Remote Sensing of Terrestrial Snow and Ice for Global Change Studies

  • Richard Kelly
  • Dorothy K. Hall


Snow and ice play a significant role in the Earth’s water cycle and are sensitive and informative indicators of climate change. Significant changes in terrestrial snow and ice water storage are forecast, and while evidence of large-scale changes is emerging, in situ measurements alone are insufficient to help us understand and explain these changes. Imaging remote sensing systems are capable of successfully observing snow and ice in the cryosphere. This chapter examines how those remote sensing sensors, that now have more than 35 years of observation records, are capable of providing information about snow cover, snow water equivalent, snow melt, ice sheet temperature and ice sheet albedo. While significant progress has been made, especially in the last 5 years, a better understanding is required of the records of satellite observations of these cryospheric variables.


Remote Sensing Snow Cover Snow Depth Snow Water Equivalent Passive Microwave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdalati, W. and K. Steffen, 2001. Greenland ice sheet melt extent: 1979–1999. Journal of Geophysical Research, 106(D24): 33: 983–989.Google Scholar
  2. ACIA, 2005. Arctic climate impact assessment. Cambridge, U.K. Cambridge University Press, 1042pp.Google Scholar
  3. Andreassen, L.M., H. Elvehoy, B. Kjollmoen, .R.V. Engeset and N. Haakensen, 2005. Glacier mass-balance and length variation in Norway, Annals of Glaciology, 42: 317–325.CrossRefGoogle Scholar
  4. Arendt, A.A., K.A. Echelmeyer, W.D. Harrison, .C.S. Lingle and V.B. Valentine, 2002: Rapid wastage of Alaska glaciers and their contribution to rising sea level, Science, 297:382–386.CrossRefGoogle Scholar
  5. Armstrong, R.L., and M.J. Brodzik, 2001. Recent Northern Hemisphere snow extent: A comparison of data derived from visible and microwave sensors. Geophysical Research Letters, 28(19): 3673–3676..CrossRefGoogle Scholar
  6. Armstrong, R.L., M.J. Brodzik, K. Knowles, and .M. Savoie. 2005. Global monthly EASE-Grid snow water equivalent climatology. Boulder, CO: National Snow and Ice Data Center. Digital media.Google Scholar
  7. Atkinson, P.M. and .R.E.J. Kelly, 1997. Scaling-up point snow depth data in the U.K. for comparison with SSM/I imagery, International Journal of Remote Sensing, 18(2): 437–443..CrossRefGoogle Scholar
  8. Bader, H., 1962. The Physics and Mechanics of Snow as a Material, Cold Regions Research and Engineering Laboratory, Hanover, NH, Report II-B, p.1.Google Scholar
  9. Bamber, J.L. and A.J. Payne, eds. 2004. Mass balance of the cryosphere: Observations and modelling of contemporary and future changes. Cambridge: Cambridge University Press.Google Scholar
  10. Bloschl G. 1999. Scaling issues in snow hydrology, Hydrological Processes, 13(14–15): 2149–2175.CrossRefGoogle Scholar
  11. Box, J.E. 2002. Survey of Greenland instrumental temperature records: 1873–2001. International Journal of Climatology, 22(15): 1829–1847..CrossRefGoogle Scholar
  12. Braithwaite, R.J. 2002. Glacier mass balance: The first 50 years of international monitoring. Progress in Physical Geography, 26(1), 76–95.CrossRefGoogle Scholar
  13. Brown, R., P.Bartlett, M.MacKay and D.Verseghy, 2006. Evaluation of snow cover in CLASS for SnowMIP, Atmosphere-Ocean, 44: 223–238.CrossRefGoogle Scholar
  14. Brown, R.D. and R.O. Braaten. 1998. Spatial and temporal variability of Canadian monthly snow depths, 1946–1995. Atmosphere-Ocean, 36, 37–45.Google Scholar
  15. Brown, R.E. 2000. Northern Hemisphere snow cover variability and change, 1915–1997.Journal of Climate, 13, 2339–2355.CrossRefGoogle Scholar
  16. Bunting, J.T. and R.P. d’Entremont, 1982. Improved cloud detection utilizing defense meteorological satellite program near infrared measurements, Air Force Geophysics laboratory, Hanscom AFB, MA, AFGL-TR-82-0027, Environmental Research Papers No. 765, 91p.Google Scholar
