Skip to main content

Nitrate dynamics in a reed belt of a shallow sand dune lake in Japan: Analysis of nitrate retention using stable nitrogen isotope ratios

  • Conference paper
Shallow Lakes in a Changing World

Part of the book series: Developments in Hydrobiology ((DIHY,volume 196))

  • 2015 Accesses

Abstract

A stable nitrogen isotope analysis was used to clarify the relative importance of denitrification and nitrate uptake by plants in the nitrate reduction in a reed belt of L. Kamisagata (N 37°49′, E 138°53′, alt. 4.5 m, depth 30–80 cm, area 0.025 km2), one of about 20 sand dune lakes in Japan. A very high concentration of NO3 -N with 19.0 ±5.9 mg N l−1 in spring sources decreased during passage through the reed belt along two set transect lines about 120 m long in any season, whereas progressive enrichment in 15N-NO3 in flowing water was detected. Loss rate of nitrate ranged from 38.4 to 73.1% with an average of 56.7 ±11.6%. Enrichment factors calculated using a Rayleigh curve method ranged from - 1.03 to -5.12%.. The contribution of denitrification to nitrate loss ranged from 6 to 28%, with a mean of 19.5% (±7.0), whereas that of plant uptake was from 72 to 94%, with a mean of 80.5% (±7.0), indicating the importance of vegetation in a sand dune riparian zone. A technique using the variation of natural abundance of 15N may provide useful information on the nitrate dynamics in artificial or natural wetlands under a nondestructive condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bastiviken, S. K., P. G. Eriksson, A. Premrov & K. Tonderski, 2005. Potential denitrification in wetland sediments with different plant species detritus. Ecological Engineering 25: 183–190.

    Article  Google Scholar 

  • Blackmer, A. M. & J. M. Bremner, 1977. Nitrogen isotope discrimination in denitrification of nitrate in soils. Soil Biology and Biochemistry 9: 73–77.

    Article  CAS  Google Scholar 

  • Bottcher, J., O. Strebel, S. Voerkelius & H.-L. Schmidt, 1990. Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer. Journal of Hydrology 114: 413–424.

    Article  Google Scholar 

  • Chen, D. J. Z. & K. T. B. MacQuarrie, 2004. Numerical simulation of organic carbon, nitrate, and nitrogen isotope behaviour during denitrification in a riparian zone. Hydrology 293: 235–254.

    Article  CAS  Google Scholar 

  • Clement, J.-C., R. M. Holmes, B. J. Peterson & G. Pinay, 2003. Isotopic investigation of denitrification in a riparian ecosystem in Western France. Journal of Applied Ecology 40:1035–1048.

    Article  CAS  Google Scholar 

  • Cronk, J. K. & M. S. Fennessy, 2001. Wetland Plants: Biology and Ecology. Lewis Publishers, New York.

    Google Scholar 

  • Dahm, G N., N. B. Grimm, P. Marmonier, H. M. Valett & P. Vervier, 1998. Nutrient dynamics at the interface between surface waters and groundwaters. Freshwater Biology 40: 427–451.

    Article  Google Scholar 

  • Dhondt, K., P. Boeckx, O. V. Cleemput & G. Hofman, 2003. Quantifying nitrate retention processes in a riparian buffer zone using the natural abundance of 15N in NO3 . Rapid Communication in Mass Spectrometry 17:2597–2604.

    Article  CAS  Google Scholar 

  • Fukada, T., K. M. Hiscock, P. F. Dennis & T. Grischek, 2003. A dual isotope approach to identify denitrification in groundwater at river-bank infiltration site. Water Research 37: 3070–3078.

    Article  PubMed  CAS  Google Scholar 

  • Fukuhara, H., A. Kawakami & T. Shimogaito, 2003. Characteristics of nutrient dynamics in Lake Sagata (Niigata Prefecture) Japan, a shallow sand-dammed lake supplied by spring water with special reference to nitrates. Hydrobiologia 506: 93–99.

