Skip to main content

The Elevated Levels of Heat Shock Proteins In Cancer: A Suitable Case For Treatment?

  • Chapter
Book cover Heat Shock Proteins in Cancer

Part of the book series: Heat Shock Proteins ((HESP,volume 2))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agoff, S. N., Hou, J., Linzer, D. I. and Wu, B. (1993) Regulation of the human hsp70 promoter by p53. Science 259, 84–7.

    Article  PubMed  CAS  Google Scholar 

  • Akagawa, H., Takano, Y., Ishii, A., Mizuno, S., Izui, R., Sameshima, T., Kawamura, N., Dobashi, K. and Yoshioka, T. (1999) Stresgenin B, an inhibitor of heat-induced heat shock protein gene expression, produced by Streptomyces sp. AS-9. J Antibiot (Tokyo) 52, 960–70.

    CAS  Google Scholar 

  • Arrigo, A. P. (2005) [Heat shock proteins as molecular chaperones]. Med Sci (Paris) 21, 619–25.

    Google Scholar 

  • Asea, A., Ara, G., Teicher, B. A., Stevenson, M. A. and Calderwood, S. K. (2001) Effects of the flavonoid drug quercitin on the response of human prostate tumors to hyperthermia in vivo. Int J. Hyperthermia 17, 347–356.

    PubMed  CAS  Google Scholar 

  • Beere, H. M. (2001) Stressed to death: regulation of apoptotic signaling pathways by the heat shock proteins. Sci STKE 2001, RE1.

    Article  PubMed  CAS  Google Scholar 

  • Brodsky, J. L. (1999) Selectivity of the molecular chaperone-specific immunosuppressive agent 15-deoxyspergualin: modulation of Hsc70 ATPase activity without compromising DnaJ chaperone interactions. Biochem Pharmacol 57, 877–80.

    Article  PubMed  CAS  Google Scholar 

  • Buchdunger, E., Matter, A. and Druker, B. J. (2001) Bcr-Abl inhibition as a modality of CML therapeutics. Biochim Biophys Acta 1551, M11-8.

    PubMed  CAS  Google Scholar 

  • Buchner, J. (1999) HSP 90& Co.- a holding for folding. TIBS 24, 136–142.

    PubMed  CAS  Google Scholar 

  • Bukau, B. and Horwich, A. L. (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92, 351–66.

    Article  PubMed  CAS  Google Scholar 

  • Bukau, B., Weissman, J. and Horwich, A. (2006) Molecular chaperones and protein quality control. Cell 125, 443–51.

    Article  PubMed  CAS  Google Scholar 

  • Calderwood, S. K., Khaleque, M. A., Sawyer, D. B. and Ciocca, D. R. (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31, 164–72.

    Article  PubMed  CAS  Google Scholar 

  • Campisi, J. (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120, 513–22.

    Article  PubMed  CAS  Google Scholar 

  • Cashikar, A. G., Duennwald, M. and Lindquist, S. L. (2005) A Chaperone Pathway in Protein Disaggregation: HSP26 alters the nature of protein aggregates to facilitate reactivation by hsp104. J Biol Chem 280, 23869–75.

    Article  PubMed  CAS  Google Scholar 

  • Chauhan, D., Li, G., Shringarpure, R., Podar, K., Ohtake, Y., Hideshima, T. and Anderson, K. C. (2003) Blockade of Hsp27 overcomes Bortezomib/proteasome inhibitor PS-341 resistance in lymphoma cells. Cancer Res 63, 6174–7.

    PubMed  CAS  Google Scholar 

  • Cheung-Flynn, J., Prapapanich, V., Cox, M. B., Riggs, D. L., Suarez-Quian, C. and Smith, D. F. (2005) Physiological role for the cochaperone FKBP52 in androgen receptor signaling. Mol Endocrinol 19, 1654–66.

    Article  PubMed  CAS  Google Scholar 

  • Ciocca, D. R. and Calderwood, S. K. (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment applications. Cell Stress Chaperones 10, 86–103.

    Article  PubMed  CAS  Google Scholar 

  • Ciocca, D. R., Oesterreich, S., Chamness, G. C., McGuire, W. L. and Fuqua, S. A. (1993) Biological and clinical implications of heat shock protein 27,000 (Hsp27): a review. J Natl Cancer Inst 85, 1558–70.

