Skip to main content

Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size

  • Conference paper
Shallow Lakes in a Changing World

Part of the book series: Developments in Hydrobiology ((DIHY,volume 196))

Abstract

Shallow lakes have become the archetypical example of ecosystems with alternative stable states. However, since the early conception of that theory, the image of ecosystem stability has been elaborated for shallow lakes far beyond the simple original model. After discussing how spatial heterogeneity and fluctuation of environmental conditions may affect the stability of lakes, we review work demonstrating that the critical nutrient level for lakes to become turbid is higher for smaller lakes, and seems likely to be affected by climatic change too. We then show how the image of just two contrasting states has been elaborated. Different groups of primary producers may dominate shallow lakes, and such states dominated by a particular group may often represent alternative stable states. In tropical lakes, or small stagnant temperate waters, freefloating plants may represent an alternative stable state. Temperate shallow lakes may be dominated alternatively by charophytes, submerged angiosperms, green algae or cyanobacteria. The change of the lake communities along a gradient of eutrophication may therefore be seen as a continuum in which gradual species replacements are interrupted at critical points by more dramatic shifts to a contrasting alternative regime dominated by different species. The originally identified shift between a clear and a turbid state remains one of the more dramatic examples, but is surely not the only discontinuity that can be observed in the response of these ecosystems to environmental change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Best, E.P.H., 1987. The submerged macrophytes in Lake Maarsseveen I, the Netherlands: changes in species composition and biomass over a six-year period. Hydrobiology Bulletin 21: 55–60.

    Article  CAS  Google Scholar 

  • Blindow, I., 1992. Longand short-term dynamics of submerged macrophytes in two shallow eutrophic lakes. Freshwater Biology 28: 15–27.

    Article  Google Scholar 

  • Blindow, I., A. Hargeby & G. Andersson, 2002. Seasonal changes of mechanisms maintaining clear water in a shallow lake with abundant Chara vegetation. Aquatic Botany 72: 315–334.

    Article  Google Scholar 

  • Blindow, I., G. Andersson, A. Hargeby & S. Johansson, 1993. Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshwater Biology 30: 159–167.

    Article  Google Scholar 

  • Carpenter, S. R., 2005. Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proceedings of the National Academy of Science of the United States of America 102: 10002–10005.

    Article  CAS  Google Scholar 

  • Chambers, P. A., E. E. Prepas, M. L. Bothwell & H. R. Hamilton, 1989. Roots versus shoots in nutrient uptake by aquatic macrophytes in flowing waters. Candian Journal of Fisheries and Aquatic Sciences 46: 435–439.

    Article  Google Scholar 

  • Dahl, T. E., 1990, Wetland losses in the United States, 1780’s to 1980’s. U.S. Department of the Interior, Fish and Wildlife Service, Washington DC.

    Google Scholar 

  • De Roos, A. M. & L. Persson, 2002. Size-dependent lifehistory traits promote catastrophic collapses of top predators. Proceedings of the National Academy of Science of the United States of America 99: 12907–12912.

    Article  CAS  Google Scholar 

  • DeAngelis, D. L., & L. J. Gross, 1992, Individual-based models and approaches in ecology. Chapman and Hall, New York, 1–525.

    Google Scholar 

  • Dumont, H. J., 1994. On the diversity of the cladocera in the tropics. Hydrobiologia 272: 27–38.

    Article  Google Scholar 

  • Engel, S. & S. A. Nichols, 1994. Aquatic macrophyte growth in a turbid windswept lake. Journal of Fresh-water Ecology 9: 97–109.

    Google Scholar 

  • Folke, C., S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist, L. Gunderson & C. S. Holling, 2004. Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology Evolution and Systematics 35: 557–581.

    Article  Google Scholar 

  • George, D. G., 2000. The impact of regional-scale changes in the weather on the long-term dynamics of Eudiaptomus and Daphnia in Esthwaite Water, Cumbria. Freshwater Biology 45: 111–121.

    Article  Google Scholar 

  • Gopal, B., 1987, Water hyacinth. Elsevier, New York.

    Google Scholar 

  • Goulder, R., 1969. Interactions between the rates of production of a freshwater macrophyte and phytoplankton in a pond. Oikos 20: 300–309.

    Article  Google Scholar 

  • Grace, J. B. & L. J. Tilly, 1976. Distribution and abundance of submerged macrophytes, including Myriophyllum spicatum L. (Angiospermae), in a cooling reservoir. Archiv für Hydrobiologie 77: 475–487.

