Skip to main content

Cdc37 and protein kinase folding

  • Chapter
Heat Shock Proteins in Cancer

Part of the book series: Heat Shock Proteins ((HESP,volume 2))

Abstract

Cdc37 is a molecular chaperone that collaborates with Hsp90 to fold protein kinases and other clients including transcription factors. Cdc37 function in protein kinase folding is dependent on direct interaction between the chaperone and the N-lobe of the kinase catalytic domain. In addition, Cdc37 can inhibit the ATPase activity of Hsp90 that is thought to promote assembly of the kinase client with both chaperone proteins. Treatment of cells with the Hsp90 inhibitor, geldanamycin, inhibits assembly of Hsp90:kinase compelxes event although it does not promote disassembly of Hsp90:Cdc37 complexes. Cdc37 interaction with its kinase clients is dependent of phosphorylation at its N-terminus by casein kinase II. Cdc37 is highly expressed in cancer cells and tissues and can promote tumorigenesis when overexpressed. This is correlated with increased levels of Cdk4 and Cdk4:cyclin D complexes that promote cell cycle progression. The chapter focuses on structure function relationships between Cdc37, Hsp90 and their kinase clients. The role of Cdc37 in promoting tumorigenesis is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbas-Terki, T., Briand, P. A., Donze, O. and Picard, D. (2002) The Hsp90 co-chaperones Cdc37 and Sti1 interact physically and genetically. Biol Chem 383, 1335–42.

    PubMed  CAS  Google Scholar 

  • Ali, M. M., Roe, S. M., Vaughan, C. K., Meyer, P., Panaretou, B., Piper, P. W., Prodromou, C. and Pearl, L. H. (2006) Crystal structure of an Hsp90-nucleotide-p23/Sba1 closed chaperone complex. Nature 440, 1013–7.

    PubMed  CAS  Google Scholar 

  • Allan, R. K., Mok, D., Ward, B. K. and Ratajczak, T. (2006) Modulation of chaperone function and cochaperone interaction by novobiocin in the C-terminal domain of Hsp90: evidence that coumarin antibiotics disrupt Hsp90 dimerization. J Biol Chem 281, 7161–71.

    PubMed  CAS  Google Scholar 

  • Arlander, S. J., Felts, S. J., Wagner, J. M., Stensgard, B., Toft, D. O. and Karnitz, L. M. (2005) Chaperoning checkpoint kinase 1 (Chk1), an Hsp90 client, with purified chaperones. J Biol Chem.

    Google Scholar 

  • Bandhakavi, S., McCann, R. O., Hanna, D. E. and Glover, C. V. (2003) A Positive Feedback Loop between Protein Kinase CKII and Cdc37 Promotes the Activity of Multiple Protein Kinases. J Biol Chem 278, 2829–36.

    PubMed  CAS  Google Scholar 

  • Bijlmakers, M. J. and Marsh, M. (2000) Hsp90 is essential for the synthesis and subsequent membrane association, but not the maintenance, of the Src-kinase p56(lck). Mol Biol Cell 11, 1585-95.

    PubMed  CAS  Google Scholar 

  • Chadli, A., Bouhouche, I., Sullivan, W., Stensgard, B., McMahon, N., Catelli, M. G. and Toft, D. O. (2000) Dimerization and N-terminal domain proximity underlie the function of the molecular chaperone heat shock protein 90. Proc Natl Acad Sci U S A 97, 12524–9.

    PubMed  CAS  Google Scholar 

  • Channavajhala, P. and Seldin, D. C. (2002) Functional interaction of protein kinase CK2 and c-Myc in lymphomagenesis. Oncogene 21, 5280–8.

    PubMed  CAS  Google Scholar 

  • Citri, A., Harari, D., Shohat, G., Ramakrishnan, P., Gan, J., Lavi, S., Eisenstein, M., Kimchi, A., Wallach, D., Pietrokovski, S. and Yarden, Y. (2006) Hsp90 recognizes a common surface on client kinases. J Biol Chem 281, 14361–9.

    PubMed  CAS  Google Scholar 

  • Cutforth, T. and Rubin, G. M. (1994) Mutations in hsp83 and cdc37 impair signalling by the sevenless receptor tyrosine kinase in Drosophila. Cell 77, 1027–1036.

