In Vitro Testing of Inhalable Fly Ash at the Air Liquid Interface

  • Sonja Mülhopt
  • Hanns-Rudolf Paur
  • Silvia Diabaté
  • Harald F. Krug

The aim of this study is to analyse the toxicological potential of fine and ultrafine particles from industrial combustion processes using a biotest. This biotest is performed by near-realistic exposure of cultivated lung cells at the air-liquid interface and analysing the biological responses. Important steps in this work are to develop the exposure system for the use at industrial particle sources, to provide reproducible deposition conditions for submicron particles and to validate the exposure protocol for the bioassay. The presented technique maintains the viability of the cells but is sensitive for inflammatory effects. Exposure experiments with the ultrafine fraction of fly ash from a municipal waste incinerator have shown an increased release of IL-8 as a function of exposure time and dose. The presented exposure method and the lung specific bioassay seem to be an appropriate model to simulate the inhalation of particulate air pollution and to screen the biological effects of particulate emissions from different sources.

Keywords: Aerosol, bioassay, PM10, toxicity, ultrafine particles

Keywords

Combustion Toxicity Quartz Lactate Helium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aufderheide M., and Moor U. (2000), CULTEX—An alternative technique for cultivation and exposure of cells of the respiratory tract to airborne pollutants at the air/liquid interface. Exp. Toxicol. Pathol., 52, 265–270.Google Scholar
  2. Aufderheide M. (2005), Direct exposure methods for testing native atmospheres. Exp. Toxicol. Pathol., 57, Supplement 1, 213–226.CrossRefGoogle Scholar
  3. Birnbaum L., Richers U., and Koeppel W. (1996), Untersuchung der physikalisch/chemischen Eigenschaften von Filterstäuben aus Müllverbrennungsanlagen (MVA). Wissenschaftliche Berichte/Forschungszentrum Karlsruhe, FZKA-5693.Google Scholar
  4. Bitterle E., Karg E., Schroeppel A., Kreyling W. G., Tippe A., Ferron G. A., Schmid O., Heyder J., Maier K. L., and Hofer T. (2006), Dose-controlled exposure of A549 epithelial cells at the air-liquid interface to airborne ultrafine carbonaceous particles. Chemosphere, 65, (10), 1784–1790.CrossRefGoogle Scholar
  5. Cheng M. D. (2004), Effects of nanophase materials (C20 nm) on biological responses. J. Env. Sci. Health - Part A Toxic/Hazard. Subst. Env. Eng., 39, (10), 2691–2705.CrossRefGoogle Scholar
  6. Cheng M. D., Malone B., and Storey J. M. E. (2003), Monitoring cellular responses of engine-emitted particles by using a direct air-cell interface deposition technique. Chemosphere, 53, 237–243.CrossRefGoogle Scholar
  7. Diabaté S., Mülhopt S., Paur H.-R., and Krug H. F. (2002), Pro-inflammatory effects in lung cells after exposure to fly ash aerosol via the atmosphere or the liquid phase. Ann. Occup. Hyg., 46, 382–385.Google Scholar
  8. Diabaté S., Mülhopt S., Paur H.-R., and Krug H. F. (2007). Responses of human lung cells after exposure to ultrafine particles of incinerator fly ash at the air-liquid interface, submitted.Google Scholar
  9. Mätzing H., Baumann W., and Paur H.-R. (1996), Bimodal aerosol coagulation with simultaneous condensation/evaporation, J. Aerosol Sci., 27, Supplement 1, S363–S364.CrossRefGoogle Scholar
  10. Monn C., and Becker S. (1999), Cytotoxicity and induction of proinflammatory cytokines from human monocytes exposed to fine (PM2.5) and coarse particles (PM10–2.5) in outdoor and indoor air. Toxicol. App. Pharmacol., 155, 245–252.CrossRefGoogle Scholar
  11. Mülhopt S., Seifert H., and Paur H.-R. (2004a, June), Exposure technique for a lung specific bioassay for the assessment of industrial ultra fine particle-emissions. (Paper presented at the 7th International Conference on Nanostructured Materials, Wiesbaden; Germany).Google Scholar
  12. Mülhopt S., Paur H-R., and Seifert H. (2004b), Expositionsverfahren für einen lungen-spezifischen Bioassay zur Bewertung industrieller Feinstpartikel-Emissionen. BWPLUS Report 2004, Retrieved from http://www.bwplus.fzk.de/berichte/SBer/BWB21018SBer.pdf.
  13. Peters A., Wichmann H. E., Tuch T., Heinrich J., and Heyder J. (1997), Respiratory effects are associated with the number of ultra-fine particles. Am. J. Resp. Crit. Care Med., 155, 1376–1383Google Scholar
  14. Steerenberg P. A., Zonnenberg J. A., Dormans J. A., Joon P. N., Wouters I. M., van Bree L., Scheepers P. T., and Van Loveren H. (1998), Diesel exhaust particles induced release of interleukin 6 and 8 by (primed) human bronchial epithelial cells (BEAS 2B) in vitro. Exp. Lung Res., 24, 85–100.CrossRefGoogle Scholar
  15. Voelkel K., Krug H. F., and Diabaté S. (2003), Formation of reactive oxygen species in rat epithelial cells upon stimulation with fly ash. J. Biosci., 28, 51–55.CrossRefGoogle Scholar
  16. Weingartner E., Baltensperger U., and Burtscher H. (1995), Growth and structural changes of combustion aerosols at high relative humidity. J. Aerosol Sci., 26, Supplement 1, S667–S668.CrossRefGoogle Scholar
  17. Wichmann H. E., and Peters A. (2000a), Epidemiological evidence of the effects of ultrafine particle exposure. Phil. Trans.: Math. Phys. Eng. Sci. (Series A), 358, (1775), 2751–2769.CrossRefGoogle Scholar
  18. Wichmann H. E., Spix C., Tuch T., Wölke G., Peters A., Heinrich J., Kreyling W. G., and Heyder J. (2000b), Daily Mortality and Fine and Ultrafine Particles in Erfurt, Germany, Part I: Role of Particle Number and Particle Mass. Research Report Number 98, Health Effects Institute.Google Scholar
  19. Wottrich R., Diabaté S., and Krug H. F. (2004), Biological effects of ultrafine model particles in human macrophages and epithelial cells in mono- and co-culture. Int. J. Hyg. Env. Health, 207, (4), 353–361.CrossRefGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • Sonja Mülhopt
    • 1
  • Hanns-Rudolf Paur
    • 1
  • Silvia Diabaté
    • 2
  • Harald F. Krug
    • 2
  1. 1.Thermal Waste Treatment DivisionForschungszentrum Karlsruhe, Institute for Technical ChemistryGermany
  2. 2.Forschungszentrum KarlsruheInstitute for Toxicology and GeneticsGermany

Personalised recommendations