Skip to main content

Climate-induced shifts in an experimental phytoplankton community: a mechanistic approach

  • Conference paper
Shallow Lakes in a Changing World

Part of the book series: Developments in Hydrobiology ((DIHY,volume 196))

Abstract

Climate change is likely to have farreaching effects on biotic interactions in aquatic ecosystems. We investigated the effect of different spring warming scenarios on the succession of three algal groups (cyanobacteria, diatoms and green algae) in 10-1 microcosms. We fitted these microcosm data to a simple mechanistic model to estimate the effect of different climate warming scenarios on the population dynamics of these algal functional groups. Experimental and model results indicate that the different algal functional groups respond differently to climate warming under phosphorus-limited conditions. Whereas the successional sequence, from diatoms to green algae to cyanobacteria, was not affected by the different climate warming scenarios, cyanobacteria showed a stronger response to the different climate warming scenarios than diatoms or green algae. Both the growth rates and peak abundances of cyanobacteria were significantly higher in the average and warm spring scenarios than in the cold spring scenario. Our findings illustrate that integration of models and microcosm experiments are a useful approach in predicting the impacts of rising temperatures on the dynamics of phytoplankton communities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adrian, R., R. Deneke, U. Mischke, R. Stellmacher, & P. Lederer, 1995. Long-term study of the Heiligensee (1975–1992)-Evidence for effects of climatic-change on the dynamics of eutrophied lake ecosystems. Archiv für Hydrobiologie 133: 315–337.

    Google Scholar 

  • Adrian, R., N. Walz, T. Hintze, S. Hoeg, & R. Rusche, 1999. Effects of ice duration on plankton succession during spring in a shallow polymictic lake. Freshwater Biology 41: 621–632.

    Article  Google Scholar 

  • Beisner, B. E., E. McCauley, & F. J. Wrona, 1996. Temperature-mediated dynamics of planktonic food chains: the effect of an invertebrate carnivore. Freshwater Biology 35: 219–232.

    Article  Google Scholar 

  • Beisner, B. E., E. McCauley, & F. J. Wrona, 1997. The influence of temperature and food chain length on plankton predator-prey dynamics. Canadian Journal of Fisheries and Aquatic Sciences 54: 586–595.

    Article  Google Scholar 

  • Bienfang, P. K., P. J. Harrison, & L. M. Quarmby, 1982. Sinking rate response to depletion of nitrate, phosphate and silicate in 4 marine diatoms. Marine Biology 67: 295–302.

    Article  CAS  Google Scholar 

  • Carmichael, W. W., 2001. Health effects of toxin-producing cyanobacteria: ‘The CyanoHABs’. Human and Ecological Risk Assessment 7: 1393–1407.

    Article  Google Scholar 

  • Christoffersen, K., N. Andersen, M. Søndergaard, L. Liboriussen, & E. Jeppesen, 2006. Implications of climate-enforced temperature increases on freshwater picoand nanoplankton populations studied in artificial ponds during 16 months. Hydrobiologia 560: 259–266.

    Article  CAS  Google Scholar 

  • Coles, J. F. & R. C. Jones, 2000. Effect of temperature on photosynthesis-light response and growth of four phytoplankton species isolated from a tidal freshwater river. Journal of Phycology 36: 7–16.

    Article  CAS  Google Scholar 

  • DeNie, H. W., H. J. Bromley, & J. Vijverberg, 1980. Distribution patterns in Tjeukemeer, The Netherlands. Journal of Plankton Research 2: 316–334.

    Google Scholar 

  • DeMott, W. R., R. D. Gulati, & E. Van Donk, 2001. Daphnia food limitation in three hypereutrophic Dutch lakes: Evidence for exclusion of large-bodied species by interfering filaments of cyanobacteria. Limnology and Oceanography 46: 2054–2060.

    Google Scholar 

  • Elliott, J. A., I. D. Jones, & S. J. Thackeray, 2006. Testing the sensitivity of phytoplankton communities to changes in water temperature and nutrient load, in a temperate lake. Hydrobiologia 559: 401–411.

    Article  CAS  Google Scholar 

  • Gerten, D. & R. Adrian, 2000. Climate-driven changes in spring plankton dynamics and the sensitivity of shallow polymictic lakes to the North Atlantic Oscillation. Limnology and Oceanography 45: 1058–1066.

    Google Scholar 

  • Golterman, H. L., R. S. Clymo, & M. A. M. Ohnstad, 1978. Methods of Physical and Chemical Analysis of Fresh Waters. Blackwell, Oxford, United Kingdom.