  17. Carroll, T.R., 1995. Remote sensing of snow in the cold regions, Proceedings of the First Moderate Resolution Imaging Spectroradiometer (MODIS) Snow and Ice Workshop, 13–14 September, 1995, Greenbelt, MD, NASA Conf. Pub. 3318, pp.3–14.Google Scholar
  18. Carroll, T., D. Cline, G. Fall, A. Nilsson, L. Li and A. Rost, 2001. NOHRSC operations and the simulation of snow cover properties for the coterminous U.S., Proceedings of the 69th Western Snow Conference, 16–19 April, 2001, Sun Valley, Idaho.Google Scholar
  19. Carroll, T., D.Cline, C.Olheiser, A.Rost, A.Nilsson, G.Fall, C.Bovitz and L.Li, 2006. NOAA’s National Snow Analysis, Proceedings of the 74th Western Snow Conference Las Cruces, NM April 17–20 2006.Google Scholar
  20. Ceballos, J.L., C. Euscategui, J. Ramirez, M. Canon, C. Huggel, W. Haeberli and H. Machguth, 2006. Fast shrinkage of tropical glaciers in Columbia, Annals of Glaciology, 43: 194–206.CrossRefGoogle Scholar
  21. Chang, A.T.C., J.L. Foster and D.K. Hall, 1987. Nimbus-7 SMMR derived global snow cover parameters, Annals of Glaciology, 9: 39–44.Google Scholar
  22. Choudhury, B.J. and A.T.C. Chang, 1979. Two-stream theory of reflectance of snow, IEEE Transactions on Geoscience and Remote Sensing, GE-17(3): 63–68..Google Scholar
  23. Colbeck, 1982. An overview of seasonal snow metamorphism, Reviews of Geophysics and Space Physics, 20(1): 45–61..Google Scholar
  24. Colton M.C., and G.A. Poe, 1999. Intersensor calibration of DMSP SSM/I’s: F-8 to F-14, 1987–1997, IEEE Transactions on Geoscience and Remote Sensing 37(1): 418–439..CrossRefGoogle Scholar
  25. Comiso, J. 2001. Satellite-observed variability and trend in sea-ice extent, surface temperature, albedo and clouds in the Arctic, Annals in Glaciology, 33: 457–473.CrossRefGoogle Scholar
  26. Comiso, J.C. 2006. Arctic warming signals from satellite observations. Weather, 61(3): 70–76..CrossRefGoogle Scholar
  27. Crane, R.G. and M.R. Anderson, 1984. Satellite discrimination of snow/cloud surfaces, International Journal of Remote Sensing, 5(1): 213–223..CrossRefGoogle Scholar
  28. Davis, R. E., R. Jordan, S.F. Daly, G. G. Koenig, 2001. Validation of snow models, In M.G. Anderson and P.D. Bates, Eds, Model validation: Perspectives in hydrological science (pp. 261–292). John Wiley & Sons Ltd.Google Scholar
  29. Derksen, C., A. Walker, E. LeDrew and B. Goodison, 2002. Time-series analysis of passive-microwave-derived central North American snow water equivalent imagery, Annals of Glaciology, 34: 1–7.CrossRefGoogle Scholar
  30. Derksen, C., R. Brown and A.E. Walker, 2004. Merging conventional (1915–1992) and passive microwave (1978–2002) Estimates of snow extent and water equivalent over Central North America. Journal of Hydrometeorology, 5(5) DOI: 10.1175/1525–7541(2004)005.Google Scholar
  31. Derksen, C., A. Walker, B. Goodison, and J. W. Strapp. 2005. Integrating in situ and multi-scale passive microwave data for estimation of sub-grid scale snow water equivalent distribution and variability. IEEE Transactions on Geoscience and Remote Sensing. 43(5): 960–972..CrossRefGoogle Scholar
  32. Dozier, J., S.R. Schneider and D.F. McGinnis, Jr., 1981. Effect of grain size and snowpack water equivalence on visible and near-infrared satellite observations of snow, Water Resources Research, 17: 1213–1221.Google Scholar
  33. Dozier, J., 1989. Spectral signature of alpine snow cover from the Landsat thematic mapper, Remote Sensing of Environment, 28: 9–22.CrossRefGoogle Scholar
  34. Duguay, C.R. and A. Pietroniro, 2005. Remote sensing in northern hydrology: Measuring environmental change. Geophysical monograph 163, Washington D.C.: American Geophysical Union, 160 pp.Google Scholar