    Google Scholar 

  • Grift, R. E., A. D. Buijse, W. L. T. Van Densen & J. G. P. Klein Breteler, 2001. Restoration of the river-floodlain interaction: benefits for the fish community in the River Rhine. Archiv für Hydrobiologie 135: 173–185.

    Google Scholar 

  • Gunderson, L. & C. S. Holling, 2001. Panarchy: understanding transformations in human and natural systems. Island Press, Washington.

    Google Scholar 

  • Hargeby, A., G. Andersson, I. Blindow & S. Johansson, 1994. Trophic web structure in a shallow eutrophic lake during a dominance shift from phytoplankton to submerged macrophytes. Hydrobiologia 280: 83–90.

    Article  Google Scholar 

  • Hastings, A., 2004. Transients: the key to long-term ecological understanding? Trends in Ecology & Evolution 19: 39–45.

    Article  Google Scholar 

  • Hershey, A. E., G. M. Gettel, M. E. McDonald, M. C. Miller, H. Mooers, W. J. O‘Brien, J. Pastor, C. Richards & J. A. Schuldt, 1999. A geomorphic-trophic model for landscape control of Arctic lake food webs. Bioscience 49: 887–897.

    Article  Google Scholar 

  • Holling, C. S., 1973. Resilience and stability of ecological systems. Annual Review of Ecology and Systematics 4: 1–23.

    Article  Google Scholar 

  • Huisman, J. & F. J. Weissing, 1999. Biodiversity of plankton by species oscillations and chaos. Nature 402: 407–410.

    Article  Google Scholar 

  • Hutchinson, G. E., 1975, A treatise on limnology. Vol. III, limnological botany. John Wiley & Sons, New York.

    Google Scholar 

  • Janse, J. H. & P. J. T. M. Van Puijenbroek, 1998. Effects of eutrophication in drainage ditches. Environmental Pollution 102: 547–552.

    Article  CAS  Google Scholar 

  • Jeppesen, E., 1998. The ecology of shallow lakes Trophic Interactions in the Pelagial. University of Copenhagen, Silkeborg, 358.

    Google Scholar 

  • Jeppesen, E., M. Sondergaard & J. P. Jensen, 2003. Climate warming and regime shifts in lake food webs-some comments. Limnology and Oceanography 48: 1346–1349.

    Google Scholar 

  • Jeppesen, E., M. Sondergaard, M. Sondergaard, & K. Kristoffersen, 1998, Structuring role of submerged macrophytes in lakes. Springer-Verlag, New York.

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard, T. Lauridsen, L. J. Pedersen & L. Jensen, 1997. Top-down control in freshwater lakes: the role of nutrient state, submerged macrophytes and water depth. Hydrobiologia 342: 151–164.

    Article  Google Scholar 

  • Jeppesen, E., M. Sondergaard, N. Mazzeo, M. Meerhoff, C. Branco, V. Huszar & F. Scasso, 2005. Lake restoration and biomanipulation in temperate lakes: relevance for subtropical and tropical lakes. In Reddy, M. V. (ed.), Restoration and Management of Tropical Eutrophic Lakes. Science Publishers.

    Google Scholar 

  • Lammens, E. H. R. R., M. L. Meijer, E. H. Van Nes & M. S. Van den Berg, 2004. Effects of commercial fishery on the bream population and the expansion of Chara aspera in Lake Veluwe. Ecological Modelling 177: 233–244.

    Article  Google Scholar 

  • Lewontin, R. C., 1969. The meaning of stability. Diversity and stability in ecological systems: report of a symposium held May 26–28. 13–24.

    Google Scholar 

  • MacArthur, R. H., & E. O. Wilson, 1967, The theory of island biogeography. Princeton University Press, Princeton, 203.

    Google Scholar 

  • Magnuson, J. J., W. M. Tonn, A. Banerjee, J. Toivonen, O. Sanchez & M. Rask, 1998. Isolation vs. extinction in the assembly of fishes in small northern lakes. Ecology 79: 2941–2956.

    Google Scholar 

  • May, R. M., 1977. Thresholds and breakpoints in ecosystems with a multiplicity of stable states. Nature 269: 471–477.

    Article  Google Scholar 

  • McKinnon, S. L. & S. F. Mitchell, 1994. Eutrophication and black swan (Cygnus atratus Latham) populations: tests of two simple relationships. Hydrobiologia 279–280: 163–170.