    PubMed  CAS  Google Scholar 

  • Donze, O., Abbas-Terki, T. and Picard, D. (2001) The Hsp90 chaperone complex is both a facilitator and a repressor of the dsRNA-dependent kinase PKR. Embo J 20, 3771–80.

    PubMed  CAS  Google Scholar 

  • Donze, O. and Picard, D. (1999) Hsp90 binds and regulates Gcn2, the ligand-inducible kinase of the alpha subunit of eukaryotic translation initiation factor 2 [corrected]. Mol Cell Biol 19, 8422–32.

    PubMed  CAS  Google Scholar 

  • Felts, S. J. and Toft, D. O. (2003) p23, a simple protein with complex activities. Cell Stress Chaperones 8, 108–13.

    PubMed  CAS  Google Scholar 

  • Fliss, A. E., Fang, Y., Boschelli, F. and Caplan, A. J. (1997a) Differential In Vivo Regulation of Steroid Hormone Receptor Activation by Cdc37p. Mol Biol Cell 8, 2501–9.

    CAS  Google Scholar 

  • Fliss, A. E., Fang, Y., Boschelli, F. and Caplan, A. J. (1997b) Differential in vivo regulation of steroid hormone receptor activation by Cdc37p. Mol. Biol. Cell 8, 2501–2509.

    CAS  Google Scholar 

  • Garnier, C., Lafitte, D., Tsvetkov, P. O., Barbier, P., Leclerc-Devin, J., Millot, J. M., Briand, C., Makarov, A. A., Catelli, M. G. and Peyrot, V. (2002) Binding of ATP to heat shock protein 90: evidence for an ATP-binding site in the C-terminal domain. J Biol Chem 277, 12208–14.

    PubMed  CAS  Google Scholar 

  • Giannini, A. and Bijlmakers, M. J. (2004) Regulation of the Src family kinase Lck by Hsp90 and ubiquitination. Mol Cell Biol 24, 5667–76.

    PubMed  CAS  Google Scholar 

  • Grammatikakis, N., Lin, J.-H., Grammatikakis, A., Tsichlis, P. N. and Cochran, B. H. (1999) p50cdc37 acting in concert with hsp90 is required for raf-1 function. Mol. Cell. Biol. 19, 1661–1672.

    PubMed  CAS  Google Scholar 

  • Grenert, J. P., Johnson, B. D. and Toft, D. O. (1999) The importance of ATP binding and hydrolysis by hsp90 in formation and function of protein heterocomplexes. J. Biol. Chem. 274, 17525–17533.

    PubMed  CAS  Google Scholar 

  • Harris, M. B., Bartoli, M., Sood, S. G., Matts, R. L. and Venema, R. C. (2006) Direct interaction of the cell division cycle 37 homolog inhibits endothelial nitric oxide synthase activity. Circ Res 98, 335–41.

    PubMed  CAS  Google Scholar 

  • Hartson, S. D., Barrett, D. J., Burn, P. and Matts, R. L. (1996) Hsp90-mediated folding of the lymphoid cell kinase p56lck. Biochemistry 35, 13451–9.

    PubMed  CAS  Google Scholar 

  • Hartson, S. D., Irwin, A. D., Shao, J., Scroggins, B. T., Volk, L., Huang, W. and Matts, R. L. (2000) p50cdc37 as a non-exclusive Hsp90 cohort which participates in Hsp90-mediated folding of immature kinase molecules. Biochemistry 39, 7631–7644.

    PubMed  CAS  Google Scholar 

  • Hartson, S. D., Ottinger, E. A., Huang, W., Barany, G., Burn, P. and Matts, R. L. (1998) Modular folding and evidence for phosphorylation-induced stabilization of an hsp90-dependent kinase. J Biol Chem 273, 8475–82.

    PubMed  CAS  Google Scholar 

  • Hartson, S. D., Thulasiraman, V., Huang, W., Whitesell, L. and Matts, R. L. (1999) Molybdate inhibits hsp90, induces structural changes in its C-terminal domain, and alters its interactions with substrates. Biochemistry 38, 3837–3849.

    PubMed  CAS  Google Scholar 

  • Hernandez, M. P., Sullivan, W. P. and Toft, D. O. (2002) The assembly and intermolecular properties of the hsp70-Hop-hsp90 molecular chaperone complex. J Biol Chem 277, 38294–304.