  35. Dyurgerov, M .B. and M. F. Meier. 1997. Year-to-year fluctuation of global mass balance of small glaciers and their contribution to sea level changes. Arctic and Alpine Research 29(4): 392–401..CrossRefGoogle Scholar
  36. Dyurgerov, M. and M. Meier, 2000: Twentieth century climate change: evidence from small glaciers., Proceedings of the National Academy of Sciences of the Unites States of America, 1406–1411.Google Scholar
  37. Evans, S., 1965. The dielectric properties of ice and snow – A review, Journal of Glaciology, 5: 773–792.Google Scholar
  38. Fassnacht, S.R., K.A. Dressler, R.C. Bales, 2003. Snow water equivalent interpolation for the Colorado River Basin from snow telemetry (SNOTEL) data, Water Resources Research, 39(8): doi:10.1029/2002WR001512.CrossRefGoogle Scholar
  39. Foster, J.L., D.K. Hall and A.T.C. Chang, 1987. Remote sensing of snow, EOS Transactions, American Geophysical Union, 68(32): 681–684..Google Scholar
  40. Foster, J. L. and A. T. C. Chang, 1993. Snow cover. In R. J. Gurney, C. L. Parkinson, and J. L. Foster, Eds, Atlas of satellite observations related to global change (pp. 361–370). Cambridge, U.K.: University of Cambridge Press.Google Scholar
  41. Foster, J.L., A.T.C. Chang and D.K. Hall, 1997. Comparison of snow mass estimates from a prototype passive microwave snow algorithm, a revised algorithm and snow depth climatology, Remote Sensing of Environment, 62: 132–142.CrossRefGoogle Scholar
  42. Frei, A., and D.A. Robinson. 1999. Northern Hemisphere snow extent: Regional variability 1972–1994. International Journal of Climatology 19: 1535–1560.CrossRefGoogle Scholar
  43. Goodison, B., and A. Walker, 1995. Canadian development and use of snow cover information from passive microwave satellite data. In B. Choudhury, Y. Kerr, E.Njoku, and P. Pampaloni Eds, Passive Microwave Remote Sensing of Land-Atmosphere Interactions (pp 245–262). Utrecht, Netherlands, VSP BV.Google Scholar
  44. Goita, K., A.E. Walker and B.E. Goodison, 2003. Algorithm development for the estimation of snow water equivalent in the boreal forest using passive microwave data, International Journal of Remote Sensing, 24(5): 1097–1102..CrossRefGoogle Scholar
  45. Gregory, J.M., P. Huybrechts and S.C.B. Raper. 2004. Threatened loss of the Greenland ice sheet. Nature, 428:616 (8 April 2004).CrossRefGoogle Scholar
  46. Grenfell, T.C, D.K. Perovich and J.A. Ogren, 1981. Spectral albedos of an alpine snowpack, Cold Regions Science and Technology, 4: 121–127.CrossRefGoogle Scholar
  47. Greuell, W. and J. Oerlemans. 2005. Validation of AVHRR- and MODIS-derived albedos of snow and ice surfaces by means of helicopter measurements, Journal of Glaciology, 51(172): 37–48..CrossRefGoogle Scholar
  48. Greuell, W. and W.H. Knap. 2000. Remote sensing of the albedo and detection of the slush line on the Greenland ice sheet, Journal of Geophysical Research, 105(D12): 15: 567–576.Google Scholar
  49. Grippa, M., N. Mognard, T. Le Toan, and E.G. Josberger, 2004. Siberia snow depth climatology derived from SSM/I data using a combined dynamic and static algorithm, Remote Sensing of Environment, 93: 30–41.Google Scholar
  50. Grody, N. and A. Basist, 1996. Global identification of snowcover using SSM/I measurements, IEEE Transactions on Geoscience and Remote Sensing, 34(1): 237–249..CrossRefGoogle Scholar
  51. Groisman, P. Y., T.R. Karl, and R. W. Knight, 1994. Changes of snow cover, temperature, and radiative heat balance over the northern hemisphere. Journal of Climate, 7: 1633–1656.CrossRefGoogle Scholar
  52. Haefliger, M., K. Steffen and C. Fowler. 1993. AVHRR surface temperature and narrow-band albedo comparison with ground measurements for the Greenland ice sheet. Annals of Glaciology, 17: 49–54.Google Scholar
  53. Hall, D.K., J.L. Foster and A.T.C. Chang, 1982. Measurement and modeling of microwave emission from forested snowfields in Michigan, Nordic Hydrology, 13: 129–138.Google Scholar