    Article  Google Scholar 

  • Mehra, A., M. E. Farago, D. K. Banerjee & K. B. Cordes, 1999. The water hyacinth: an environmental friend or pest? A review. Resource Environmental Biotechnology 2: 255–281.

    CAS  Google Scholar 

  • Meijer, M. L., A. J. Raat & R. W. Doef, 1989. Restoration by biomanipulation of Lake Bleiswijkse Zoom the Netherlands first results. Hydrobiology Bulletin 23: 49–58.

    Article  CAS  Google Scholar 

  • Mitchell, S. F., 1989. Primary production in a shallow eutrophic lake dominated alternately by phytoplankton and by submerged macrophytes. Aquatic Botany 33: 101–110.

    Article  Google Scholar 

  • Monteith, D. T., C. D. Evans & B. Reynolds, 2000. Are temporal variations in the nitrate content of UK upland freshwaters linked to the North Atlantic Oscillation? Hydrological Processes 14: 1745–1749.

    Article  Google Scholar 

  • Moss, B., 1988, Ecology of fresh waters, 2nd edn. Man & Medium. Blackwell Scientific, Oxford, 1–400.

    Google Scholar 

  • Moss, B., J. Stansfield & K. Irvine, 1990. Problems in the restoration of a hypertrophic lake by diversion of a nutrient-rich inflow. Verhandlungen Internationale Vereinigung Theoretisch Angewandte Limnologie 24: 568–572.

    Google Scholar 

  • Mur, L. R., H. J. Gons & L. Van Liere, 1977. Some experiments on competition between green-algae and bluegreen bacteria in light-limited environments. FEMS Microbiology Letters 1: 335–338.

    Article  Google Scholar 

  • Mur, L. R., H. Schreurs & P. Visser, 1993. How to control undesirable cyanobacterial dominance. In Giussani, G. & C. Callieri (eds), Proceedings of the 5th international conference on the conservation and management of lakes, Stresa, Italy, 565–569.

    Google Scholar 

  • Nelson, T. A., 1997. Interannual variance in a subtidal eelgrass community. Aquatic Botany 56: 245–252.

    Article  Google Scholar 

  • Perrow, M. R., B. Moss & J. Stansfield, 1994. Trophic interactions in a shallow lake following a reduction in nutrient loading — A long-term study. Hydrobiologia 276: 43–52.

    Article  Google Scholar 

  • Phillips, G. L., D. Eminson & B. Moss, 1978. A mechanism to account for macrophyte decline in progressively eutrophicated fresh waters. Aquatic Botany 4: 103–126.

    Article  Google Scholar 

  • Portielje, R. & R. M. M. Roijackers, 1995. Primary succession of aquatic macrophytes in experimental ditches in relation to nutrient input. Aquatic Botany 50: 127–140.

    Article  Google Scholar 

  • Rip, W.J., M. Ouboter, B. Beltman & E. H. Van Nes, 2005. Oscillation of a shallow lake ecosystem upon reduction in external phosphorus load. Archiv fur Hydrobiologie 164: 387–409.

    Article  CAS  Google Scholar 

  • Robach, F., S. Merlin, T. Rolland & M. Tremolieres, 1996. Ecophysiological approach of water quality bioindi-cating using aquatic plant materials: the role of phosphorus. Ecologie-Brunoy 27: 203–214.

    Google Scholar 

  • Rooney, N. & J. Kalff, 2000. Inter-annual variation in submerged macrophyte community biomass and distribution: the influence of temperature and lake morphometry. Aquatic Botany 68: 321–335.

    Article  Google Scholar 

  • Sas, H., 1989, Lake restoration by reduction of nutrient loading: expectations, experiences, extrapolations. Academia Verlag Richarz, St. Augustin, 1–497.

    Google Scholar 

  • Scasso, F., N. Mazzeo, J. Gorga, C. Kruk, G. Lacerot, J. Clemente, D. Fabian & S. Bonilla, 2001. Limnological changes in a sub-tropical shallow hypertrophic lake during its restoration: two years of a whole-lake experiment. Aquatic Conservation-Marine Freshwater Ecosystem 11: 31–44.

    Article  Google Scholar 

  • Scheffer, M., 1991. Should we expect strange attractors behind plankton dynamics: And if so, should we bother? Journal of Plankton Research 13: 1291–1306.