    Article  Google Scholar 

  • Fustec, E., A. Mariotti, X. Grillo & J. Sajus, 1991. Nitrate removal by denitrification in alluvial groundwater: Role of a former channel. Journal of Hydrology 123: 337–354.

    Article  CAS  Google Scholar 

  • Hey, D., 2002. Nitrogen farming: Harvesting a different crop. Restoration Ecology 10: 1–10.

    Article  Google Scholar 

  • Hill, A. R., 1996. Nitrate removal in stream riparian zones. Journal of Environmental Quality 25: 743–755.

    CAS  Google Scholar 

  • Hill, A. R., K. J. Devito, S. Campagnolo & K. Sanmuga-das, 2000. Subsurface denitrification in a forest riparian zone: Interactions between hydrology and supplies of nitrate and organic carbon. Biogeochemistry 51: 193–223.

    Article  Google Scholar 

  • Huett, D. O., S. G. Morris, G. Smith & N. Hunt, 2005. Nitrogen and phosphorus removal from plant runoff in vegetated and unvegetated subsurface flow wetlands. Water research 39: 3529–4272.

    Article  CAS  Google Scholar 

  • Jansson, M., R. Andersson, H. Berggren & L. Leonardson, 1994. Wetlands and lakes as nitrogen traps. Ambio 23: 320–325.

    Google Scholar 

  • Kawanishi, T., Y. Hayashi, N. Kihou, T. Yoneyama & Y. Ozaki, 1993. Dispersion effects on the apparent isotope fractionation factor associated with denitrification in soil; evaluation by mathematical model. Soil Biology and Biochemistry 25: 349–354.

    Article  Google Scholar 

  • Kellman, L. M. & C. Hillaire-Marcel, 2003. Evaluation of nitrogen isotopes as indicators of nitrate contamination sources in an agricultural watershed. Agriculture Ecosystems & Environment 95: 87–102.

    Article  CAS  Google Scholar 

  • Kendall, C., 1998. Tracing nitrogen sources and cycling in catchment. In Kendal, C. & J. J. McDonnell (eds), Isotope tracers in catchment hydrology, Elsevier, Amsterdam, 519–576.

    Google Scholar 

  • Khol, D. H. & G. B. Shearer, 1995. Using variations in natural 15N abundance to investigate N cycle processes. In Wada, E., T. Yoneyama, M. Minagawa, T. Ando & B. D. Fry (eds), Stable isotopes in the biosphere. Kyoto University Press, Kyoto, Japan, 103–130.

    Google Scholar 

  • Lehmann, M. F., P. Reichert, S. M. Bernasconi, A. Barbieri & J. A. McKenzie, 2003. Modelling nitrogen and oxygen isotope fractionation during denitrification in a lacustrine redox-transition zone. Geochemica et Cosmochemica Acta 67: 2529–2542.

    Article  CAS  Google Scholar 

  • Lin, Y.-F., S.-R. Jing, T.-W. Wang & D.-Y. Lee, 2002. Effects of macrophytes and external carbon sources on nitrate removal from groundwater in constructed wetlands. Environmental Pollution 119: 413–420.

    Article  PubMed  CAS  Google Scholar 

  • Lund, L. J., A. J. Horne & A. E. Williams, 2000. Estimating denitrification in a large constructed wetland using stable nitrogen isotope ratios. Ecological Engineering 14: 67–76.

    Article  Google Scholar 

  • Mariotti, A., A. Landreau & B. Simon, 1988. 15N isotope biogeochemistry and natural denitrification process in groundwater: Application to the chalk aquifer of northern France. Geochimica et Cosmohimica Acta 52: 1869–1878.

    Article  CAS  Google Scholar 

  • Mariotti, A., J. C. Germon, P. Hubert, P. Kaiser, R. Letolle, A. Tardieux & P. Tardieux, 1981. Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes. Plant and Soil 62: 413–430.