  54. Hall, D.K, R.E.J. Kelly, J.L. Foster and A.T.C. Chang, 2005. Estimation of snow extent and snow properties. In Anderson, M.G., Ed, Encyclopedia of Hydrological Sciences, Chichester: John Wiley and Sons, Ltd., Volume 2, pp.811–830, ISBN: 0-471-49103-9.Google Scholar
  55. Hall, D.K., K.J. Bayr, W. Schöner, R.A. Bindschadler and J.Y.L. Chien, 2003. Consideration of the errors inherent in mapping historical glacier positions in Austria from the ground and space (1893–2001), Remote Sensing of Environment, 86: 566–577.CrossRefGoogle Scholar
  56. Hall, D.K., R.S. Williams, Jr., and N.E. DiGirolamo, submitted: Greenland ice sheet surface-Temperature and Melt Variability: 2000–2006.Google Scholar
  57. Hall, D.K., R.S. Williams, Jr., K.A. Casey, N.E. DiGirolamo and Z. Wan. 2006. Satellite-derived, melt-season surface temperature of the Greenland Ice Sheet (2000–2005) and its relationship to mass balance. Geophysical Research Letters, 33:L11501, doi:10.1029/2006GL026444.CrossRefGoogle Scholar
  58. Hall, D.K. and G.A. Riggs, 2007. Accuracy assessment of the MODIS snow-cover products, Hydrological Processes, in press.Google Scholar
  59. Hallikainen, M., 1984. Retrieval of snow water equivalent from Nimbus-7 SMMR data: effect of land-cover categories and weather conditions, IEEE Journal of Oceanic Engineering, OE-9(5): 372–376..Google Scholar
  60. Hallikainen, M. and F.T. Ulaby, 1986. Dielectric and scattering behaviour of snow at microwave frequencies , Proceedings of the International Geoscience and Remote Sensing Symposium, 8–11 September 1986, Zurich, Switzerland, pp. 87–91.Google Scholar
  61. Hallikainen M. and P. Jolma 1992. Comparison of algorithms for the retrieval of snow water equivalent from NIMBUS-7 SMMR data in Finland. IEEE Transactions on Geoscience and Remote Sensing, 30: 124–131.CrossRefGoogle Scholar
  62. Hansen, J. and L. Nazarenko, 2004. Soot climate forcing via snow and ice albedos, Proceedings of the National Academy of Sciences, 101(2): 423–428..CrossRefGoogle Scholar
  63. IPCC, 2001. Climate Change 2001. The scientific basis. In J.T. Houghton, Y. Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K.Maskell, and C.A. Johnson Eds, Contribution of working group I to the third assessment report of the intergovernmental panel on climate change (881 pp). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,Google Scholar
  64. Jordan, R. 1991. A one-dimensional temperature model for a snow cover, Special Report 91–16, U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Hanover, New Hampshire, 1989.Google Scholar
  65. Kargel, J.S. and 16 others, 2005. Multispectral imaging contributions to global land ice measurements from space, Remote Sensing of Environment, 99: 187–219.Google Scholar
  66. Kelly, R.E.J., A.T.C. Chang, L. Tsang, and J.L. Foster, 2003. Development of a prototype AMSR-E global snow area and snow volume algorithm, IEEE Transactions on Geoscience and Remote Sensing, 41(2): 230–242.CrossRefGoogle Scholar
  67. Kelly, R. E. J., A. T. C. Chang, and J. L. Foster. 2004. updated daily. AMSR-E/Aqua daily L3 global snow water equivalent EASE-Grids V001, March to June 2004. Boulder, CO, USA: National Snow and Ice Data Center. Digital media.Google Scholar
  68. Key, J. and M. Haefliger. 1992. Arctic ice surface temperature retrieval from AVHRR thermal channels. Journal of Geophysical Research, 97(D5): 5885–5893.Google Scholar
  69. Klein, A.G., D.K. Hall, and G. Riggs, 1998. Improving snow-cover mapping in forests through the use of a canopy reflectance model, Hydrological Processes, 12: 1723–1744.CrossRefGoogle Scholar
  70. Knap, W. H., J. Oerlemans. 1996. The surface albedo of the Greenland ice sheet: satellite-derived and in situ measurements in the Søndre Strømfjord area during the 1991 melt season. Journal of Glaciology, 42(141): 364–374.Google Scholar