    PubMed  CAS  Google Scholar 

  • Jeffrey, P. D., Russo, A. A., Polyak, K., Gibbs, E., Hurwitz, J., Massague, J. and Pavletich, N. P. (1995) Mechanism of CDK activation revealed by the structure of a cyclinA-CDK2 complex. Nature 376, 313–20.

    PubMed  CAS  Google Scholar 

  • Johnson, B. D., Schumacher, R. J., Ross, E. D. and Toft, D. O. (1998) Hop modulates hsp70/hsp90 interactions in protein folding. J. Biol. Chem. 273, 3679–3686.

    PubMed  CAS  Google Scholar 

  • Johnson, J. L. and Toft, D. O. (1995) Binding of p23 and hsp90 during assembly with the progesterone receptor. Mol. Endocrinol. 9, 670–678.

    PubMed  CAS  Google Scholar 

  • Kanelakis, K. C., Shewach, D. S. and Pratt, W. B. (2002) Nucleotide binding states of hsp70 and hsp90 during sequential steps in the process of glucocorticoid receptor.hsp90 heterocomplex assembly. J Biol Chem 277, 33698–703.

    PubMed  CAS  Google Scholar 

  • Kimura, Y., Rutherford, S. L., Miyata, Y., Yahara, I., Freeman, B. C., Yue, L., Morimoto, R. I. and Lindquist, S. (1997a) Cdc37 is a molecular chaperone with specific functions in signal transduction. Genes Dev 11, 1775–85.

    CAS  Google Scholar 

  • Kimura, Y., Rutherford, S. L., Miyata, Y., Yahara, I., Freeman, B. C., Yue, L., Morimoto, R. L. and Lindquist, S. (1997b) Cdc37 is a molecular chaperone with specific functions in signal transduction. Genes Dev. 11, 1775–1785.

    CAS  Google Scholar 

  • Lee, P., Rao, J., Fliss, A., Yang, E., Garrett, S. and Caplan, A. J. (2002) The Cdc37 protein kinase-binding domain is sufficient for protein kinase activity and cell viability. J Cell Biol 159, 1051–9.

    PubMed  CAS  Google Scholar 

  • Lee, P., Shabbir, A., Cardozo, C. and Caplan, A. J. (2004) Sti1 and Cdc37 can stabilize Hsp90 in chaperone complexes with a protein kinase. Mol Biol Cell 15, 1785–92.

    PubMed  CAS  Google Scholar 

  • MacLean, M. and Picard, D. (2003) Cdc37 goes beyond Hsp90 and kinases. Cell Stress Chaperones 8, 114–9.

    PubMed  CAS  Google Scholar 

  • Marcu, M. G., Chadli, A., Bouhouche, I., Catelli, M. and Neckers, L. M. (2000) The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem 275, 37181-6.

    Google Scholar 

  • McLaughlin, S. H., Smith, H. W. and Jackson, S. E. (2002) Stimulation of the weak ATPase activity of human hsp90 by a client protein. J Mol Biol 315, 787–98.

    PubMed  CAS  Google Scholar 

  • Meyer, P., Prodromou, C., Hu, B., Vaughan, C., Roe, S. M., Panaretou, B., Piper, P. W. and Pearl, L. H. (2003) Structural and functional analysis of the middle segment of hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell 11, 647–58.

    PubMed  CAS  Google Scholar 

  • Meyer, P., Prodromou, C., Liao, C., Hu, B., Mark Roe, S., Vaughan, C. K., Vlasic, I., Panaretou, B., Piper, P. W. and Pearl, L. H. (2004) Structural basis for recruitment of the ATPase activator Aha1 to the Hsp90 chaperone machinery. Embo J 23, 511–9.

    PubMed  CAS  Google Scholar 

  • Miyata, Y. and Nishida, E. (2004) CK2 controls multiple protein kinases by phosphorylating a kinase-targeting molecular chaperone, Cdc37. Mol Cell Biol 24, 4065–74.

    PubMed  CAS  Google Scholar 

  • Morishima, Y., Murphy, P. J., Li, D. P., Sanchez, E. R. and Pratt, W. B. (2000) Stepwise assembly of a glucocorticoid receptor.hsp90 heterocomplex resolves two sequential ATP-dependent events involving first hsp70 and then hsp90 in opening of the steroid binding pocket. J Biol Chem 275.