    Article  CAS  Google Scholar 

  • Mariotti, A., F. Mariotti, N. Amarger, G. Pizelle, J.-M. Ngambi, M.-L. Champigny & A. Moyse, 1980. Fractionnements isotopiques de l’azote lors des processus d’absorption des nitrates et de fixation de l’azote atmosphe’rique par les plantes. Physiologie Végétale 18: 163–181.

    CAS  Google Scholar 

  • Mengis, M., S. L. Schiff, M. Harris, M. C. English, R. Aravena, R. J. Elgood & A. MacLean, 1999. Multiple geochemical and isotopic approaches for assessing ground water NO3 elimination in a riparian zone. Ground water 37: 448–457.

    Article  CAS  Google Scholar 

  • Naiman, R. H. Decamps & M. E. McClain, 2005. Riparia: Ecology, conservation, and management of streamside communities. Elsevier, Tokyo, 430 pp.

    Google Scholar 

  • Nonaka, M., R. Abe & H. Tanabe, 1997. Increasing groundwater nitrate nitrogen concentration in sand dune upland soil by fertilizer application. Sand Dune Research 44: 23–29 (In Japanese with English summary).

    Google Scholar 

  • Park, K.L. & K. Kumazawa, 1998. Variation of natural abundance of nitrogen isotope due to denitrification. Journal of the Science of Soil and Manure, Japan 69: 293–295 (in Japanese).

    CAS  Google Scholar 

  • Robinson, D., 2001. δ15N as an integrator of the nitrogen cycle. Trends in Ecology & Evolution 16: 153–162.

    Article  Google Scholar 

  • Saunders, D. L. & J. Kalff, 2001. Nitrogen retention in wetlands, lake and rivers. Hydrobiologia 443: 205–212.

    Article  CAS  Google Scholar 

  • Sebilo, M, C. Billen, M. Grably & A. Mariotti, 2003. Isotopic composition of nitrate-nitrogen as a marker of riparian and benthic denitrification at the scale of the whole Seine River system. Biogeochemistry 63: 35–51.

    Article  CAS  Google Scholar 

  • Smith, R. L., B. L. Howes & J. H. Duff, 1991. Denitrificaion in nitrate-contaminated groundwater: Occurrence in steep vertical geochemical gradients. Geochimica Cosmohimica Acta 55: 1815–1825.

    Article  CAS  Google Scholar 

  • Spalding, R. F., M. E. Exner, G. E. Martin & D. D. Snow, 1993. Effects of sludge disposal on groundwater nitrate concentration. Journal of Hydrology 142: 213–226.

    Article  CAS  Google Scholar 

  • Strickland J. D. H. & T. R. Parsons, 1972. A practical handbook of sea water analysis. Bulletin Fisheries Research Board of Canada 167: 207–211.

    Google Scholar 

  • Toda, H., U. Uemura T. Okino T. Kawanishi & H. Kawashima, 2002. Use of nitrogen stable isotope ratio of periphyton for monitoring nitrogen sources in a river system. Water Science & Technology 46: 431–435.

    CAS  Google Scholar 

  • Tsushima, K., S. Ueda & N. Ogura, 2002. Nitrate loss for denitrification during high frequency research in floodplain groundwater of the Tama River. Water Air and Soil Pollution 137: 167–178.

    Article  CAS  Google Scholar 

  • Xue, Y., D. A. Kovacic, M. B. David, L. E. Gentry, R. L. Mulvaney & C. W. Lindau, 1999. In situ measurements of denitrification in constructed wetlands. Journal Environmental Quality 28: 263–269.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media B.V.

About this paper

Cite this paper

Fukuhara, H., Nemoto, F., Takeuchi, Y., Toda, N. (2007). Nitrate dynamics in a reed belt of a shallow sand dune lake in Japan: Analysis of nitrate retention using stable nitrogen isotope ratios. In: Gulati, R.D., Lammens, E., De Pauw, N., Van Donk, E. (eds) Shallow Lakes in a Changing World. Developments in Hydrobiology, vol 196. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6399-2_5

Download citation

Publish with us

Policies and ethics