    Article  Google Scholar 

  • Scheffer, M., 1998. Ecology of shallow lakes. Chapman and Hall, London, 0–357.

    Google Scholar 

  • Scheffer, M. & S. R. Carpenter, 2003. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends in Ecology & Evolution 18: 648–656.

    Article  Google Scholar 

  • Scheffer, M., M. R. De Redelijkheid & F. Noppert, 1992. Distribution and dynamics of submerged vegetation in a chain of shallow eutrophic lakes. Aquatic Botany 42: 199–216.

    Article  Google Scholar 

  • Scheffer, M., S. Rinaldi, Y. A. Kuznetsov & E. H. Van Nes, 1997a. Seasonal dynamics of Daphnia and algae explained as a periodically forced predator-prey system. Oikos 80: 519–532.

    Article  Google Scholar 

  • Scheffer, M., D. Straile, E. H. Van Nes & H. Hosper, 2001a. Climatic warming causes regime shifts in lake food webs. Limnology and Oceanography 46: 1780–1783.

    Article  Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.

    Article  Google Scholar 

  • Scheffer, M., S. Rinaldi, A. Gragnani, L. R. Mur & E. H. Van Nes, 1997b. On the dominance of filamentous cyanobacteria in shallow, turbid lakes. Ecology 78: 272–282.

    Article  Google Scholar 

  • Scheffer, M., S. R. Carpenter, J. A. Foley, C. Folke & B. Walker, 2001. Catastrophic shifts in ecosystems. Nature 413: 591–596.

    Article  PubMed  CAS  Google Scholar 

  • Scheffer, M., M. S. Van den Berg, A. W. Breukelaar, C. P. M. Breukers, H. Coops, R. W. Doef & M. L. Meijer, 1994. Vegetated areas with clear water in turbid shallow lakes. Aquatic Botany 49: 193–196.

    Article  Google Scholar 

  • Scheffer, M., S. Szabo, A. Gragnani, E. H. van Nes, S. Rinaldi, N. Kautsky, J. Norberg, R. M. M. Roijackers & R. J. M. Franken, 2003. Floating plant dominance as a stable state. Proceedings of the National Academy of Science of the United States of America 100: 4040–4045.

    Article  CAS  Google Scholar 

  • Scheffer, M., G. J. Van Geest, K. Zimmer, E. Jeppesen, M. Sondergaard, M. G. Butler, M. A. Hanson, S. Declerck & L. De Meester, 2006. Small habitat size and isolation can promote species richness: second-order effects on biodiversity in shallow lakes and ponds. Oikos 112: 227–231.

    Article  Google Scholar 

  • Schelske, C. L. & P. Brezonik, 1992. Can Lake Apopka be restored? In Maurizi, S. & F. Poillon (eds), Restoration of Aquatic Ecosystems. National Academic Press, Washington D.C.: 393–398.

    Google Scholar 

  • Sculthorpe, C. D., 1967, The biology of aquatic vascular plants. Edward Arnold Ltd., London.

    Google Scholar 

  • Simons, J., M. Ohm, R. Daalder, P. Boers & W. Rip, 1994. Restoration of Botshol (the Netherlands) by reduction of external nutrient load-recovery of a characean community, dominated by Chara connivens. Hydrobiologia 276: 243–253.

    Google Scholar 

  • Sommer, U., 1986. The periodicity of phytoplankton in Lake Constance (Bodensee) in comparison to other deep lakes of central Europe. Hydrobiologia 138: 1–8.

    Article  Google Scholar 

  • Sondergaard, M., E. Jeppesen & J. P. Jensen, 2005. Pond or lake: does it make any difference? Archiv Fur Hydrobiologie 162: 143–165.

    Article  CAS  Google Scholar 

  • Straile, D., 2002. North Atlantic Oscillation synchronizes food-web interactions in central European lakes. Proceedings of the Royal Society of Edinburgh. Section B (Biological Sciences) 269: 391–395.

    Google Scholar 

  • Strogatz, S. H., 1994, Nonlinear dynamics and chaos — with applications to physics, biology, chemistry and engineering. Addison-Wesley Publishing Company, Reading, 1–498.

    Google Scholar 

  • Tonn, W.M. & J. J. Magnuson, 1982. Patterns in the species composition and richness of fish assemblages in northern Wisconsin Lakes. Ecology 63: 1149–1166.