    Google Scholar 

  • Owen, B. A., Sullivan, W. P., Felts, S. J. and Toft, D. O. (2002) Regulation of heat shock protein 90 (HSP90) ATPase activity by sequences in the carboxyl terminus. J Biol Chem 277, 7086–91.

    PubMed  CAS  Google Scholar 

  • Pearl, L. H. (2005) Hsp90 and Cdc37 – a chaperone cancer conspiracy. Curr Opin Genet Dev 15, 55–61.

    PubMed  CAS  Google Scholar 

  • Pearl, L. H. and Prodromou, C. (2002) Structure, function, and mechanism of the Hsp90 molecular chaperone. Adv. Prot. Chem. 59, 157–185.

    CAS  Google Scholar 

  • Pearl, L. H. and Prodromou, C. (2006) Structure and mechanism of the hsp90 molecular chaperone machinery. Annu Rev Biochem 75, 271–94.

    PubMed  CAS  Google Scholar 

  • Perdew, G. H., Wiegand, H., Vanden Heuvel, J. P., Mitchell, C. and Singh, S. S. (1997) A 50 kilodalton protein associated with raf and pp60(v-src) protein kinases is a mammalian homolog of the cell cycle control protein cdc37. Biochemistry 36, 3600–7.

    PubMed  CAS  Google Scholar 

  • Picard, D. (2002) Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci 59, 1640–8.

    PubMed  CAS  Google Scholar 

  • Pinna, L. A. and Meggio, F. (1997) Protein kinase CK2 (“casein kinase-2”) and its implication in cell division and proliferation. Prog Cell Cycle Res 3, 77–97.

    PubMed  CAS  Google Scholar 

  • Pratt, W. B. and Toft, D. O. (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228, 111–33.

    CAS  Google Scholar 

  • Prince, T. and Matts, R. L. (2004) Definition of protein kinase sequence motifs that trigger high affinity binding of Hsp90 and Cdc37. J Biol Chem 279, 39975–81.

    PubMed  CAS  Google Scholar 

  • Prince, T. and Matts, R. L. (2005) Exposure of protein kinase motifs that trigger binding of Hsp90 and Cdc37. Biochem Biophys Res Commun 338, 1447-54.

    Google Scholar 

  • Prince, T., Sun, L. and Matts, R. L. (2005) Cdk2: a genuine protein kinase client of hsp90 and cdc37. Biochemistry 44, 15287–95.

    PubMed  CAS  Google Scholar 

  • Prodromou, C., Panaretou, B., Chohan, S., Siligardi, G., O’Brien, R., Ladbury, J. E., Roe, S. M., Piper, P. W. and Pearl, L. H. (2000) The ATPase cycle of Hsp90 drives a molecular ‘clamp’ via transient dimerization of the N-terminal domains. Embo J 19, 4383–92.

    PubMed  CAS  Google Scholar 

  • Prodromou, C., Roe, S. M., O’Brien, R., Ladbury, J. E., Piper, P. W. and Pearl, L. H. (1997) Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90, 65–75.

    PubMed  CAS  Google Scholar 

  • Prodromou, C., Siligardi, G., O’Brien, R., Woolfson, D. N., Regan, L., Panaretou, B., Ladbury, J. E., Piper, P. W. and Pearl, L. H. (1999) Regulation of hsp90 ATPase activity by tetratricopeptide repeat (TPR)-domain co-chaperones. EMBO J. 18, 754–762.

    PubMed  CAS  Google Scholar 

  • Rao, J., Lee, P., Benzeno, S., Cardozo, C., Albertus, J., Robins, D. M. and Caplan, A. J. (2001) Functional interaction of human Cdc37 with the androgen receptor but not with the glucocorticoid receptor. J Biol Chem 276, 5814–20.

    PubMed  CAS  Google Scholar 

  • Reed, S. I. (1980a) The selection of amber mutations in genes required for completion of start, the controlling event of the cell division cycle of S. cerevisiae. Genetics 95, 579–88.

    CAS  Google Scholar 

  • Reed, S. I. (1980b) The selection of S. cerevisiae mutants defective in the start event of cell division. Genetics 95, 561–77.

