Advertisement

William Kingdon Clifford (1845–1879)

  • Joe Rooney
Part of the History of Mechanism and Machine Science book series (HMMS, volume 1)

Abstract

William Kingdon Clifford was an English mathematician and philosopher who worked extensively in many branches of pure mathematics and classical mechanics. Although he died young, he left a deep and long-lasting legacy, particularly in geometry. One of the main achievements that he is remembered for is his pioneering work on integrating Hamilton’s Elements of Quaternions with Grassmann’s Theory of Extension into a more general coherent corpus, now referred to eponymously as Clifford algebras. These geometric algebras are utilised in engineering mechanics (especially in robotics) as well as in mathematical physics (especially in quantum mechanics) for representing spatial relationships, motions, and dynamics within systems of particles and rigid bodies. Clifford’s study of geometric algebras in both Euclidean and non-Euclidean spaces led to his invention of the biquaternion, now used as an efficient representation for twists and wrenches in the same context as that of Ball’s Theory of Screws.

Keywords

Clifford Algebra Geometric Algebra Dual Vector Screw Axis Line Transformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altmann, S.L. (1986), Rotations, Quaternions, and Double Groups, Clarendon Press, Oxford, ISBN 0198553722.zbMATHGoogle Scholar
  2. Baker, E.J. and Parkin, I.A. (2003), Fundamentals of Screw Motion (English translation of seminal papers by M. Chasles and O. Rodrigues), School of Information Technologies, The University of Sydney, Australia.Google Scholar
  3. Baker, E.J. and Wohlhart, K. (1996), Motor Calculus: A New Theoretical Device for Mechanics (English translation of two papers by R. von Mises), The Institute of Mechanics, University of Technology, Graz, Austria.Google Scholar
  4. Ball, R.S. (1900), A Treatise on the Theory of Screws, Cambridge University Press, Cambridge.Google Scholar
  5. Brand, L. (1947), Vector and Tensor Analysis, John Wiley, New York.zbMATHGoogle Scholar
  6. Chasles, M. (1830), Note sur les propriétés générales du système de deux corps semblables entr-eux et placés d’une manière quelconque dans l’espace; et sur le déplacement fini ou infiniment petit d’un corps solide libre, Bulletin des Sciences Mathématiques, Astronomiques, Physiques et Chimiques de Férussac 14, 321–326.Google Scholar
  7. Chisholm, M. (2002), Such Silver Currents-The Story of William and Lucy Clifford, 1845–1929, Lutterworth Press, Cambridge, ISBN 0718830172.Google Scholar
  8. Clifford, W.K. (1873), Preliminary sketch of biquaternions, Proceedings of the London Mathematical Society 4(64, 65), 381–395.Google Scholar
  9. Clifford, W.K. (1876a), Applications of Grassmann’s Extensive Algebra, American Journal of Mathematics, Pure and Applied 1, 350–358.Google Scholar
  10. Clifford, W.K. (1876b), Abstract of “On the Classification of Geometric Algebras”, Proceedings of the London Mathematical Society 7, 135 [Abstract communicated 10 March 1876; Unfinished paper found amongst Clifford’s manuscripts].Google Scholar
  11. Clifford, W.K. (1877), The Ethics of Belief, Reprinted 1999, Prometheus Books, Amherst, ISBN 1573926914.Google Scholar
  12. Clifford, W.K. (1882), Mathematical Papers (Ed. R. Tucker), Reprinted 1968, Chelsea Publishing Company, New York.Google Scholar
  13. Conway, J.H. and Smith, D.A. (2003), On Quaternions and Octonions, A.K. Peters, Natick, MA, ISBN 1568811349.zbMATHGoogle Scholar
  14. Davidson, J.K. and Hunt, K.H. (2004), Robots and Screw Theory, Oxford University Press, Oxford, ISBN 0198562454.zbMATHGoogle Scholar
