Shallow lake restoration by nutrient loading reduction—some recent findings and challenges ahead

  • Erik Jeppesen
  • Martin Søndergaard
  • Mariana Meerhoff
  • Torben L. Lauridsen
  • Jens Peder Jensen
Part of the Developments in Hydrobiology book series (DIHY, volume 196)

Abstract

Shallow lakes respond to nutrient loading reductions. Major findings in a recent multi-lake comparison of data from lakes with long time series revealed: that a new state of equilibrium was typically reached for phosphorus (P) after 10–15 years and for nitrogen (N) after <5–10 years; that the in-lake Total N:Total P and inorganic N:P ratios increased; that the phytoplankton and fish biomass often decreased; that the percentage of piscivores often increased as did the zooplankton:phytoplankton biomass ratio, the contribution of Daphnia to Zooplankton biomass, and cladoceran size. This indicates that enhanced resource and predator control often interact during recovery from eutrophication. So far, focus has been directed at reducing external loading of P. However, one experimental study and cross-system analyses of data from many lakes in north temperate lakes indicate that nitrogen may play a more significant role for abundance and species richness of submerged plants than usually anticipated when total phos-phorus is moderate high. According to the alter-native states hypothesis we should expect ecological resistance to nutrient loading reduction and P hysteresis. We present results suggesting that the two alternative states are less stable than originally anticipated. How global warming af-fects the water clarity of shallow lakes is debat-able. We suggest that water clarity often will decrease due to either enhanced growth of phytoplankton or, if submerged macrophytes are stimulated, by reduced capacity of these plants to maintain clear-water conditions. The latter is supported by a cross-system comparison of lakes in Florida and Denmark. The proportion of small fish might increase and we might see higher aggregation of fish within the vegetation (leading to loss of Zooplankton refuges), more annual fish cohorts, more omnivorous feeding by fish and less specialist piscivory. Moreover, lakes may have prolonged growth seasons with a higher risk of long-lasting algal blooms and at places dense floating plant communities. The effects of global warming need to be taken into consideration by lake managers when setting future targets for critical loading, as these may well have to be adjusted in the future. Finally, we highlight some of the future challenges we see in lake restoration research.

Keywords

Recovery Lake restoration Nitrogen Climate change Resilience Regime shifts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen, H. E., B. Kronvang, S. E. Larsen, C. C. Hoff-mann, T. S. Jensen & E. K. Rasmussen, 2006. Climate change impacts on hydrology and nutrients in a Danish lowland river basin. Science of the Total Environment 365: 223–237.PubMedCrossRefGoogle Scholar
  2. Bachmann, R. W., M. V. Hoyer & D. E. Canfield Jr., 1999. The restoration of Lake Apopka in relation to alternative stable states. Hydrobiologia 394: 219–232.CrossRefGoogle Scholar
  3. Bachmann, R. W., C. A. Horsburgh, M. V. Hoyer, L. K. Mataraza & D. E. Canfield Jr., 2002. Relations be-tween trophic state indicators and plant biomass in Florida lakes. Hydrobiologia 470: 219–234.CrossRefGoogle Scholar
  4. Beklioglu, M., G. Altinaya & C. O. Tan, 2006. Water level control over submerged macrophyte development in five shallow lakes of Mediterranean Turkey. Archiv für Hydrobiologie 166: 535–556.CrossRefGoogle Scholar