    CAS  Google Scholar 

  • Richter, K., Muschler, P., Hainzl, O. and Buchner, J. (2001) Coordinated ATP hydrolysis by the Hsp90 dimer. J Biol Chem 276, 33689–96.

    PubMed  CAS  Google Scholar 

  • Riggs, D., Cox, M., Cheung-Flynn, J., Prapapanich, V., Carrigan, P. and Smith, D. (2004) Functional specificity of co-chaperone interactions with Hsp90 client proteins. Crit Rev Biochem Mol Biol 39, 279–95.

    PubMed  CAS  Google Scholar 

  • Roe, S. M., Ali, M. M., Meyer, P., Vaughan, C. K., Panaretou, B., Piper, P. W., Prodromou, C. and Pearl, L. H. (2004) The Mechanism of Hsp90 Regulation by the Protein Kinase-Specific Cochaperone p50(cdc37). Cell 116, 87–98.

    PubMed  CAS  Google Scholar 

  • Sakagami, M., Morrison, P. and Welch, W. J. (1999) Benzoquinoid ansamycins (herbimycin A and geldanamycin) interfere with the maturation of growth factor receptor tyrosine kinases. Cell Stress Chaperones 4, 19–28.

    PubMed  CAS  Google Scholar 

  • Scheibel, T., Siegmund, H. I., Jaenicke, R., Ganz, P., Lilie, H. and Buchner, J. (1999) The charged region of Hsp90 modulates the function of the N-terminal domain. Proc Natl Acad Sci U S A 96, 1297–302.

    PubMed  CAS  Google Scholar 

  • Scheibel, T., Weikl, T. and Buchner, J. (1998) Two chaperone sites in Hsp90 differing in substrate specificity and ATP dependence. Proc Natl Acad Sci U S A 95, 1495–9.

    PubMed  CAS  Google Scholar 

  • Scholz, G., Hartson, S. D., Cartedge, K., Hall, N., Shao, J., Dunn, A. R. and Matts, R. L. (2000) p50cdc37 can Buffer the Temperature-sensitive Properties of a Mutant of Hck. Mol. Cell. Biol. 20, 6984–6995.

    PubMed  CAS  Google Scholar 

  • Scholz, G. M., Hartson, S. D., Cartledge, K., Volk, L., Matts, R. L. and Dunn, A. R. (2001) The molecular chaperone Hsp90 is required for signal transduction by wildtype Hck and maintenance of an oncogenic mutant of Hck. Cell Growth and Differentiation 12, 409–417.

    PubMed  CAS  Google Scholar 

  • Schulte, T. W., Akinaga, S., Murakata, T., Agatsuma, T., Sugimoto, S., Nakano, H., Lee, Y. S., Simen, B. B., Argon, Y., Felts, S., Toft, D. O., Neckers, L. M. and Sharma, S. V. (1999) Interaction of radicicol with members of the heat shock protein 90 family of molecular chaperones. Mol Endocrinol 13, 1435–48.

    PubMed  CAS  Google Scholar 

  • Schulze-Gahmen, U., De Bondt, H. L. and Kim, S. H. (1996) High-resolution crystal structures of human cyclin-dependent kinase 2 with and without ATP: bound waters and natural ligand as guides for inhibitor design. J Med Chem 39, 4540–6.

    PubMed  CAS  Google Scholar 

  • Schwarze, S. R., Fu, V. X. and Jarrard, D. F. (2003) Cdc37 enhances proliferation and is necessary for normal human prostate epithelial cell survival. Cancer Res 63, 4614–9.

    PubMed  CAS  Google Scholar 

  • Scroggins, B. T., Prince, T., Shao, J., Uma, S., Huang, W., Guo, Y., Yun, B. G., Hedman, K., Matts, R. L. and Hartson, S. D. (2003) High affinity binding of Hsp90 is triggered by multiple discrete segments of its kinase clients. Biochemistry 42, 12550–61.

    PubMed  CAS  Google Scholar 

  • Seldin, D. C. and Leder, P. (1995) Casein kinase II alpha transgene-induced murine lymphoma: relation to theileriosis in cattle. Science 267, 894–7.