  15. Denavit, J. (1958), Displacement analysis of mechanisms based on (2x2) matrices of dual numbers, VDI Berichte 29, 81–89.Google Scholar
  16. Dickson, L.E. (1923), Algebras and Their Arithmetics, Constable, London (Reprinted 1960, Dover Publications, New York).zbMATHGoogle Scholar
  17. Dickson, L.E. (1930), Linear Algebras, Cambridge University Press, Cambridge.Google Scholar
  18. Dimentberg, F.M. (1965), The screw calculus and its applications in mechanics (Izdatel’stvo Nauka, Moscow) (English translation, 1968, AD680993, Foreign Technology Division WP-AFB, Ohio, USA).Google Scholar
  19. Gibbs, J.W. (1901), Vector Analysis, Yale University Press, New Haven, CT.zbMATHGoogle Scholar
  20. Grassmann, H. (1844), A New Branch of Mathematics: The Ausdehnungslehre of 1844, Reprinted 1994, Open Court Publishing Co., ISBN 0812692764.Google Scholar
  21. Hamilton, W.R. (1844), On quaternions; or on a new system of imaginaries in algebra, Philosophical Magazine Series 3 25, 489–495.Google Scholar
  22. Hamilton, W.R. (1899, 1901), Elements of Quaternions, 2 Vols., Cambridge University Press, Cambridge.Google Scholar
  23. Hestenes, D. (1986), New Foundations for Classical Mechanics, Kluwer Academic Publishers, Dordrecht, ISBN 0792355148.zbMATHGoogle Scholar
  24. Hestenes, D. and Sobczyk, G. (1987), Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics, Kluwer Academic Publishers, Dordrecht, ISBN 9027725616.Google Scholar
  25. Hunt, K.H. (1978), Kinematic Geometry of Mechanisms, Clarendon Press, Oxford, ISBN 0198561245.zbMATHGoogle Scholar
  26. Keler, M. (1958), Analyse und Synthese der Raumkurbelgetriebe mittels Raumliniengeometrie und dualer Gröβen, PhD Dissertation, München.Google Scholar
  27. Kotelnikov, A.P. (1895), Screw calculus and some applications to geometry and mechanics, Annals of the Imperial University of Kazan.Google Scholar
  28. Kuipers, J.B. (1999), Quaternions and Rotation Sequences: A Primer with Applications to Orbits, Aerospace and Virtual Reality, Princeton University Press, Princeton, NJ.zbMATHGoogle Scholar
  29. Maxwell, E.A. (1951), General Homogeneous Co-ordinates in Space of Three Dimensions, Cambridge University Press, Cambridge.Google Scholar
  30. Penrose, R. (2004), The Road to Reality, Jonathan Cape, London, ISBN 0224044478.Google Scholar
  31. Plücker, J. (1865), On a new geometry of space, Philosophical Transactions 155, 724–791.Google Scholar
  32. Poinsot, L. (1806), Sur la composition des moments et la composition des aires, Journal École Polytechnique, Paris 6, 182–205.Google Scholar
  33. Porteous, I.R. (1969), Topological Geometry, Van Nostrand Reinhold, New York (Second Edition, 1981, Cambridge University Press, Cambridge), ISBN 0521298393.zbMATHGoogle Scholar
  34. Rodrigues, O. (1840), Des lois géométriques qui régissent les déplacements d’un système solide dans l’espace, et la variation des coordonnées provenant de ses déplacements considérés indépendamment des causes qui peuvent les produire, Journal de Mathématiques Pures et Appliquées de Liouville 5, 380–440.Google Scholar
  35. Rogers, D.E and Adams, J.A. (1976), Mathematical Elements for Computer Graphics, McGraw-Hill, New York.Google Scholar
  36. Rooney, J. (1974), A Unified Theory for the Analysis of Spatial Mechanisms Based on Spherical Trigonometry, PhD Thesis, Liverpool.Google Scholar
  37. Rooney, J. (1975a), On the principle of transference, in Proceedings of the Fourth World Congress on the Theory of Machines and Mechanisms, Newcastle-upon-Tyne, England, September 1975, J.N. Fawcett (Ed.), Institution of Mechanical Engineers, London, pp. 1088–1092.Google Scholar