  5. Benndorf, J., J. Kranich, T. Mehner & A. Wagner, 2001. Temperature impact on midsummer decline of Daphnia galeata: an analysis of long-term data from biomanipulated Bautzen Reservoir (Germany). Freshwater Biology 46: 199–211.CrossRefGoogle Scholar
  6. Blindow, I., G. Andersson, A. Hargeby & S. Johansson, 1993. Long-term pattern of alternative stable states in two shallow eutrophic lakes. Freshwater Biology 30: 159–167.CrossRefGoogle Scholar
  7. Boersma, M., O. F. R van Tongeren & W. M. Mooij, 1996. Seasonal patterns in the mortality of Daphnia species in a shallow lake. Canadian Journal of Fisheries and Aquatic Science 53: 18–28.CrossRefGoogle Scholar
  8. Branco, C. W. C., T. Aguiaro, F. A. Esteves & E. P. Caramaschi, 1997. Food sources of the Teleost Eu-cinostomus argenteus in two coastal lagoons of Brazil. Studies on Neotropical Fauna & Environment 32: 33–40.CrossRefGoogle Scholar
  9. Canfield, D. E. Jr., J. V. Shireman, D. E. Colle, W. T. Haller, C. E. I. I. Watkins & M. J. Maceina, 1984. Prediction of chlorophyll a concentrations in Florida Lakes: Importance of aquatic macrophytes. Canadian Journal of Fisheries and Aquatic Science 41: 497–501.CrossRefGoogle Scholar
  10. Carvalho, L. & A. Kirika, 2003. Changes in lake functioning: response to climate change and nutrient reduction. Hydrobiologia 506/509: 789–796.CrossRefGoogle Scholar
  11. Conrow, R., A. V. Zale & R. W. Gregory, 1990. Distri-butions and abundances of early stages of fishes in a Florida lake dominated by aquatic macrophytes. Transactions of the American Fisheries Society 119: 521–528.CrossRefGoogle Scholar
  12. Coveney, M. F., E. F. Lowe, L. E. Battoe, E. R. Marzolf & R. Conrow, 2005. Response of a eutrophic, shallow subtropical lake to reduced nutrient loading. Fresh-water Biology 50: 1718–1730.CrossRefGoogle Scholar
  13. Crisman, T. L. & J. R. Beaver, 1990. Applicability of planktonic biomanipulation for managing eutrophi-cation in the subtropics. Hydrobiologia 200: 177–186.CrossRefGoogle Scholar
  14. Delariva, R., A. Agostinho, K. Nakatani & G. Baum-gartner, 1994. Ichthyofauna associated to aquatic macrophytes in the upper Paraná River floodplain. Unimar 16: 41–60.Google Scholar
  15. Gonzalez, Sagrario, M. A., E. Jeppesen, J. Gomà, M. Søndergaard, T. Lauridsen & F. Landkildehus, 2005. Does high nitrogen loading prevents clear-water conditions in shallow lakes at intermediate high phosphorus concentrations. Freshwater Biology 50: 27–41.CrossRefGoogle Scholar
  16. Gyllström, M., L.-A. Hansson, E. Jeppesen, F. García-Criado, E. Gross, K. Irvine, T. Kairesalo, R. Kor-nijow, M. R. Miracle, M. Nykänen, T. Nõges, S. Romo, D. Stephen, E. Van Donk & B. Moss, 2005. Zooplankton community structure in shallow lakes: interaction between climate and productivity. Lim-nology and Oceanography 50: 2008–2021.Google Scholar
  17. Hansson, L.-A., H. Annadotter, E. Bergman, S. F. Hamrin, E. Jeppesen, T. Kairesalo, E. Luokkanen, P.-Å. Nils-son, M. Søndergaard & J. Strand, 1998. Biomanipu-lation as an application of food chain theory: constraints, synthesis and recommendations for tem-perate lakes. Ecosystems 1: 558–574.CrossRefGoogle Scholar
  18. Hilt, S., E. M. Gross, M. Hupfer, H. Morscheid, J. Mähl-mann, A. Melzer, J. Poltz, S. Sandrock, E.-M. Scharf, S. Schneider & K. van de Weyer, 2006. Restoration of submerged vegetation in shallow eutrophic lakes-A guideline and state of the art in Germany. Limno-logica 36: 155–171.Google Scholar
  19. James, C., J. Fisher, V. Russell, S. Collings & B. Moss, 2005. Nitrate availability and plant species richness: implications for management of freshwater lakes. Freshwater Biology 50: 49–63.CrossRefGoogle Scholar
