Skip to main content

Hsp70 in Tumors: Friend or Foe?

  • Chapter
Heat Shock Proteins in Cancer

Part of the book series: Heat Shock Proteins ((HESP,volume 2))

Abstract

Hsp70, the most highly conserved and abundantly induced of the stress proteins, appears to play dual and opposing roles in cancer. On the one hand, Hsp70 promotes growth and survival of tumor cells by engaging misfolded or aggregated proteins and proteins involved in cell proliferation. As such, it endows tumor cells with stress resistance. However, Hsp70 can also promote tumor immunity by stimulating innate immune mechanisms and enhancing cross-presentation of tumor antigens to lymphocytes. In this chapter, we review these opposing functions of HSP70 in the context of potential strategies for its use as a tool in cancer biology and therapy

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arnold-Schild D, Hanau D, Spehner D, Schmid C, Rammensee HG, de la Salle H, Schild H, 1999. Cutting Edge: Receptor-Mediated Endocytosis of Heat Shock Proteins by Professional Antigen-Presenting Cells. J Immunol 162: 3757–3760.

    PubMed  CAS  Google Scholar 

  • Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK, 2000. Hsp70 Stimulates Cytokine Production through a Cd14-Dependant Pathway, Demonstrating Its Dual Role as a Chaperone and Cytokine. Nat Med 6: 435–442.

    Article  PubMed  CAS  Google Scholar 

  • Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE, Stevenson MA, Calderwood SK, 2002. Novel Signal Transduction Pathway Utilized by Extracellular Hsp70: Role of Toll-Like Receptor (Tlr) 2 and Tlr4. J Biol Chem 277: 15028–15034.

    Article  PubMed  CAS  Google Scholar 

  • Atanasiu D, Kent JR, Gartner JJ, Fraser NW, 2006. The Stable 2-Kb Lat Intron of Herpes Simplex Stimulates the Expression of Heat Shock Proteins and Protects Cells from Stress. Virology 350: 26–33.

    Article  PubMed  CAS  Google Scholar 

  • Barnes JA, Dix DJ, Collins BW, Luft C, Allen JW, 2001. Expression of Inducible Hsp70 Enhances the Proliferation of Mcf-7 Breast Cancer Cells and Protects against the Cytotoxic Effects of Hyperthermia. Cell Stress Chaperones 6: 316–325.

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Binder RJ, Ramalingam T, Srivastava PK, 2001. Cd91 Is a Common Receptor for Heat Shock Proteins Gp96, Hsp90, Hsp70, and Calreticulin. Immunity 14: 303–313.

    Article  PubMed  CAS  Google Scholar 

  • Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK, 2000. Necrotic but Not Apoptotic Cell Death Releases Heat Shock Proteins, Which Deliver a Partial Maturation Signal to Dendritic Cells and Activate the Nf-Kappa B Pathway. Int Immunol 12: 1539–1546.

    Article  PubMed  CAS  Google Scholar 

  • Becker T, Hartl FU, Wieland F, 2002. Cd40, an Extracellular Receptor for Binding and Uptake of Hsp70-Peptide Complexes. J Cell Biol 158: 1277–1285.

    Article  PubMed  CAS  Google Scholar 

  • Beere HM, Wolf BB, Cain K, Mosser DD, Mahboubi A, Kuwana T, Tailor P, Morimoto RI, Cohen GM, Green DR, 2000. Heat-Shock Protein 70 Inhibits Apoptosis by Preventing Recruitment of Procaspase-9 to the Apaf-1 Apoptosome. Nat Cell Biol 2: 469–475.

    Article  PubMed  CAS  Google Scholar 

  • Bevan MJ, 1976a. Cross-Priming for a Secondary Cytotoxic Response to Minor H Antigens with H-2 Congenic Cells Which Do Not Cross-React in the Cytotoxic Assay. J Exp Med 143: 1283–1288.

    Article  CAS  Google Scholar 

  • Bevan MJ, 1976b. Minor H Antigens Introduced on H-2 Different Stimulating Cells Cross-React at the Cytotoxic T Cell Level During in Vivo Priming. J Immunol 117: 2233–2238.

    CAS  Google Scholar 

  • Bevan MJ, 2006. Cross-Priming. Nat Immunol 7: 363–365.