    PubMed  CAS  Google Scholar 

  • Shao, J., Gramatikakis, N., Scroggins, B., Uma, S., Huang, W., Chen, J.-J., Hartson, S. D. and Matts, R. L. (2001) Hsp90 Regulates p50cdc37 Function during the Biogenesis of the Active Conformation of the Heme-regulated eIF2α Kinase. J. Biol. Chem. 276, 206–214.

    PubMed  CAS  Google Scholar 

  • Shao, J., Irwin, A., Hartson, S. D. and Matts, R. L. (2003a) Functional dissection of cdc37: characterization of domain structure and amino acid residues critical for protein kinase binding. Biochemistry 42, 12577–88.

    CAS  Google Scholar 

  • Shao, J., Prince, T., Hartson, S. D. and Matts, R. L. (2003b) Phosphorylation of serine-13 is required for the proper function of the Hsp90 Co-chaperone, Cdc37. J Biol Chem 278, 38117–20.

    CAS  Google Scholar 

  • Shiau, A. K., Harris, S. F., Southworth, D. R. and Agard, D. A. (2006) Structural Analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127, 329–40.

    PubMed  CAS  Google Scholar 

  • Sicheri, F., Moarefi, I. and Kuriyan, J. (1997) Crystal structure of the Src family tyrosine kinase Hck. Nature 385, 602–9.

    PubMed  CAS  Google Scholar 

  • Siligardi, G., Hu, B., Panaretou, B., Piper, P. W., Pearl, L. H. and Prodromou, C. (2004) Co-chaperone regulation of conformational switching in the Hsp90 ATPase cycle. J Biol Chem 279, 51989–98.

    PubMed  CAS  Google Scholar 

  • Siligardi, G., Panaretou, B., Meyer, P., Singh, S., Woolfson, D. N., Piper, P. W., Pearl, L. H. and Prodromou, C. (2002) Regulation of Hsp90 ATPase activity by the co-chaperone Cdc37p/p50cdc37. J Biol Chem 277, 20151–9.

    PubMed  CAS  Google Scholar 

  • Smith, D. F., Whitesell, L., Nair, S. C., Chen, S., Prapapanich, V. and Rimerman, R. A. (1995) Progesterone receptor structure and function altered by geldanamycin, an hsp90-binding agent. Mol. Cell. Biol. 15, 6804–6812.

    PubMed  CAS  Google Scholar 

  • Soti, C., Racz, A. and Csermely, P. (2001) A nucleotide-dependent molecular switch controls ATP binding at the C-terminal domain of Hsp90: N-terminal nucleotide binding unmasks a C-terminal binding pocket. J Biol Chem 277, 7066–75.

    PubMed  Google Scholar 

  • Stancato, L. F., Chow, Y. H., Hutchison, K. A., Perdew, G. H., Jove, R. and Pratt, W. B. (1993) Raf exists in a native heterocomplex with hsp90 and p50 that can be reconstituted in a cell-free system. J Biol Chem 268, 21711–6.

    PubMed  CAS  Google Scholar 

  • Stebbins, C. E., Russo, A. A., Schneider, C., Rosen, N., Hartl, F. U. and Pavletich, N. P. (1997) Crystal structure of an Hsp90-geldanamycin complex: Targeting of a protein chaperone by an antitumor agent. Cell 89, 239–250.

    PubMed  CAS  Google Scholar 

  • Stepanova, L., Finegold, M., DeMayo, F., Schmidt, E. V. and Harper, J. W. (2000a) The Oncoprotein Kinase Chaperone CDC37 Functions as an Oncogene in Mice and Collaborates with Both c-myc and Cyclin D1 in Transformation of Multiple Tissues. Mol Cell Biol 20, 4462–4473.

    CAS  Google Scholar 

  • Stepanova, L., Leng, X., Parker, S. B. and Harper, J. W. (1996) Mammalian p50Cdc37 is a protein kinase-targeting subunit of Hsp90 that binds and stabilizes Cdk4. Genes Dev 10, 1491–502.

    PubMed  CAS  Google Scholar 

  • Stepanova, L., Yang, G., DeMayo, F., Wheeler, T. M., Finegold, M., Thompson, T. C. and Harper, J. W. (2000b) Induction of human Cdc37 in prostate cancer correlates with the ability of targeted Cdc37 expression to promote prostatic hyperplasia [In Process Citation]. Oncogene 19, 2186–93.