    Google Scholar 

  • Harris, G. P. & G. Baxter, 1996. Interannual variability in phytoplankton biomass and species composition in a subtropical reservoir. Freshwater Biology 35: 545–560.

    Article  Google Scholar 

  • Houghton, J. D., Y. Ding, D. J. Griggs, M. Noguer, P. J. Van der Linden, & D. Xiaosu, 2001. Climate Change 2001: The Scientific Basis Contribution Of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Huisman, J., H. C. P. Matthijs, & P. M. Visser, 2005. Harmful Cyanobacteria. Springer, Berlin, Germany.

    Google Scholar 

  • Huisman, J., J. Sharpies, J. M. Stroom, P. M. Visser, W. E. A. Kardinaal, J. M. H. Verspagen, & B. Sommeijer, 2004. Changes in turbulent mixing shift competition for light between phytoplankton species. Ecology 85: 2960–2970.

    Article  Google Scholar 

  • Kohler, J., S. Hilt, R. Adrian, A. Nicklisch, H. P. Kozerski, & N. Walz, 2005. Long-term response of a shallow, moderately flushed lake to reduced external phosphorus and nitrogen loading. Freshwater Biology 50: 1639–1650.

    Article  CAS  Google Scholar 

  • Kors, A. G., F. A. M. Claessen, J. W. Wesseling, & G. P. Können, 2000. Scenario’s externe krachten voor WB21. Commissie Waterbeheer 21e eeuw, RIZA, WL/Delft Hydraulics en KNMI rapport.

    Google Scholar 

  • Mckee, D., D. Atkinson, S. E. Collings, J. W. Eaton, A. B. Gill, I. Harvey, K. Hatton, T. Heyes, D. Wilson, & B. Moss, 2003. Response of freshwater microcosm communities to nutrients, fish, and elevated temperature during winter and summer. Limnology and Oceanography 48: 702–722.

    Google Scholar 

  • Mooij, W. M., 1996. Variation in abundance and survival of fish larvae in shallow eutrophic Lake Tjeukemeer. Environmental Biology of Fishes 46: 265–279.

    Article  Google Scholar 

  • Mooij, W. M., S. Hülsmann, L. N. De Senerpont Domis, B. A. Nolet, P. L. E. Bodelier, P. C. M. Boers, L. M. Dionisio Pires, H. J. Gons, B. W. Ibelings, R. Noordhuis, R. Portielje, K. Wolfstein, & E. H. R. R. Lammens, 2005. The impact of climatic change on lakes in the Netherlands: a review. Aquatic Ecology 39: 381–400.

    Article  CAS  Google Scholar 

  • Mooij, W. M., & O. F. R. Van Tongeren, 1990. Growth of 0+ roach (Rutilus rutilus) in relation to temperature and size in a shallow eutrophic lake comparison of field and laboratory observations. Canadian Journal of Fisheries and Aquatic Sciences 47: 960–967.

    Article  Google Scholar 

  • Moss, B., D. Mckee, D. Atkinson, S. E. Collings, J. W. Eaton, A. B. Gill, I. Harvey, K. Hatton, T. Heyes, & D. Wilson, 2003. How important is climate? Effects of warming, nutrient addition and fish on phytoplankton in shallow lake microcosms. Journal of Applied Ecology 40: 782–792.

    Article  Google Scholar 

  • Müller-Navarra, D. C., S. Guss, & H. Von Storch, 1997. Interannual variability of seasonal succession events in a temperate lake and its relation to temperature variability. Global Change Biology 3: 429–438.

    Article  Google Scholar 

  • Murphy, J., & J. P. Riley, 1962. A modified single solution method for determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Parmesan, C., & G. Yohe, 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421: 37–42.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds, C. S., 1989. Physical determinants of phyto-plankton succession. In Sommer, U. (ed), Plankton Ecology. Succession in Plankton Communities. Springer-Verlag: 9–56.

    Google Scholar 

  • Reynolds, C. S., 1997. Vegetation Processes in the Pelagic: a Model for Ecosystem Theory. Ecology Institute, Oldendorf/Luhe.

    Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores, & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Reynolds, C. S., J. M. Thompson, A. J. D. Ferguson, & S. W. Wiseman, 1982. Loss processes in the population dynamics of phytoplankton maintained in closed systems. Journal of Plankton Research 4: 561–600.