    Article  PubMed  CAS  Google Scholar 

  • D’Andrea, L. D. and Regan, L. (2003) TPR proteins: the versatile helix. Trends Biochem Sci 28, 655–62.

    Article  PubMed  CAS  Google Scholar 

  • Didelot, C., Schmitt, E., Brunet, M., Maingret, L., Parcellier, A. and Garrido, C. (2006) Heat shock proteins: endogenous modulators of apoptotic cell death. Handb Exp Pharmacol, 171–98.

    Google Scholar 

  • Fewell, S. W., Smith, C. M., Lyon, M. A., Dumitrescu, T. P., Wipf, P., Day, B. W. and Brodsky, J. L. (2004) Small molecule modulators of endogenous and co-chaperone-stimulated Hsp70 ATPase activity. J Biol Chem 279, 51131–40.

    Article  PubMed  CAS  Google Scholar 

  • Folkman, J. (2002) Role of angiogenesis in tumor growth and metastasis. Semin Oncol 29, 15–8.

    PubMed  CAS  Google Scholar 

  • Frydman, J. and Hohfeld, J. (1997) Chaperones get in touch: the Hip-Hop connection. Trends Biochem Sci 22, 87–92.

    Article  PubMed  CAS  Google Scholar 

  • Garrido, C., Brunet, M., Didelot, C., Zermati, Y., Schmitt, E. and Kroemer, G. (2006) Heat Shock Proteins 27 and 70: Anti-Apoptotic Proteins with Tumorigenic Properties. Cell Cycle 5.

    Google Scholar 

  • Georgopolis, C. and Welch, W. J. (1993) Role of the major heat shock proteins as molecular chaperones. Ann. Rev. Cell Biol. 9, 601–634.

    Google Scholar 

  • Gerner, E. W. and Schneider, M. J. (1975) Induced thermal resistance in HeLa cells. Nature 256, 500–502.

    Article  PubMed  CAS  Google Scholar 

  • Ghioni, P., Bolognese, F., Duijf, P. H., Van Bokhoven, H., Mantovani, R. and Guerrini, L. (2002) Complex transcriptional effects of p63 isoforms: identification of novel activation and repression domains. Mol Cell Biol 22, 8659–68.

    Article  PubMed  CAS  Google Scholar 

  • Grammatikakis, N., Lin, J. H., Grammatikakis, A., Tsichlis, P. N. and Cochran, B. H. (1999) p50(cdc37) acting in concert with Hsp90 is required for Raf-1 function. Mol Cell Biol 19, 1661–72.

    PubMed  CAS  Google Scholar 

  • Hanahan, D. and Weinberg, R. A. (2000) The hallmarks of cancer. Cell 100, 57–70.

    Article  PubMed  CAS  Google Scholar 

  • Hoang, A. T., Huang, J., Rudra-Ganguly, N., Zheng, J., Powell, W. C., Rabindran, S. K., Wu, C. and Roy-Burman, P. (2000) A novel association between the human heat shock transcription factor 1 (HSF1) and prostate adenocarcinoma. Am J Pathol 156, 857–64.

    PubMed  CAS  Google Scholar 

  • Jaattela, M. (2004) Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 23, 2746–56.

    Article  PubMed  CAS  Google Scholar 

  • Jiang, J., Prasad, K., Lafer, E. M. and Sousa, R. (2005) Structural basis of interdomain communication in the Hsc70 chaperone. Mol Cell 20, 513–24.

    Article  PubMed  CAS  Google Scholar 

  • Jones, E. L., Zhao, M. J., Stevenson, M. A. and Calderwood, S. K. (2004) The 70 kilodalton heat shock protein is an inhibitor of apoptosis in cancer. Int. J. Hyperthermia. 20, 835–849.

    Article  PubMed  CAS  Google Scholar 

  • Kamal, A., Thao, L., Sensintaffar, J., Zhang, L., Boehm, M. F., Fritz, L. C. and Burrows, F. J. (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425, 407–10.

    Article  PubMed  CAS  Google Scholar 

  • Khaleque, M. A., Bharti, A., Sawyer, D., Gong, J., Benjamin, I. J., Stevenson, M. A. and Calderwood, S. K. (2005) Induction of heat shock proteins by heregulin beta1 leads to protection from apoptosis and anchorage-independent growth. Oncogene 24, 6564–73.