    CAS  Google Scholar 

  • Sullivan, W., Stensgard, B., Caucutt, G., Bartha, B., McMahon, N., Alnemri, E. S., Litwack, G. and Toft, D. (1997) Nucleotides and two functional states of hsp90. J. Biol. Chem. 272, 8007–8012.

    PubMed  CAS  Google Scholar 

  • Sullivan, W. P., Owen, B. A. and Toft, D. O. (2002) The Influence of ATP and p23 on the Conformation of hsp90. J Biol Chem 277, 45942–8.

    PubMed  CAS  Google Scholar 

  • Terasawa, K. and Minami, Y. (2005) A client-binding site of Cdc37. Febs J 272, 4684–90.

    PubMed  CAS  Google Scholar 

  • Terasawa, K., Shinozaki, F., Minami, M. and Minami, Y. (2006a) Client binding of cdc37 is regulated intramolecularly and intermolecularly. Biosci Biotechnol Biochem 70, 1542-6.

    Google Scholar 

  • Terasawa, K., Yoshimatsu, K., Iemura, S., Natsume, T., Tanaka, K. and Minami, Y. (2006b) Cdc37 interacts with the glycine-rich loop of Hsp90 client kinases. Mol Cell Biol 26, 3378–89.

    CAS  Google Scholar 

  • Thompson, M. A., Stumph, J., Henrickson, S. E., Rosenwald, A., Wang, Q., Olson, S., Brandt, S. J., Roberts, J., Zhang, X., Shyr, Y. and Kinney, M. C. (2005) Differential gene expression in anaplastic lymphoma kinase-positive and anaplastic lymphoma kinase-negative anaplastic large cell lymphomas. Hum Pathol 36, 494–504.

    PubMed  CAS  Google Scholar 

  • Vaughan, C. K., Gohlke, U., Sobott, F., Good, V. M., Ali, M. M., Prodromou, C., Robinson, C. V., Saibil, H. R. and Pearl, L. H. (2006) Structure of an Hsp90-Cdc37-Cdk4 complex. Mol Cell 23, 697–707.

    PubMed  CAS  Google Scholar 

  • Wegele, H., Muschler, P., Bunck, M., Reinstein, J. and Buchner, J. (2003) Dissection of the contribution of individual domains to the ATPase mechanism of Hsp90. J Biol Chem 278, 39303–10.

    PubMed  CAS  Google Scholar 

  • Weikl, T., Muschler, P., Richter, K., Veit, T., Reinstein, J. and Buchner, J. (2000) C-terminal regions of Hsp90 are important for trapping the nucleotide during the ATPase cycle. J Mol Biol 303, 583–92.

    PubMed  CAS  Google Scholar 

  • Whitesell, L. and Lindquist, S. L. (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5, 761–72.

    PubMed  CAS  Google Scholar 

  • Williams, J. C., Weijland, A., Gonfloni, S., Thompson, A., Courtneidge, S. A., Superti-Furga, G. and Wierenga, R. K. (1997) The 2.35 A crystal structure of the inactivated form of chicken Src: a dynamic molecule with multiple regulatory interactions. J Mol Biol 274, 757–75.

    PubMed  CAS  Google Scholar 

  • Williams, J. C., Wierenga, R. K. and Saraste, M. (1998) Insights into src kinase functions: structural comparisons. Trends Biol. Chem. 23, 179–184.

    CAS  Google Scholar 

  • Xu, W., Mimnaugh, E., Rosser, M. F., Nicchitta, C., Marcu, M., Yarden, Y. and Neckers, L. (2001) Sensitivity of mature Erbb2 to geldanamycin is conferred by its kinase domain and is mediated by the chaperone protein Hsp90. J Biol Chem 276, 3702–8.

    PubMed  CAS  Google Scholar 

  • Xu, W., Mimnaugh, E. G., Kim, J. S., Trepel, J. B. and Neckers, L. M. (2002) Hsp90, not Grp94, regulates the intracellular trafficking and stability of nascent ErbB2. Cell Stress Chaperones 7, 91–6.

