transcription factors: structure and regulation. Ann Rev Cell Dev Biol 11, 441–469.CrossRefGoogle Scholar
  99. Xia, W. and Voellmy, R. (1997) Hyperphosphorylation of heat shock transcription factor 1 is correlated with transcriptional competence and slow dissociation of active trimers. J. Biol. Chem. 272, 4094–4102.PubMedCrossRefGoogle Scholar
  100. Xie, Y., Chen, C., Stevenson, M. A., Auron, P. E. and Calderwood, S. K. (2002a) Heat shock factor 1 represses transcription of the IL-1β gene through physical interaction with nuclear factor of interleukin 6. J. Biol. Chem. 277, 11802–11810.Google Scholar
  101. Xie, Y., Chen, C., Stevenson, M. A., Hume, D. A., Auron, P. E. and Calderwood, S. K. (2002b) NF-IL6 and HSF1 have mutually antagonistic effects on transcription in monocytic cells. Biochem. Biophys. Res. Commun. 291, 1071–1080.Google Scholar
  102. Xie, Y., Zhong, R., Chen, C. and Calderwood, S. K. (2003) Heat Shock factor 1 contains two functional domains that mediate transcriptional repression of the c-fos and c-fms genes. J. Biol. Chem. 278, 4687–4698.PubMedCrossRefGoogle Scholar
  103. Xue, Y., Wong, J., Moreno, G. T., Young, M. K., Cote, J. and Wang, W. (1998) NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell 2, 851–61.PubMedCrossRefGoogle Scholar
  104. Yarden, Y. and Sliwkowski, M. X. (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2, 127–37.PubMedCrossRefGoogle Scholar
  105. Zaarur, N., Gabai, V. L., Porco, J. A., Jr., Calderwood, S. and Sherman, M. Y. (2006) Targeting heat shock response to sensitize cancer cells to proteasome and Hsp90 inhibitors. Cancer Res 66, 1783–91.PubMedCrossRefGoogle Scholar
  106. Zou, J., Guo, Y., Guettouche, T., Smith, D. F. and Voellmy, R. (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94, 471–80.PubMedCrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Stuart K. Calderwood
    • 1
    • 2
  • Md Abdul Khaleque
    • 1
  • Ajit Bharti
    • 2
  • Daniel R. Ciocca
    • 3
  1. 1.Division of Molecular and Cellular Radiation OncologyBeth Israel Deaconess Medical Center Harvard Medical SchoolBoston
  2. 2.Department of MedicineBoston University School of MedicineUSA
  3. 3.Oncology LaboratoryInstitute of Experimental Medicine and Biology of Cuyo (CRICYT-CONICET) and Argentina Foundation for Cancer Research (FAIC)5500 MendozaArgentina

Personalised recommendations