    PubMed  CAS  Google Scholar 

  • Lepchammer, S., Asea, A., Mallick, R., Zhong, R., Sherman, M. Y. and Calderwood, S. K. (2002) Development of an XTT tetrazolium salt-based assay for detection of hyperthermia sensitizers in a high-flux screening programme. Intl. J. Hyperthermia 18, 203–215.

    Article  CAS  Google Scholar 

  • Li, G. C. and Werb, Z. (1982) Correlation between the synthesis of heat shock proteins and the development of thermotolerance in CHO fibroblasts. Proceedings of the National Academy of Science (USA) 79, 3218–3222.

    Article  CAS  Google Scholar 

  • Lindquist, S. and Craig, E. A. (1988) The heat shock proteins. Ann. Rev. Genet. 22, 631–637.

    Article  PubMed  CAS  Google Scholar 

  • Madden, S. L., Galella, E. A., Zhu, J., Bertelsen, A. H. and Beaudry, G. A. (1997) SAGE transcript profiles for p53-dependent growth regulation. Oncogene 15, 1079–85.

    Article  PubMed  CAS  Google Scholar 

  • Mathew, A., Mathur, S. K. and Morimoto, R. I. (1998) Heat shock response and degradation: regulation of HSF2 by the ubiquitin-proteasome pathway. Mol. Cell. Biol. 18, 5091–5098.

    PubMed  CAS  Google Scholar 

  • Mayer, M. P. and Bukau, B. (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci 62, 670–84.

    Article  PubMed  CAS  Google Scholar 

  • Neckers, L. (2002) Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8, S55–61.

    Article  PubMed  CAS  Google Scholar 

  • Neckers, L. and Ivy, S. P. (2003) Heat shock protein 90. Curr Opin Oncol 15, 419–24.

    Article  PubMed  CAS  Google Scholar 

  • Neckers, L. and Lee, Y. S. (2003) Cancer: the rules of attraction. Nature 425, 357–9.

    Article  PubMed  CAS  Google Scholar 

  • Nelson, D. A. and White, E. (2004) Exploiting different ways to die. Genes Dev 18, 1223–6.

    Article  PubMed  CAS  Google Scholar 

  • Netzer, W. F. and Hartl, F. U. (1998) Protein folding in the cytosol: chaperonin-dependent and-independent mecanisms. TIBS 23, 68–74.

    PubMed  CAS  Google Scholar 

  • Nylandsted, J., Brand, K. and Jaattela, M. (2000) Heat shock protein 70 is required for the survival of cancer cells. Ann. N. Y. Acad. Sci. 926, 122–5.

    Article  PubMed  CAS  Google Scholar 

  • Nylandsted, J., Gyrd-Hansen, M., Danielewicz, A., Fehrenbacher, N., Lademann, U., Hoyer-Hansen, M., Weber, E., Multhoff, G., Rohde, M. and Jaattela, M. (2004) Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 200, 425–35.

    Article  PubMed  CAS  Google Scholar 

  • O’Hare, T., Corbin, A. S. and Druker, B. J. (2006) Targeted CML therapy: controlling drug resistance, seeking cure. Curr Opin Genet Dev 16, 92–9.

    Article  PubMed  CAS  Google Scholar 

  • Ohnishi, K., Takahashi, A., Yokota, S. and Ohnishi, T. (2004) Effects of a heat shock protein inhibitor KNK437 on heat sensitivity and heat tolerance in human squamous cell carcinoma cell lines differing in p53 status. Int J Radiat Biol 80, 607–14.

    Article  PubMed  CAS  Google Scholar 

  • Paul, C., Manero, F., Gonin, S., Kretz-Remy, C., Virot, S. and Arrigo, A. P. (2002) Hsp27 as a negative regulator of cytochrome C release. Mol Cell Biol 22, 816–34.

    PubMed  CAS  Google Scholar 

  • Pearl, L. H. (2005) Hsp90 and Cdc37 – a chaperone cancer conspiracy. Curr Opin Genet Dev 15, 55–61.

    Article  PubMed  CAS  Google Scholar 

  • Pratt, W. B., Galigniana, M. D., Harrell, J. M. and DeFranco, D. B. (2004) Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 16, 857–72.

    Article  PubMed  CAS  Google Scholar 

  • Proskuryakov, S. Y., Konoplyannikov, A. G. and Gabai, V. L. (2003) Necrosis: a specific form of programmed cell death? Exp Cell Res 283, 1–16.