    PubMed  CAS  Google Scholar 

  • Xu, W., Yuan, X., Xiang, Z., Mimnaugh, E., Marcu, M. and Neckers, L. (2005) Surface charge and hydrophobicity determine ErbB2 binding to the Hsp90 chaperone complex. Nat Struct Mol Biol 12, 120–6.

    PubMed  CAS  Google Scholar 

  • Xu, X., Landesman-Bollag, E., Channavajhala, P. L. and Seldin, D. C. (1999) Murine protein kinase CK2: gene and oncogene. Mol Cell Biochem 191, 65–74.

    PubMed  CAS  Google Scholar 

  • Xu, Z., Pal, J. K., Thulasiraman, V., Hahn, H. P., Chen, J. J. and Matts, R. L. (1997) The role of the 90-kDa heat-shock protein and its associated cohorts in stabilizing the heme-regulated eIF-2alpha kinase in reticulocyte lysates during heat stress. Eur J Biochem 246, 461–70.

    PubMed  CAS  Google Scholar 

  • Yamada, S., Ono, T., Mizuno, A. and Nemoto, T. K. (2003) A hydrophobic segment within the C-terminal domain is essential for both client-binding and dimer formation of the HSP90-family molecular chaperone. Eur J Biochem 270, 146–54.

    PubMed  CAS  Google Scholar 

  • Yang, J., Cron, P., Good, V. M., Thompson, V., Hemmings, B. A. and Barford, D. (2002a) Crystal structure of an activated Akt/protein kinase B ternary complex with GSK3-peptide and AMP-PNP. Nat Struct Biol 9, 940–4.

    CAS  Google Scholar 

  • Yang, J., Cron, P., Thompson, V., Good, V. M., Hess, D., Hemmings, B. A. and Barford, D. (2002b) Molecular mechanism for the regulation of protein kinase B/Akt by hydrophobic motif phosphorylation. Mol Cell 9, 1227-40.

    CAS  Google Scholar 

  • Yorgin, P. D., Hartson, S. D., Fellah, A. M., Scroggins, B. T., Huang, W., Katsanis, E., Couchman, J. M., Matts, R. L. and Whitesell, L. (2000) Effects of geldanamycin, a heat-shock protein 90-binding agent, on T cell function and T cell nonreceptor protein tyrosine kinases. J Immunol 164, 2915–23.

    PubMed  CAS  Google Scholar 

  • Young, J. C. and Hartl, F. U. (2000) Polypeptide release by Hsp90 involves ATP hydrolysis and is enhanced by the co-chaperone p23. Embo J 19, 5930–40.

    PubMed  CAS  Google Scholar 

  • Yun, B.-G., Huang, W., Leach, N., Hartson, S. D. and Matts, R. L. (2004) Novobiocin induces a distinct conformation of Hsp90 and alters Hsp90-cochaperone-client interactions. Biochemistry 43, 8217–29.

    PubMed  CAS  Google Scholar 

  • Yun, B. G. and Matts, R. L. (2005) Differential effects of Hsp90 inhibition on protein kinases regulating signal transduction pathways required for myoblast differentiation. Exp Cell Res 307, 212–23.

    PubMed  CAS  Google Scholar 

  • Zhang, W., Hirshberg, M., McLaughlin, S. H., Lazar, G. A., Grossmann, J. G., Nielsen, P. R., Sobott, F., Robinson, C. V., Jackson, S. E. and Laue, E. D. (2004) Biochemical and structural studies of the interaction of Cdc37 with Hsp90. J Mol Biol 340, 891–907.

    PubMed  CAS  Google Scholar 

  • Zhao, Q., Boschelli, F., Caplan, A. J. and Arndt, K. T. (2004a) Identification of a conserved sequence motif that promotes Cdc37 and Cyclin D1 binding to Cdk4. J Biol Chem.

    Google Scholar 

  • Zhao, Q., Boschelli, F., Caplan, A. J. and Arndt, K. T. (2004b) Identification of a conserved sequence motif that promotes Cdc37 and cyclin D1 binding to Cdk4. J Biol Chem 279, 12560–4.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Matts, R., Caplan, A.J. (2007). Cdc37 and protein kinase folding. In: Calderwood, S.K., Sherman, M.Y., Ciocca, D.R. (eds) Heat Shock Proteins in Cancer. Heat Shock Proteins, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6401-2_16

Download citation

Publish with us

Policies and ethics