  38. Rooney, J. (1975b), On obtaining the velocity motor of any link in a general n-link spatial manipulator, in Proceedings of the Fourth World Congress on the Theory of Machines and Mechanisms, Newcastle-upon-Tyne, England, September 1975, J.N. Fawcett (Ed.), Institution of Mechanical Engineers, London, pp. 1083–1087.Google Scholar
  39. Rooney, J. (1977), A survey of representations of spatial rotation about a fixed point, Environment and Planning B 4, 185–210.CrossRefGoogle Scholar
  40. Rooney, J. (1978a), ‘A comparison of representations of general spatial screw displacement, Environment and Planning B 5, 45–88.CrossRefGoogle Scholar
  41. Rooney, J. (1978b), On the three types of complex number and planar transformations, Environment and Planning B 5, 89–99.CrossRefGoogle Scholar
  42. Rooney, J. (1984), Kinematic and geometric structure in robot systems, in Artificial Intelligence: Tools, Techniques, and Applications, T. O’Shea and M. Eisenstadt (Eds.), Harper & Row, New York, Chapter 8.Google Scholar
  43. Rooney, J. (2007), Multivectors and quaternions in rigid body rotation: Clifford vs Hamilton, in Proceedings of the Twelfth World Congress on Mechanism and Machine Science, BesanÇon, France, June 2007, to be published.Google Scholar
  44. Rooney, J. and Tanev, T.K. (2003), Contortion and formation structures in the mappings between robotic jointspaces and workspaces, Journal of Robotic Systems 20(7), 341–353.zbMATHCrossRefGoogle Scholar
  45. Semple, J.G. and Roth, L. (1949), An Introduction to Algebraic Geometry, Clarendon Press, Oxford.Google Scholar
  46. Study, E. (1901), Geometrie der Dynamen, Teubner Verlag, Leipzig.Google Scholar
  47. Todhunter, I. and Leathern, J.G. (1932), Spherical Trigonometry, Macmillan, London.Google Scholar
  48. Von Mises, R. (1924a), Motorrechnung, ein neues Hilfsmittel in der Mechanik, Zeitschrift für Angewandte Mathematik und Mechanik 4(2), 155–181.CrossRefGoogle Scholar
  49. Von Mises, R. (1924b), Anwendungen der Motorrechnung, Zeitschrift für Angewandte Mathematik und Mechanik 4(3), 193–213.CrossRefGoogle Scholar
  50. Yaglom, I.M. (1968), Complex Numbers in Geometry, Academic Press, New York.Google Scholar
  51. Yang, A.T. (1963), Application of quaternion algebra and dual numbers to the analysis of spatial mechanisms, Doctoral Dissertation, Columbia University, Morningside Heights, NY.Google Scholar
  52. Yang, A.T. (1969), Displacement analysis of spatial five-link mechanisms using (3x3) matrices with dual-number elements, Transactions of the American Society of Mechanical Engineers, Series B, Journal of Engineering for Industry 91, 152–157.Google Scholar
  53. Yang, A.T. and Freudenstein, F. (1964), Application of dual-number quaternion algebra to the analysis of spatial mechanisms, Transactions of the American Society of Mechanical Engineers, Series E, Journal of Applied Mechanics 31, 300–308.zbMATHGoogle Scholar
  54. Yuan, M.S.C. (1970), Kinematic analysis of spatial mechanisms by means of screw coordinates, Doctoral Dissertation, Columbia University, Morningside Heights, NY.Google Scholar
  55. Yuan, M.S.C. and Freudenstein, F. (1971), Kinematic analysis of spatial mechanisms by means of screw co-ordinates. Part 1: Screw co-ordinates, Transactions of the American Society of Mechanical Engineers, Series B, Journal of Engineering for Industry 93, 61–66.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Joe Rooney
    • 1
  1. 1.Department of Design and InnovationThe Open UniversityMilton KeynesUK

Personalised recommendations