    Article  PubMed  CAS  Google Scholar 

  • Binder RJ, Blachere NE, Srivastava PK, 2001. Heat shock protein-chaperoned peptides but not free peptides introduced into the cytosol are presented efficiently by major histocompatibility complex I molecules. J Biol Chen 276(20): 17163–17171.

    Article  Google Scholar 

  • Binder RJ, Han DK, Srivastava PK, 2000. Cd91: A Receptor for Heat Shock Protein Gp96. Nat Immunol 1: 151–155.

    Article  PubMed  CAS  Google Scholar 

  • Binder RJ, Srivastava PK, 2005. Peptides Chaperoned by Heat-Shock Proteins Are a Necessary and Sufficient Source of Antigen in the Cross-Priming of Cd8+ T Cells. Nat Immunol 6: 593-599.

    Article  PubMed  CAS  Google Scholar 

  • Binder RJ, Vatner R, Srivastava P, 2004. The Heat-Shock Protein Receptors: Some Answers and More Questions. Tissue Antigens 64: 442–451.

    Article  PubMed  CAS  Google Scholar 

  • Blachere NE, Udono H, Janetzki S, Li Z, Heike M, Srivastava PK, 1993. Heat Shock Protein Vaccines against Cancer. J Immunother 14: 352–356.

    Article  CAS  Google Scholar 

  • Botzler C, Issels R, Multhoff G, 1996. Heat-Shock Protein 72 Cell-Surface Expression on Human Lung Carcinoma Cells in Associated with an Increased Sensitivity to Lysis Mediated by Adherent Natural Killer Cells. Cancer Immunol Immunother 43: 226–230.

    Article  PubMed  CAS  Google Scholar 

  • Brozovic A, Simaga S, Osmak M, 2001. Induction of Heat Shock Protein 70 in Drug-Resistant Cells by Anticancer Drugs and Hyperthermia. Neoplasma 48: 99–103.

    PubMed  CAS  Google Scholar 

  • Castellino F, Boucher PE, Eichelberg K, Mayhew M, Rothman JE, Houghton AN, Germain RN, 2000. Receptor-Mediated Uptake of Antigen/Heat Shock Protein Complexes Results in Major Histocompatibility Complex Class I Antigen Presentation Via Two Distinct Processing Pathways. J Exp Med 191: 1957–1964.

    Article  PubMed  CAS  Google Scholar 

  • Chappell TG, Konforti BB, Schmid SL, Rothman JE, 1987. The Atpase Core of a Clathrin Uncoating Protein. J Biol Chem 262: 746–751.

    PubMed  CAS  Google Scholar 

  • Ciocca DR, Calderwood SK, 2005. Heat Shock Proteins in Cancer: Diagnostic, Prognostic, Predictive, and Treatment Implications. Cell Stress Chaperones 10: 86–103.

    Article  PubMed  CAS  Google Scholar 

  • Clemons NJ, Buzzard K, Steel R, Anderson RL, 2005. Hsp72 Inhibits Fas-Mediated Apoptosis Upstream of the Mitochondria in Type Ii Cells. J Biol Chem 280: 9005–9012.

    Article  PubMed  CAS  Google Scholar 

  • Daniels GA, Sanchez-Perez L, Diaz RM, Kottke T, Thompson J, Lai M, Gough M, Karim M, Bushell A, Chong H, Melcher A, Harrington K, Vile RG, 2004. A Simple Method to Cure Established Tumors by Inflammatory Killing of Normal Cells. Nat Biotechnol 22: 1125–1132.

    Article  PubMed  CAS  Google Scholar 

  • Daugaard M, Jaattela M, Rohde M, 2005. Hsp70-2 Is Required for Tumor Cell Growth and Survival. Cell Cycle 4: 877–880.

    PubMed  CAS  Google Scholar 

  • Davidson S, Hoj P, Gabriele T, Anderson RL, 1995. In vivo growth of a murine lymphoma cell line alters regulation of expression of HSP72. Mol Cell Biol 15(2): 1071–1078.

    Google Scholar 

  • Delneste Y, Magistrelli G, Gauchat J, Haeuw J, Aubry J, Nakamura K, Kawakami-Honda N, Goetsch L, Sawamura T, Bonnefoy J, Jeannin P, 2002. Involvement of Lox-1 in Dendritic Cell-Mediated Antigen Cross-Presentation. Immunity 17: 353–362.