    Google Scholar 

  • Qian, S. B., McDonough, H., Boellmann, F., Cyr, D. M. and Patterson, C. (2006) CHIP-mediated stress recovery by sequential ubiquitination of substrates and Hsp70. Nature 440, 551–5.

    Article  PubMed  CAS  Google Scholar 

  • Rohde, M., Daugaard, M., Jensen, M. H., Helin, K., Nylandsted, J. and Jaattela, M. (2005) Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev 19, 570–82.

    Article  PubMed  CAS  Google Scholar 

  • Roiniotis, J., Masendycz, P., Ho, S. and Scholz, G. M. (2005) Domain-mediated dimerization of the Hsp90 cochaperones Harc and Cdc37. Biochemistry 44, 6662–9.

    Article  PubMed  CAS  Google Scholar 

  • Rossi, A., Ciafre, S., Balsamo, M., Pierimarchi, P. and Santoro, M. G. (2006) Targeting the heat shock factor 1 by RNA interference: a potent tool to enhance hyperthermochemotherapy efficacy in cervical cancer. Cancer Res 66, 7678–85.

    Article  PubMed  CAS  Google Scholar 

  • Rubtsova, M. P., Sizova, D. V., Dmitriev, S. E., Ivanov, D. S., Prassolov, V. S. and Shatsky, I. N. (2003) Distinctive properties of the 5^′-untranslated region of human hsp70 mRNA. J Biol Chem 278, 22350–6.

    Article  PubMed  CAS  Google Scholar 

  • Sawyers, C. L. (2005) Making progress through molecular attacks on cancer. Cold Spring Harb Symp Quant Biol 70, 479–82.

    Article  PubMed  CAS  Google Scholar 

  • Schlessinger, M. J. (1994) How the cell copes with stress and the function of heat shock proteins. Pediatric Research 36, 1–6.

    Article  Google Scholar 

  • Schmitt, E., Maingret, L., Puig, P. E., Rerole, A. L., Ghiringhelli, F., Hammann, A., Solary, E., Kroemer, G. and Garrido, C. (2006) Heat shock protein 70 neutralization exerts potent antitumor effects in animal models of colon cancer and melanoma. Cancer Res 66, 4191–7.

    Article  PubMed  CAS  Google Scholar 

  • Schwarze, S. R., Fu, V. X. and Jarrard, D. F. (2003) Cdc37 enhances proliferation and is necessary for normal human prostate epithelial cell survival. Cancer Res 63, 4614–9.

    PubMed  CAS  Google Scholar 

  • Sharp, S. and Workman, P. (2006) Inhibitors of the HSP90 molecular chaperone: current status. Adv Cancer Res 95, 323–48.

    Article  PubMed  CAS  Google Scholar 

  • Sousa, R. and Lafer, E. M. (2006) Keep the Traffic Moving: Mechanism of the Hsp70 Motor. Traffic.

    Google Scholar 

  • Taira, T., Sawai, M., Ikeda, M., Tamai, K., Iguchi-Ariga, S. M. and Ariga, H. (1999) Cell cycle-dependent switch of up-and down-regulation of human hsp70 gene expression by interaction between c-Myc and CBF/NF-Y. J Biol Chem 274, 24270–9.

    Article  PubMed  CAS  Google Scholar 

  • Tang, D., Khaleque, A. A., Jones, E. R., Theriault, J. R., Li, C., Wong, W. H., Stevenson, M. A. and Calderwood, S. K. (2005) Expression of heat shock proteins and HSP messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. Cell Stress Chaperones 10, 46–59.

    Article  PubMed  CAS  Google Scholar 

  • Tchenio, T., Havard, M., Martinez, L. A. and Dautry, F. (2006) Heat shock-independent induction of multidrug resistance by heat shock factor 1. Mol Cell Biol 26, 580–91.

    Article  PubMed  CAS  Google Scholar 

  • Teng, S. C., Chen, Y. Y., Su, Y. N., Chou, P. C., Chiang, Y. C., Tseng, S. F. and Wu, K. J. (2004) Direct activation of HSP90A transcription by c-Myc contributes to c-Myc-induced transformation. J Biol Chem 279, 14649–55.

    Article  PubMed  CAS  Google Scholar 

  • Tenniswood, M. P., Guenette, R. S., Lakins, J., Mooibroek, M., Wong, P. and Welsh, J. E. (1992) Active cell death in hormone-dependent tissues. Cancer Metastasis Rev 11, 197–220.