  20. Jensen, H. S. & F. Ø. Andersen, 1992. Importance of temperature, nitrate and pH for phosphorus from aerobic sediments of four shallow, eutrophic lakes. Limnology and Oceanography 37: 577–589.CrossRefGoogle Scholar
  21. Jensen, J. P., A. R. Pedersen, E. Jeppesen & M. Søndergaard, 2006. An empirical model describing the seasonal dynamics of phosphorus in 16 shallow eutrophic lakes after external loading reduction. Limnology and Oceanography 51: 791–800.CrossRefGoogle Scholar
  22. Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortkjær & K. Olrik, 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia 200/201: 219–227.CrossRefGoogle Scholar
  23. Jeppesen, E., M. Søndergaard, E. Kanstrup, B. Petersen, R. B. Henriksen, M. Hammershøj, E. Mortensen, J. P. Jensen & A. Have, 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ?. Hydrobiologia 275/276: 15–30.Google Scholar
  24. Jeppesen, E., T. L. Lauridsen, T. Kairesalo & M. Perrow, 1997. Impact of submerged macrophytes on fish-zoo-plankton relationships in lakes. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, Vol. 131. Springer-Verlag, New York, 91–115.Google Scholar
  25. Jeppesen, E., J. P. Jensen & M. Søndergaard, 2002. Response of phytoplankton, Zooplankton and fish to re-oligotrophication: an 11-year study of 23 Danish lakes. Aquatic Ecosystems and Health Management 5: 31–43.CrossRefGoogle Scholar
  26. Jeppesen, E., J. P. Jensen, M. Søndergaard, K. Sandby Hansen, P. H. Møller, H. U. Rasmussen & V. Norby, 2003. Does resuspension prevent a shift to a clearwater state in shallow lakes during re-oligo-trophication? Limnology and Oceanography 48: 1913–1919.Google Scholar
  27. Jeppesen, E., M. Søndergaard, J. P. Jensen, K. Havens, O. Anneville, L. Carvalho, M. F. Coveney, R. Deneke, M. Dokulil, B. Foy, D. Gerdeaux, S. E. Hampton, K. Kangur, J. Köhler, S. Körner, E. Lammens, T. L. Lauridsen, M. Manca, R. Miracle, B. Moss, P. Nõges, G. Persson, G. Phillips, R. Portielje, S. Romo, C. L. Schelske, D. Straile, I. Tatrai, E. Willén & M. Winder, 2005. Lake responses to reduced nutrient loading-an analysis of contemporary long-term data from 35 case studies. Freshwater Biology 50: 1747–1771.CrossRefGoogle Scholar
  28. Jeppesen, E., M. Meerhoff, B. A. Jakobsen, R. S. Hansen, M. Søndergaard, J. P. Jensen, T. L. Lauridsen, N. Mazzeo & C. W. Branco, 2007. Restoration of shallow lakes by nutrient control and biomanipulation-the successful strategy varies with lake size and climate. Hydrobiologia 581: 269–285.CrossRefGoogle Scholar
  29. JRC (Joint Research Centre), European Commission, 2005. Climate change and the European Water Dimension. S. J. Eisenreich, JRC, Ispra, Italy (Ed). EUR 21553, 253 pp.Google Scholar
  30. Kronvang, B., E. Jeppesen, D. J. Conley, M. Søndergaard, S. E. Larsen, N. B. Ovesen & J. Carstensen, 2005. Nutrient pressures and ecological responses to nutri-ent loading reductions in Danish streams, lakes and coastal waters. Journal of Hydrology 304: 274–288.CrossRefGoogle Scholar
  31. Köhler, J., S. Hilt, R. Adrian, A. Nicklisch, H. P. Kozerski & N. Walz, 2005. Long-term response of shallow, flushed Müggelsee (Berlin, Germany) to reduced external P and N loading. Freshwater Biology 50: 1639–1650.CrossRefGoogle Scholar
  32. Lauridsen, T. L., H. Sandsten & P. H. Møller, 2003. The restoration of a shallow lake by introducing Potamogeton spp.: the impact of waterfowl grazing. Lakes & Reservoirs: Research Management 8: 177–187.CrossRefGoogle Scholar
  33. Lehtonen, H., 1996. Potential effects of global warming on northern European freshwater fish and fisheries. Fisheries Management and Ecology 3: 59–71.CrossRefGoogle Scholar