    Article  PubMed  CAS  Google Scholar 

  • Fujihara SM, Nadler SG, 1999. Intranuclear Targeted Delivery of Functional Nf-Kappab by 70 Kda Heat Shock Protein. Embo J 18: 411–419.

    Article  PubMed  CAS  Google Scholar 

  • Gallucci S, Lolkema M, Matzinger P, 1999. Natural Adjuvants: Endogenous Activators of Dendritic Cells. Nat Med 5: 1249–1255.

    Article  PubMed  CAS  Google Scholar 

  • Guzhova I, Kislyakova K, Moskaliova O, Fridlanskaya I, Tytell M, Cheetham M, Margulis B, 2001. In Vitro Studies Show That Hsp70 Can Be Released by Glia and That Exogenous Hsp70 Can Enhance Neuronal Stress Tolerance. Brain Res 914: 66–73.

    Article  PubMed  CAS  Google Scholar 

  • Gyrd-Hansen M, Nylandsted J, Jaattela M, 2004. Heat Shock Protein 70 Promotes Cancer Cell Viability by Safeguarding Lysosomal Integrity. Cell Cycle 3: 1484–1485.

    PubMed  CAS  Google Scholar 

  • Hainaut P, Milner J, 1992. Interaction of Heat-Shock Protein 70 with P53 Translated in Vitro: Evidence for Interaction with Dimeric P53 and for a Role in the Regulation of P53 Conformation. Embo J 11: 3513–3520.

    PubMed  CAS  Google Scholar 

  • Hantschel M, Pfister K, Jordan A, Scholz R, Andreesen R, Schmitz G, Schmetzer H, Hiddemann W, Multhoff G, 2000. Hsp70 Plasma Membrane Expression on Primary Tumor Biopsy Material and Bone Marrow of Leukemic Patients. Cell Stress Chaperones 5: 438–442.

    Article  PubMed  CAS  Google Scholar 

  • Henriksson M, Classon M, Axelson H, Klein G, Thyberg J, 1992. Nuclear Colocalization of C-Myc Protein and Hsp70 in Cells Transfected with Human Wild-Type and Mutant C-Myc Genes. Exp Cell Res 203: 383–394.

    Article  PubMed  CAS  Google Scholar 

  • Hightower LE, Guidon PT, Jr., 1989. Selective Release from Cultured Mammalian Cells of Heat-Shock (Stress) Proteins That Resemble Glia-Axon Transfer Proteins. J Cell Physiol 138: 257–266.

    Article  PubMed  CAS  Google Scholar 

  • Jaattela M, 1995. Over-Expression of Hsp70 Confers Tumorigenicity to Mouse Fibrosarcoma Cells. Int J Cancer 60: 689–693.

    Article  PubMed  CAS  Google Scholar 

  • Jaattela M, Wissing D, Bauer PA, Li GC, 1992. Major Heat Shock Protein Hsp70 Protects Tumor Cells from Tumor Necrosis Factor Cytotoxicity. Embo J 11: 3507–3512.

    PubMed  CAS  Google Scholar 

  • Jiang D, Liang J, Fan J, Yu S, Chen S, Luo Y, Prestwich GD, Mascarenhas MM, Garg HG, Quinn DA, Homer RJ, Goldstein DR, Bucala R, Lee PJ, Medzhitov R, Noble PW, 2005. Regulation of Lung Injury and Repair by Toll-Like Receptors and Hyaluronan. Nat Med 11: 1173–1179.

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Addison E, North JM, Lowdell MW, Hoffbrand AV, Mehta AB, Ganeshaguru K, Folarin NI, Wickremasinghe RG, 2004. Geldanamycin and Herbimycin a Induce Apoptotic Killing of B Chronic Lymphocytic Leukemia Cells and Augment the Cells’ Sensitivity to Cytotoxic Drugs. Blood 103: 1855–1861.

    Article  PubMed  CAS  Google Scholar 

  • Kaur J, Ralhan R, 1995. Differential Expression of 70-Kda Heat Shock-Protein in Human Oral Tumorigenesis. Int J Cancer 63: 774–779.

    Article  PubMed  CAS  Google Scholar 

  • Mambula SS, Calderwood SK, 2006. Heat Induced Release of Hsp70 from Prostate Carcinoma Cells Involves Both Active Secretion and Passive Release from Necrotic Cells. Int J Hyperthermia 22: 575–585.

