Advertisement

Giulio Mozzi (1730–1813)

  • Marco Ceccarelli
Chapter
Part of the History of Mechanism and Machine Science book series (HMMS, volume 1)

Abstract

Giulio Mozzi was the first to attack the study of the general helicoidal motion of a rigid body in a completely rigorous way. He outlined a Screw Theory with a mathematical formulation in a Treatise that was published in 1763 but had a limited circulation.

Keywords

Rigid Body General Motion French Revolution Rotational Displacement Screw Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anonymus (1813), Necrologia, Giornale del Dipartimento dell’Arno, 50, p. 4.Google Scholar
  2. Ball, R.S. (1876), A Treatise on the Theory of Screws, Hodges, Dublin (2nd Edition, University Press, Cambridge, 1900).Google Scholar
  3. Battaglini, G. (1870), Sulmovimento geometrico inflnitesimo di un sistemarigido, Rendiconto dell’Accademia delle Scienze, Napoli, IX, pp. 89–100.Google Scholar
  4. Battaglini, G. (1873), Trattato Elementare sulla Meccanica Rationale, Libreria Pellerano, Napoli.Google Scholar
  5. Bernoulli, J. (1742), Opera Omnia, Lausannae.Google Scholar
  6. Bottema, O. and Roth, B. (1990), Theoretical Kinematics, Dover, New York (1st Edition in 1979).zbMATHGoogle Scholar
  7. Bricard, R. (1927), LeÇons de Cinématique, Gauthier-Villars, Paris, 2 Vols.zbMATHGoogle Scholar
  8. Carnot, L.N.M. (1803), Principes Fondamentaux de l’Equilibre et du Mouvement, Chez Deterville, Paris.Google Scholar
  9. Cauchy, A.L. (1827), Sur les mouvements que peut prendre un système invariable, libre, ou assujetti a certaines conditions, Exercices de mathématiques, Chez de Bure Frères, Paris, pp. 95–120.Google Scholar
  10. Cayley, A. (1891), Kinematics of a Solid Body, inThe Collected Mathematical Papers, Vol. TV, Cambridge Press, Cambridge, pp. 580–593.Google Scholar
  11. Ceccarelli, M. (2000a), Preliminary Studies to Screw Theory in XVIIth Century, in Ball Conference, CD Rom Proceedings, Cambridge, July, Paper No. 41.Google Scholar
  12. Ceccarelli, M. (2000b), Screw Axis Defined by Giulio Mozzi in 1763 and Early Studies on Helicoidal Motion, Mechanism and Machine Theory, 35, pp. 761–770.zbMATHCrossRefGoogle Scholar
  13. Chasles, M. (1830), Note sur les proprietes generales du systeme de deux corps semblables entr’eux, Bulletin de Sciences Mathematiques, Astronomiques Physiques et Chimiques, Baron de Ferussac, Paris, pp. 321–326.Google Scholar
  14. Chelini, D. (1862), Dei moti geometrici e low leggi nello spostamento di una figura di forma invariabile, Tipografia Gamberini e Parmeggiani, Bologna.Google Scholar
  15. Costa, G. (1967), Il rapporto Frisi-Boscovich alla luce di lettere inedite di Frisi, Boscovich, Mozzi, Lalande e Pietro Verri, Edizioni Scientifiche Italiane, Napoli.Google Scholar
  16. D’Alembert, J.B. (1749), Recherches sur la precession des equinoxes, et sur la nutation de l’axe de la terre, dans le système newtonien, Chez David, Paris.Google Scholar
  17. D’Alembert, J.B. (1796), Traite de dynamique, Chez Fuchs, Paris.Google Scholar
  18. D’Alembert, J.B. and Diderot, D. (1785), Encyclopedie Methodique, Paris (reedition du Bicenteneire, Paris, 1987), Vol. 2, Mouvement, pp. 423–437.Google Scholar
  19. Davidson, J.K. and Hunt, K.H. (2004), Robots and Screw Theory, Oxford University Press, Oxford.zbMATHGoogle Scholar