  34. Liboriussen, L., F. Landkildehus, M. Meerhoff, M. Søndergaard, K. Christoffersen, K. Richardson, M. Søndergaard, T. L. Lauridsen & E. Jeppesen, 2005. Global warming: design of a flow-through shallow lake mesocosm climate experiment. Limnology and Oceanography: Methods 3: 1–9.Google Scholar
  35. Marsden, S., 1989. Lake restoration by reducing external phosphorus loading: the influence of sediment phos-phorus release. Freshwater Biology 21: 139–162.CrossRefGoogle Scholar
  36. Mazzeo, N., L. Rodrfguez-Gallego, C. Kruk, M. Meerhoff, J. Gorga, C. Lacerot, F. Quintans, M. Loureiro, D. Larrea & F. Garcfa-Rodrfgues, 2003. Effect of Egeria densa Planch. beds on a shallow lake without pisciv-orous fish. Hydrobiologia 506/509: 591–602.CrossRefGoogle Scholar
  37. McKee, D., D. Atkinson, S. E. Colling, J. W. Eaton, A. B. Gill, I. Harvey, K. Hatton, T. Heyes, D. Wilson & B. Moss, 2003. Response of freshwater microcosm com-munities to nutrients, fish, and elevated temperature during winter and summer. Limnology and Ocean-ography 48: 707–722.Google Scholar
  38. Meerhoff, M., N. Mazzeo, B. Moss & L. Rodríguez-Gal-lego, 2003. The structuring role of free-floating versus submerged plants in a shallow subtropical lake. Aquatic Ecology 37: 377–391.CrossRefGoogle Scholar
  39. Mehner, T., J. Benndorf, P. Kasprzak & R. Koschel, 2002. Biomanipulation of lake ecosystems: successful applications and expanding complexity in the under-lying science. Freshwater Biology 47: 2453–2465.CrossRefGoogle Scholar
  40. Meijer, M.-L., I. de Boois, M. Scheffer, R. Portielje & H. Hosper, 1999. Biomanipulation in the Netherlands: an evaluation of 18 case studies in shallow lakes. Hyd-robiologia 408/409: 13–30.Google Scholar
  41. Mitchell, S. F., 1989. Primary production in a shallow eutrophic lake dominated alternately by phytoplank-ton and by submerged macrophytes. Aquatic Botany 33: 101–110.CrossRefGoogle Scholar
  42. Moss, B., 1990. Engineering and biological approaches to the restoration from eutrophication of shallow lakes in which aquatic plant communities are important components. Hydrobiologia 200/201: 367–377.CrossRefGoogle Scholar
  43. Moss, B., 2001. The Broads. The People’s Wetland. The New Naturalist. Harper Collins Publishers, London.Google Scholar
  44. Moss, B., J. Stansfield & K. Irvine, 1990. Problems in the restoration of a hypertrophic lake by diversion of nutrient-rich inflow. Verhandlungen International Vereinigung für Theoretische und Angewandte Lim-nologie 24: 568–572.Google Scholar
  45. Olin, M., M. Rask, J. Ruuhijärvi, J. Keskitalo, J. Horppila, P. Tallberg, T. Taponen, A. Lehtovaara & I. Sam-malkorpi, 2005. Effects of biomanipulation on fish and plankton communities in ten eutrophic lakes of southern Finland. Hydrobiologia 553: 67–88.CrossRefGoogle Scholar
  46. Paugy, D. & C. Lévêque, 1999. La Reproduction. In Lévêque, C. & D. Paugy (eds), Less poisons des eaux continentales africaines: Diversité, écologie, utilisation par lhomme. IRD Editions, Paris, 129–152.Google Scholar
  47. Perrow, M. R., B. Moss & J. Stansfield, 1994. Trophic interactions in a shallow lake following a reduction in nutrient loading-a long-term study. Hydrobiologia 276: 43–57.CrossRefGoogle Scholar
  48. Quirós, R., 1998. Fish effects on trophic relationships in the pelagic zone of lakes. Hydrobiologia 361: 101–111.CrossRefGoogle Scholar
  49. Romo, S., M.-J. Villena, M. Sahuquillo, J. M. Soria, M. Giménez, T. Alfonso, E. Vicente & M. R. Miracle, 2005. Response of a shallow Mediterranean lake to nutrient diversion: does it follow similar patterns as in northern shallow lakes? Freshwater Biology, 50: 1706–1717.CrossRefGoogle Scholar
  50. Sas, H. (ed.), 1989. Lake restoration by reduction of nutrient loading. Expectation, experiences, extrapolation. Acad. Ver. Richardz Gmbh.Google Scholar