    Article  PubMed  CAS  Google Scholar 

  • Massa C, Guiducci C, Arioli I, Parenza M, Colombo MP, Melani C, 2004. Enhanced Efficacy of Tumor Cell Vaccines Transfected with Secretable Hsp70. Cancer Res 64: 1502–1508.

    Article  PubMed  CAS  Google Scholar 

  • McCarty JS, Buchberger A, Reinstein J, Bukau B, 1995. The Role of Atp in the Functional Cycle of the Dnak Chaperone System. J Mol Biol 249: 126–137.

    Article  PubMed  CAS  Google Scholar 

  • Melcher A, Todryk S, Hardwick N, Ford M, Jacobson M, Vile RG, 1998. Tumor Immunogenicity Is Determined by the Mechanism of Cell Death Via Induction of Heat Shock Protein Expression. Nat Med 4: 581–587.

    Article  PubMed  CAS  Google Scholar 

  • Menoret A, Patry Y, Burg C, Le Pendu J, 1995. Co-segregation of tumor immunogenicity with expression of inducible but not constitutive hsp70 in rat colon carcinomas. J Immunol 155(2): 740–747.

    Google Scholar 

  • Mosser DD, Morimoto RI, 2004. Molecular Chaperones and the Stress of Oncogenesis. Oncogene 23: 2907–2918.

    Article  PubMed  CAS  Google Scholar 

  • Multhoff G, Pfister K, Gehrmann M, Hantschel M, Gross C, Hafner M, Hiddemann W, 2001. A 14-Mer Hsp70 Peptide Stimulates Natural Killer (Nk) Cell Activity. Cell Stress Chaperones 6: 337–344.

    Article  PubMed  CAS  Google Scholar 

  • Muramatsu T, Kobayashi N, Tada H, Hatoko M, Shirai T, 1995. Induction of the 72-kD heat shock protein in human skin melanoma and squamous cell carcinoma cell lines. J Dermatol 22(12): 907–912.

    Google Scholar 

  • Nanbu K, Konishi I, Komatsu T, Mandai M, Yamamoto S, Kuroda H, Koshiyama M, Mori T, 1996. Expression of Heat Shock Proteins Hsp70 and Hsp90 in Endometrial Carcinomas. Correlation with Clinicopathology, Sex Steroid Receptor Status, and P53 Protein Expression. Cancer 77: 330–338.

    Article  PubMed  CAS  Google Scholar 

  • Nemoto TK, Fukuma Y, Itoh H, Takagi T, Ono T, 2006. A Disulfide Bridge Mediated by Cysteine 574 Is Formed in the Dimer of the 70-Kda Heat Shock Protein. J Biochem (Tokyo) 139: 677–687.

    CAS  Google Scholar 

  • Nishimura RN, Santos D, Esmaili L, Fu ST, Dwyer BE, 2000. Expression of Antisense Hsp70 Is a Major Determining Factor in Heat-Induced Cell Death of P-19 Carcinoma Cells. Cell Stress Chaperones 5: 173–180.

    Article  PubMed  CAS  Google Scholar 

  • Noessner E, Gastpar R, Milani V, Brandl A, Hutzler PJ, Kuppner MC, Roos M, Kremmer E, Asea A, Calderwood SK, Issels RD, 2002. Tumor-Derived Heat Shock Protein 70 Peptide Complexes Are Cross-Presented by Human Dendritic Cells. J Immunol 169: 5424–5432.

    PubMed  CAS  Google Scholar 

  • Nylandsted J, Rohde M, Brand K, Bastholm L, Elling F, Jaattela M, 2000. Selective Depletion of Heat Shock Protein 70 (Hsp70) Activates a Tumor-Specific Death Program That Is Independent of Caspases and Bypasses Bcl-2. Proc Natl Acad Sci U S A 97: 7871–7876.

    Article  PubMed  CAS  Google Scholar 

  • Nylandsted J, Wick W, Hirt UA, Brand K, Rohde M, Leist M, Weller M, Jaattela M, 2002. Eradication of Glioblastoma, and Breast and Colon Carcinoma Xenografts by Hsp70 Depletion. Cancer Res 62: 7139–7142.

    PubMed  CAS  Google Scholar 

  • Parsell DA, Kowal AS, Lindquist S, 1994. Saccharomyces cerevisiae Hsp 104 protein. Purification and characterization of ATP-induced structural changes. J Biol Chem 269(6): 4480–4487.