    Article  Google Scholar 

  • Van den Berg, M. S., 1999. A comparative study of the use of inorganic carbon resources by Chara aspera and Potamogeton pectinatus. In Van den Berg, M. S. (ed.), Charophyte recolonization in shallow lakes-processes, ecological effects and implications for lake management. Thesis Vrije Universiteit Amsterdam, 57–67.

    Google Scholar 

  • Van den Berg, M. S., H. Coops, J. Simons & A. De Keizer, 1998a. Competition between Chara aspera and Pota-mogeton pectinatus as a function of temperature and light. Aquatic Botany 60: 241–250.

    Article  Google Scholar 

  • Van den Berg, M. S., M. Scheffer, E. H. Van Nes & H. Coops, 1999. Dynamics and stability of Chara sp and Potamogeton pectinatus in a shallow lake changing in eutrophication level. Hydrobiologia 409: 335–342.

    Article  Google Scholar 

  • Van den Berg, M. S., H. Coops, M. L. Meijer, M. Scheffer & J. Simons, 1998b. Clear water associated with a dense Cham vegetation in the shallow and turbid Lake Veluwemeer, the Netherlands. In Jeppesen, E., M. Sondergaard, M. Sondergaard & K. Kristoffersen (eds), Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag, New York, 339–352.

    Google Scholar 

  • Van Donk, E. & R. D. Gulati, 1995. Transition of a lake to turbid state six years after biomanipulation: mechanisms and pathways. Water Science and Technology 32: 197–206.

    Google Scholar 

  • Van Donk, E., R. D. Gulati, A. Iedema & J. T. Meulemans, 1993. Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake. Hydrobiologia 251: 19–26.

    Article  Google Scholar 

  • Van Geest, G. J., H. Coops, M. Scheffer & E. H. van Nes, in press. Transient macrophyte dominance in lakes with fluctuating water levels. Ecosystems.

    Google Scholar 

  • Van Geest, G. J., F. Roozen, H. Coops, R. M. M. Roijackers, A. D. Buijse, E. Peeters & M. Scheffer, 2003. Vegetation abundance in lowland flood plan lakes determined by surface area, age and connectivity. Freshwater Biology 48: 440–454.

    Article  Google Scholar 

  • Van Nes, E. H. & M. Scheffer, 2005. Implications of spatial heterogeneity for regime shifts in ecosystems. Ecology 86: 1797–1807.

    Article  Google Scholar 

  • Van Nes, E. H., W. J. Rip & M. Scheffer, in press. A theory for cyclic shifts between alternative states in shallow lakes. Ecosystems.

    Google Scholar 

  • Van Nes, E. H., M. Scheffer, M. S. Van den Berg & H. Coops, 2002. Dominance of charophytes in eutrophic shallow lakes — when should we expect it to be an alternative stable state? Aquatic Botany 72: 275–296.

    Article  Google Scholar 

  • Van Nes, E. H., M. Scheffer, M. S. Van den Berg & H. Coops, 2003. Charisma: a spatial explicit simulation model of submerged macrophytes. Ecological Modelling 159: 103–116.

    Article  Google Scholar 

  • Wallsten, M. & P. O. Forsgren, 1989. The effects of increased water level on aquatic macrophytes. Journal of Aquatic Plant Management 27: 32–37.

    Google Scholar 

  • Walters, C. & J. F. Kitchell, 2001. Cultivation/depensation effects on juvenile survival and recruitment: implications for the theory of fishing. Canadian Journal of Fisheries and Aquatic Sciences 58: 39–50.

    Article  Google Scholar 

  • Weyhenmeyer, G. A., 2001. Warmer winters: are planktonic algal populations in Sweden’s largest lakes affected? Ambio 30: 565–571.

    Article  PubMed  CAS  Google Scholar 

  • Williams, P., M. Whitfield, J. Biggs, S. Bray, G. Fox, P. Nicolet & D. Sear, 2004. Comparative biodiversity of rivers, streams, ditches and ponds in an agricultural landscape in Southern England. Biological Conservation 115: 329–341.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science+Business Media B.V.

About this paper

Cite this paper

Scheffer, M., van Nes, E.H. (2007). Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. In: Gulati, R.D., Lammens, E., De Pauw, N., Van Donk, E. (eds) Shallow Lakes in a Changing World. Developments in Hydrobiology, vol 196. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6399-2_41

Download citation

Publish with us

Policies and ethics