  20. De Sant Venant (1850), Principes de mécanique fonde sur la cinématique, Bachelier, Paris.Google Scholar
  21. De Tipaldo, E. (1837), Biografia degli Italiani Illustri, Venezia.Google Scholar
  22. Euler, L. (1736), Mechanica sive motus scientia, Ex Typografia Academiae Scientiarum, Petropoli.Google Scholar
  23. Francoeur, L.B. (1807), Traite elementaire de mecanique, 4th ed., Chez Bernard, Paris.Google Scholar
  24. Frisi, P. (1765), Cosmographiae Physicae, et Mathematicae, Ex Tipografia Marelli, Mediolanum.Google Scholar
  25. Frisi, P. (1768), Del Modo di Regolare i Fiumi, e i Torrenti, Milano.Google Scholar
  26. Frisi, P. (1777), Instituzioni di Meccanica, d’Idrostatica, d’Idrometria e dell’Architettura Statica, e Idraulica, Galeazzi Regio Stampatore, Milano.Google Scholar
  27. Frisi, P. (1786), Elogio del Signor D’Alembert, Galeazzi Regio Stampatore, Milano.Google Scholar
  28. Ghigliazza, R. and Galletti, C.U. (1986), Meccanica applicata aile macchine, UTET, Torino.Google Scholar
  29. Giorgini, G. (1836), Intorno alle proprietà geometriche dei movimenti di un sistema di punti di forma invariabile, in Memorie di Matematica e Fisica delia Societá Italiana délie Scienze, Tipografia Camerale, Modena, Tomo XXI, pp. 1–54.Google Scholar
  30. Grimsley, R. (1963), Jean D’Alembert, Clarendon Press, Oxford.zbMATHGoogle Scholar
  31. Hunt, K.H. (1978), Kinematic Geometry of Mechanisms, Oxford University Press, Oxford.zbMATHGoogle Scholar
  32. Levi-Civita, T. and Amaldi, U. (1950), Lezioni di meccanica razionale, Vol. 1, Zanichelli, Bologna, p. 187.Google Scholar
  33. Marcolongo, R. (1905), Notizie sul Discorso Matematico e sulla vita di Giulio Mozzi, Bollettino di Bibliografia e Storia delle Scienze Matematiche, VIII(l), pp. 1–8.Google Scholar
  34. Marcolongo, R. (1906), Sul Teorema della composizione delle rotazioni istantanee-Appunti per la storia della meccanica nel secolo XVIII, Bollettino di Bibliografia e Storia delle Scienze Matematiche, IX(1), pp. 1–12.Google Scholar
  35. Mozzi G., (1763), Discorso matematico sopra il rotamento momentaneo dei corpi, Stamperia di Donato Campo, Napoli.Google Scholar
  36. Phillips, J. (1984), Freedom in Machinery I-Introducing Screw Theory, Cambridge Press, New York.Google Scholar
  37. Poinsot, L. (1851), Theorie Nouvelle de la Rotation des Corps, Bachelier, Paris (presented at the Institut et Bureau des Longitudes on May 19th 1834).Google Scholar
  38. Poisson, S.D. (1938), Memoire sur le Mouvement d’un Corps Solide, in Mémoires de l’Academie Royale des Sciences de l’Institut de France, XIV, pp. 275–432 (presented at the Academy on August 18th and October 13th 1834).Google Scholar
  39. Poisson, S.D. (1838), Trait de Mecanique, 3rd ed., Bruxelles.Google Scholar
  40. Rodrigues, O. (1840), Des lois geometriques qui regissent les desplacements d’un systeme solide dans l’espace, et de la variation des coordonnees provenant de ces desplacements consideres independamment des causes qui peuvent les produire, Journal de Mathematiques Pures et Appliquees, 5, pp. 380–440.Google Scholar
  41. Zobi, A. (1850), Storia civile delia Toscana dal 1737 al 1848, Luigi Molini Ed., Firenze, Tomo secondo.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Marco Ceccarelli
    • 1
  1. 1.LARM: Laboratory of Robotics and Mechatronics, DIMSATUniversity of CassinoCassinoItaly

Personalised recommendations