  51. Sazima, I. & C. Zamprogno, 1985. Use of water hyacinths as shelter, foraging place, and transport by young piranhas, Serrasalmus spilopleura. Environmental Biology of Fishes 12: 237-240.Google Scholar
  52. Scheffer, M., S. H. Hosper, M.-L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology and Evolution 8: 275–279.CrossRefGoogle Scholar
  53. Scheffer, M., D. Straile, E. H. Van Nes & H. Hosper, 2001. Climatic warming causes regime shifts in lake food webs. Limnology and Oceanography 46: 1780–1783.Google Scholar
  54. Schindler, D.W., 1977. Evolution of phosphorus limitation in lakes. Science 195: 260–262.PubMedCrossRefGoogle Scholar
  55. Schippers, P., M. Luring & M. Scheffer, 2004a. Increase of atmospheric CO2 promotes phytoplankton produc-tivity. Ecology Letters 7: 446–451.CrossRefGoogle Scholar
  56. Schippers, P., J. E. Vermaat, J. de Klein & W. M. Mooij, 2004b. The effect of atmospheric carbon dioxide ele-vation on plant growth in freshwater ecosystems. Ecosystems 7: 63–74.CrossRefGoogle Scholar
  57. Smith, V. H., 1983. Low nitrogen to phosphorus ratios favour dominance by blue-green algae in lake phyto-plankton. Canadian Journal of Fisheries and Aquatic Sciences 43: 1101–1112.Google Scholar
  58. Søndergaard, M., T. L. Lauridsen, E. Jeppesen & L. Bruun, 1997. Macrophyte-waterfowl interactions: tracking a variable resource and the impact of her-bivory on plant growth. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Ecological Studies, Vol. 131. Springer-Verlag, New York, 298–307.Google Scholar
  59. Søndergaard, M., J. P. Jensen & E. Jeppesen, 2003. Role of sediment and internal loading of phosphorus in shal-low lakes. Hydrobiologia 506/509: 135–145.CrossRefGoogle Scholar
  60. Søndergaard, M., J. P. Jensen & E. Jeppesen, 2005. Sea-sonal response of nutrients to reduced phosphorus loading in 12 Danish lakes. Freshwater Biology 50: 1605–1615.CrossRefGoogle Scholar
  61. Van der Molen, D. T. & R. Portielje, 1999. Multi-lake studies in The Netherlands: trends in eutrophication. Hydrobiologia 409: 359–365.CrossRefGoogle Scholar
  62. Weyhenmeyer, G., E. Jeppesen, R. Adrian, L. Arvola, T. Blenckner, T. Jankowski, E. Jennings, P. Nõges, T. Noges & D. Straile, in press. Nitrate depleted conditions on the increase in shallow northern European lakes. Limnology and Oceanography.Google Scholar
  63. Williams, W. D., 1998. Salinity as determinant of the structure of biological communities in salt lakes. Hydrobiologia 381: 191–201.CrossRefGoogle Scholar
  64. Winder, M. & D. E. Schindler, 2004. Climate change uncouples trophic interactions in an aquatic ecosys-tem. Ecology 85: 2100–2106.CrossRefGoogle Scholar
  65. Yafe, A., M. Loureiro, F. Scasso & F. Quintans, 2002. Feeding of two Cichlidae species in a hypertrophic urban lake. Iheringia Séries Zoologica, Porto Alegre 92: 73–79.Google Scholar
  66. Zalidis, G., S. Stamatiadis, V. Takavakoglou, K. Eskridge & N. Misopolinos, 2002. Impacts of agricultural practices on soil and water quality in the Mediter-ranean region and proposed assessment methodol-ogy. Agriculture Ecosystems and Environment 88: 137–146.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Erik Jeppesen
    • 1
    • 2
  • Martin Søndergaard
    • 1
  • Mariana Meerhoff
    • 1
    • 2
    • 3
  • Torben L. Lauridsen
    • 1
  • Jens Peder Jensen
    • 1
  1. 1.Department of Freshwater EcologyNational Environmental Research Institute, University of AarhusSilkeborgDenmark
  2. 2.Department of Plant BiologyUniversity of Aarhus, Ole Worms AlléAarhus CDenmark
  3. 3.Departmento de EcologíaFacultad de Ciencias, Universidad de la RepúblicaMontevideoUruguay

Personalised recommendations