    Google Scholar 

  • Ravagnan L, Gurbuxani S, Susin SA, Maisse C, Daugas E, Zamzami N, Mak T, Jaattela M, Penninger JM, Garrido C, Kroemer G, 2001. Heat-Shock Protein 70 Antagonizes Apoptosis-Inducing Factor. Nat Cell Biol 3: 839–843.

    Article  PubMed  CAS  Google Scholar 

  • Ritossa F, 1962. A new puffing pattern induced by temperature and DNP in Drosophila. Experimentia 18: 571–573.

    Article  CAS  Google Scholar 

  • Rock KL, Hearn A, Chen CJ, Shi Y, 2005. Natural Endogenous Adjuvants. Springer Semin Immunopathol 26: 231–246.

    Article  PubMed  Google Scholar 

  • Rossi A, Ciafre S, Balsamo M, Pierimarchi P, Santoro MG, 2006. Targeting the Heat Shock Factor 1 by Rna Interference: A Potent Tool to Enhance Hyperthermochemotherapy Efficacy in Cervical Cancer. Cancer Res 66: 7678–7685.

    Article  PubMed  CAS  Google Scholar 

  • Saleh A, Srinivasula SM, Balkir L, Robbins PD, Alnemri ES, 2000. Negative Regulation of the Apaf-1 Apoptosome by Hsp70. Nat Cell Biol 2: 476-483.

    Google Scholar 

  • Schmitt E, Maingret L, Puig PE, Rerole AL, Ghiringhelli F, Hammann A, Solary E, Kroemer G, Garrido C, 2006. Heat Shock Protein 70 Neutralization Exerts Potent Antitumor Effects in Animal Models of Colon Cancer and Melanoma. Cancer Res 66: 4191–4197.

    Article  PubMed  CAS  Google Scholar 

  • Seo HR, Chung HY, Lee YJ, Bae S, Lee SJ, Lee YS, 2006. P27cip/Kip Is Involved in Hsp25 or Inducible Hsp70 Mediated Adaptive Response by Low Dose Radiation. J Radiat Res (Tokyo) 47: 83–90.

    Article  CAS  Google Scholar 

  • Seo JS, Park YM, Kim JI, Shim EH, Kim CW, Jang JJ, Kim SH, Lee WH, 1996. T Cell Lymphoma in Transgenic Mice Expressing the Human Hsp70 Gene. Biochem Biophys Res Commun 218: 582–587.

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Evans JE, Rock KL, 2003. Molecular Identification of a Danger Signal That Alerts the Immune System to Dying Cells. Nature 425: 516–521.

    Article  PubMed  CAS  Google Scholar 

  • Shi Y, Rock KL, 2002. Cell Death Releases Endogenous Adjuvants That Selectively Enhance Immune Surveillance of Particulate Antigens. Eur J Immunol 32: 155–162.

    Article  PubMed  CAS  Google Scholar 

  • Soncin F, Zhang X, Chu B, Wang X, Asea A, Ann Stevenson M, Sacks DB, Calderwood SK, 2003. Transcriptional Activity and DNA Binding of Heat Shock Factor-1 Involve Phosphorylation on Threonine 142 by Ck2. Biochem Biophys Res Commun 303: 700–706.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava PK, 1993. Peptide-Binding Heat Shock Proteins in the Endoplasmic Reticulum: Role in Immune Response to Cancer and in Antigen Presentation. Adv Cancer Res 62: 153–177.

    PubMed  CAS  Google Scholar 

  • Steiner K, Graf M, Hecht K, Reif S, Rossbacher L, Pfister K, Kolb HJ, Schmetzer HM, Multhoff G, 2006. High Hsp70-Membrane Expression on Leukemic Cells from Patients with Acute Myeloid Leukemia Is Associated with a Worse Prognosis. Leukemia 20: 2076–2079.

    Article  PubMed  CAS  Google Scholar 

  • Steinman RM, Bonifaz L, Fujii S, Liu K, Bonnyay D, Yamazaki S, Pack M, Hawiger D, Iyoda T, Inaba K, Nussenzweig MC, 2005. The Innate Functions of Dendritic Cells in Peripheral Lymphoid Tissues. Adv Exp Med Biol 560: 83–97.

    Article  PubMed  CAS  Google Scholar 

  • Stevens SY, Cai S, Pellecchia M, Zuiderweg ER, 2003. The Solution Structure of the Bacterial Hsp70 Chaperone Protein Domain Dnak(393-507) in Complex with the Peptide Nrllltg. Protein Sci 12: 2588–2596.