    Article  Google Scholar 

  • Reynolds, C. S. & S. W. Wiseman, 1982. Sinking losses of phytoplankton in closed limnetic systems. Journal of Plankton Research 4: 489–522.

    Article  Google Scholar 

  • Sommer, U., 1985. Comparison between steady-state and non-steady state competition: experiments with natural phytoplankton. Limnology and Oceanography 30: 335–346.

    Article  CAS  Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert, & A. Duncan, 1986. The PEG-Model of seasonal succession of planktonic events in fresh waters. Archiv für Hydrobiologie 106: 433–471.

    Google Scholar 

  • Straile, D., & W. Geller, 1998. The response of Daphnia to changes in trophic status and weather patterns: a case study from Lake Constance. ICES Journal of Marine Science 55: 775–782.

    Article  Google Scholar 

  • Strecker, A. L., T. P. Cobb, & R. D. Vinebrooke, 2004. Effects of experimental greenhouse warming on phytoplankton and Zooplankton communities in fishless alpine ponds. Limnology and Oceanography 49: 1182–1190.

    Article  CAS  Google Scholar 

  • Van de Bund, W. J., S. Romo, M. J. Villena, M. Valentin, E. Van Donk, E. Vicente, K. Vakkilainen, M. Svensson, D. Stephen, A. Stahl-Delbanco, J. Rueda, B. Moss, M. R. Miracle, T. Kairesalo, L. A. Hansson, J. Hietala, M. Gyllstrom, J. Goma, P. García, M. Fernandez-Alaez, C. Fernandez-Alaez, C. Ferriol, S. E. Collings, E. Becares, D. M. Balayla, & T. Alfonso, 2004. Responses of phytoplankton to fish predation and nutrient loading in shallow lakes: a pan-European mesocosm experiment. Freshwater Biology 49: 1608–1618.

    Article  CAS  Google Scholar 

  • Van Oldenborgh, G. J., & A. Van Ulden, 2003. On the relationship between global warming, local warming in the Netherlands and changes in circulation in the 20th century. International Journal of Climatology 23: 1711–1724.

    Article  Google Scholar 

  • Van Vliet, A. J. H., A. Overeem, R. S. De Groot, A. F. G. Jacobs, & F. T. M. Spieksma, 2002. The influence of temperature and climate change on the timing of pollen release in the Netherlands. International Journal of Climatology 22: 1757–1767.

    Article  Google Scholar 

  • Verschoor, A. M., J. Takken, B. Massieux, & J. Vijverberg, 2003. The Limnotrons: a facility for experimental community and food web research. Hydrobiologia 491: 257–377.

    Article  Google Scholar 

  • Walther, G. R., E. Post, P. Convey, A. Menzel, C. Parmesan, T. J. C. Beebee, J. M. Fromentin, O. Hoegh-Guldberg, & F. Bairlein, 2002. Ecological responses to recent climate change. Nature 416: 389–395.

    Article  PubMed  CAS  Google Scholar 

  • Walz, H., 1999. Phytoplankton Analyzer PHYTO-PAM: System components and principles of operation. Heinz Walz, Effeltrich, Germany.

    Google Scholar 

  • Weyhenmeyer, G. A., R. Adrian, U. Gaedke, D. M. Livingstone, & S. C. Maberly, 2002. Response of phytoplankton in European lakes to a change in the North Atlantic Oscillation. Verhandlungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 20: 1436–1439.

    Google Scholar 

  • Weyhenmeyer, G. A., 2001. Warmer winters: Are planktonic algal populations in Sweden’s largest lakes affected? Ambio 30: 565–571.

    Article  PubMed  CAS  Google Scholar 

  • Weyhenmeyer, G. A., T. Blenckner, & K. Pettersson, 1999. Changes of the plankton spring outburst related to the North Atlantic Oscillation. Limnology and Oceanography 44: 1788–1792.

    Google Scholar 

  • Winder, M. & D. E. Schindler, 2004a. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106.

    Article  Google Scholar 

  • Winder, M. & D. E. Schindler, 2004b. Climatic effects on the phenology of lake processes. Global Change Biology 10: 1844–1856.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Science-Business Media B.V.

About this paper

Cite this paper

De Senerpont Domis, L.N., Mooij, W.M., Huisman, J. (2007). Climate-induced shifts in an experimental phytoplankton community: a mechanistic approach. In: Gulati, R.D., Lammens, E., De Pauw, N., Van Donk, E. (eds) Shallow Lakes in a Changing World. Developments in Hydrobiology, vol 196. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6399-2_36

Download citation

Publish with us

Policies and ethics