    Article  PubMed  CAS  Google Scholar 

  • Tsutsumi-Ishii, Y., Tadokoro, K., Hanaoka, F. and Tsuchida, N. (1995) Response of heat shock element within the human HSP70 promoter to mutated p53 genes. Cell Growth Differ 6, 1–8.

    PubMed  CAS  Google Scholar 

  • van ’t Veer, L. J., Dai, H., van de Vijver, M. J., He, Y. D., Hart, A. A., Mao, M., Peterse, H. L., van der Kooy, K., Marton, M. J., Witteveen, A. T., Schreiber, G. J., Kerkhoven, R. M., Roberts, C., Linsley, P. S., Bernards, R. and Friend, S. H. (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415, 530–6.

    Article  PubMed  Google Scholar 

  • Vargas-Roig, L. M., Gago, F. E., Tello, O., Aznar, J. C. and Ciocca, D. R. (1998) Heat shock protein expression and drug resistance in breast cancer patients treated with induction chemotherapy. Int J Cancer 79, 468–75.

    Article  PubMed  CAS  Google Scholar 

  • Wadhwa, R., Taira, K. and Kaul, S. C. (2002) An Hsp70 family chaperone, mortalin/mthsp70/PBP74/Grp75: what, when, and where? Cell Stress Chaperones 7, 309–16.

    Google Scholar 

  • Wang, X., Khaleque, M. A., Zhao, M. J., Zhong, R., Gaestel, M. and Calderwood, S. K. (2006) Phosphorylation of HSF1 by MAPK-activated protein kinase 2 on serine 121, inhibits transcriptional activity and promotes HSP90 binding. J Biol Chem 281, 782–91.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Theriault, J. R., He, H., Gong, J. and Calderwood, S. K. (2004) Expression of a dominant negative heat shock factor-1 construct inhibits aneuploidy in prostate carcinoma cells. J Biol Chem 279, 32651–9.

    Article  PubMed  CAS  Google Scholar 

  • Wegele, H., Muller, L. and Buchner, J. (2004) Hsp70 and Hsp90 – a relay team for protein folding. Rev Physiol Biochem Pharmacol 151, 1–44.

    Article  PubMed  CAS  Google Scholar 

  • Westerheide, S. D., Kawahara, T. L., Orton, K. and Morimoto, R. I. (2006) Triptolide, an inhibitor of the human heat shock response that enhances stress-induced cell death. J Biol Chem 281, 9616–22.

    Article  PubMed  CAS  Google Scholar 

  • Workman, P. (2004) Altered states: selectively drugging the Hsp90 cancer chaperone. Trends Mol Med 10, 47–51.

    Article  PubMed  CAS  Google Scholar 

  • Wu, C. (1995) Heat shock transcription factors: structure and regulation. Ann Rev Cell Dev Biol 11, 441–469.

    Article  CAS  Google Scholar 

  • Wu, G., Osada, M., Guo, Z., Fomenkov, A., Begum, S., Zhao, M., Upadhyay, S., Xing, M., Wu, F., Moon, C., Westra, W. H., Koch, W. M., Mantovani, R., Califano, J. A., Ratovitski, E., Sidransky, D. and Trink, B. (2005) DeltaNp63alpha up-regulates the Hsp70 gene in human cancer. Cancer Res 65, 758–66.

    PubMed  CAS  Google Scholar 

  • Zaarur, N., Gabai, V. L., Porco, J. A., Jr., Calderwood, S. and Sherman, M. Y. (2006) Targeting heat shock response to sensitize cancer cells to proteasome and Hsp90 inhibitors. Cancer Res 66, 1783–91.

    Article  PubMed  CAS  Google Scholar 

  • Zou, J., Guo, Y., Guettouche, T., Smith, D. F. and Voellmy, R. (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94, 471–80.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Calderwood, S.K., Ciocca, D.R., Gray, P.J., Zaarur, N., Lepchammer, S., Sherman, M.Y. (2007). The Elevated Levels of Heat Shock Proteins In Cancer: A Suitable Case For Treatment?. In: Calderwood, S.K., Sherman, M.Y., Ciocca, D.R. (eds) Heat Shock Proteins in Cancer. Heat Shock Proteins, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6401-2_17

Download citation

Publish with us

Policies and ethics