    Article  PubMed  CAS  Google Scholar 

  • Subjeck JR, Sciandra JJ, Johnson RJ, 1982. Heat Shock Proteins and Thermotolerance; a Comparison of Induction Kinetics. Br J Radiol 55: 579–584.

    Article  PubMed  CAS  Google Scholar 

  • Tang D, Khaleque MA, Jones EL, Theriault JR, Li C, Wong WH, Stevenson MA, Calderwood SK, 2005. Expression of Heat Shock Proteins and Heat Shock Protein Messenger Ribonucleic Acid in Human Prostate Carcinoma in Vitro and in Tumors in Vivo. Cell Stress Chaperones 10: 46–58.

    Article  PubMed  CAS  Google Scholar 

  • Theriault JR, Mambula SS, Sawamura T, Stevenson MA, Calderwood SK, 2005. Extracellular Hsp70 Binding to Surface Receptors Present on Antigen Presenting Cells and Endothelial/Epithelial Cells. FEBS Lett 579: 1951–1960.

    Article  PubMed  CAS  Google Scholar 

  • Torronteguy C, Frasson A, Zerwes F, Winnikov E, da Silva VD, Menoret A, Bonorino C, 2006. Inducible Heat Shock Protein 70 Expression as a Potential Predictive Marker of Metastasis in Breast Tumors. Cell Stress Chaperones 11: 34–43.

    Article  PubMed  CAS  Google Scholar 

  • Triantafilou M, Triantafilou K, 2003. Receptor Cluster Formation During Activation by Bacterial Products. J Endotoxin Res 9: 331–335.

    PubMed  CAS  Google Scholar 

  • Triantafilou M, Triantafilou K, 2004. Heat-Shock Protein 70 and Heat-Shock Protein 90 Associate with Toll-Like Receptor 4 in Response to Bacterial Lipopolysaccharide. Biochem Soc Trans 32: 636–639.

    Article  PubMed  CAS  Google Scholar 

  • Trieb K, Kohlbeck R, Lang S, Klinger H, Blahovec H, Kotz R, 2000. Heat Shock Protein 72 Expression in Chondrosarcoma Correlates with Differentiation. J Cancer Res Clin Oncol 126: 667–670.

    Article  PubMed  CAS  Google Scholar 

  • Udono H, Srivastava PK, 1993. Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178(4): 1391–1396.

    Article  Google Scholar 

  • Ueda G, Tamura Y, Hirai I, Kamiguchi K, Ichimiya S, Torigoe T, Hiratsuka H, Sunakawa H, Sato N, 2004. Tumor-Derived Heat Shock Protein 70-Pulsed Dendritic Cells Elicit Tumor-Specific Cytotoxic T Lymphocytes (Ctls) and Tumor Immunity. Cancer Sci 95: 248–253.

    Article  PubMed  CAS  Google Scholar 

  • Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H, 2002. Hsp70 as Endogenous Stimulus of the Toll/Interleukin-1 Receptor Signal Pathway. J Biol Chem 277: 15107–15112.

    Article  PubMed  CAS  Google Scholar 

  • Volloch VZ, Sherman MY, 1999. Oncogenic Potential of Hsp72. Oncogene 18: 3648–3651.

    Article  PubMed  CAS  Google Scholar 

  • Wassenberg JJ, Reed RC, Nicchitta CV, 2000. Ligand Interactions in the Adenosine Nucleotide-Binding Domain of the Hsp90 Chaperone, Grp94. Ii. Ligand-Mediated Activation of Grp94 Molecular Chaperone and Peptide Binding Activity. J Biol Chem 275: 22806–22814.

    Article  PubMed  CAS  Google Scholar 

  • Yamada S, Ono T, Mizuno A, Nemoto TK, 2003. A Hydrophobic Segment within the C-Terminal Domain Is Essential for Both Client-Binding and Dimer Formation of the Hsp90-Family Molecular Chaperone. Eur J Biochem 270: 146–154.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Bonorino, C., Souza, A.P. (2007). Hsp70 in Tumors: Friend or Foe?. In: Calderwood, S.K., Sherman, M.Y., Ciocca, D.R. (eds) Heat Shock Proteins in Cancer. Heat Shock Proteins, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6401-2_10

Download citation

Publish with us

Policies and ethics