  71. Kononov, Y. M., M.D. Ananicheva and I.C. Willis, 2005. High-resolution reconstruction of Polar Ural glacier mass balance for the last millennium, Annals of Glaciology, 42(1): 163–170..CrossRefGoogle Scholar
  72. Koskinen J.T., J.T. Pulliainen, and M.T. Hallikainen, 1997. The use of ERS-1 SAR data in snow melt monitoring. IEEE Trans. Geosc. Rem. Sens., 35(3): 601–610..CrossRefGoogle Scholar
  73. Krabill, W., E. Hanna, P. Huybrechts, W. Abdalati, J. Cappelen, B. Csatho, E. Frederick, S. Manizade, C. Martin, J. Sonntag, R. Swift, R. Thomas, W. and J. Yungel. 2004. Greenland Ice Sheet: Increased coastal thinning, Geophysical Research Letters, 31, L24402, doi:10/1029/2004GL021533.CrossRefGoogle Scholar
  74. Krabill, W., W. Abdalati, E. Frederick, S. Manizade, C. Martin, J. Sontag, R. Swift, R. Thomas, W. Wright and J. Yungel. 2000. Greenland ice sheet: High-elevation balance and peripheral thinning. Science, 289: 428–430.CrossRefGoogle Scholar
  75. Kunzi, K.F., S. Patil and H. Rott, 1982. Snow-cover parameters retrieved from Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) data, IEEE Transactions on Geoscience and Remote Sensing, GE-20(4): 452–467..CrossRefGoogle Scholar
  76. Liang. S., J. Stroeve, and J.E. Box, 2005. Mapping daily snow/ice shortwave broadband albedo from Moderate Resolution Imaging Spectroradiometer (MODIS): The improved direct retrieval algorithm and validation with Greenland in situ measurement. Journal of Geophysical Research, 110, D10109, doi:10.1029/2004JD005493.CrossRefGoogle Scholar
  77. Luthcke, S.B., H.J. Zwally, W. Abdalati, D.D. Rowlands, R.D. Ray, R.S. Nerem, F.G. Lemoine, J.J. McCarthy and D.S. Chinn. 2006. Recent Greenland ice mass loss by drainage system from satellite gravity observations. Science, 19 October 2006, 10.1126/science.1130776.Google Scholar
  78. Male, D.H., 1980. The seasonal snowcover. In S. Colbeck, Ed, Dynamics of snow and ice masses (pp. 305–395). New York: Academic Press.Google Scholar
  79. Marshall , H.P., G. Koh, and R. Forster. 2004. Ground-based frequency-modulated continuous wave radar measurements in wet and dry snowpacks. Colorado , USA: An Analysis and Summary of the 2002–03 NASA CLPX Data. Hydrological Processes, 18(18):3609–3622.CrossRefGoogle Scholar
  80. Matson, M., C.F. Roeplewski and M.S. Varnadore, 1986. An Atlas of satellite-derived northern hemisphere snow cover frequency (75 pp). Washington D.C.: National Weather Service.Google Scholar
  81. Mätzler, C. and E. Schanda, 1984. Snow mapping with active microwave sensors, International Journal of Remote Sensing, 5(2): 409–422..CrossRefGoogle Scholar
  82. Meier, M.F. 1998. Monitoring ice sheets, ice caps and glaciers. In W. Haeberli, M. Hoelze and S. Suter, Eds, Into the second century of Worldwide Glacier Monitoring – prospects and Strategies (No. 56, pp. 209–214). UNESCO, Studies and reports in hydrology.Google Scholar
  83. Nagler T. and H. Rott, 2000. Retrieval of wet snow by means of multitemporal SAR data, IEEE Transactions on Geoscience and Remote Sensing, 38(2): 754–765..CrossRefGoogle Scholar
  84. Nghiem, S., K. Steffen, R. Kwok and W.-Y. Tsai. 2001. Detection of snowmelt regions on the Greenland ice sheet using diurnal backscatter change. Journal of Glaciology, 47(159): 593–547..CrossRefGoogle Scholar
  85. Nolin, A.W. and J.C. Stroeve. 1997. The changing albedo of the Greenland ice sheet: Implications for climate modeling, Annals of Glaciology, 25: 51–57.Google Scholar
  86. Nolin, A.W. and S. Liang, 2000. Progress in bi-directional reflectance modeling and applications for surface particulate media: snow and soils, Remote Sensing Reviews, 18: 307–342.Google Scholar
  87. O’Brien, H.W. and R.H. Munis, 1975. Red and near-infrared spectral reflectance of snow, Operational Applications of Satellite Snowcover Observations, a workshop held in South Lake Tahoe, CA, 18–20 August, 1975, NASA SP-391.Google Scholar
  88. Ohmura, A., 2006. Changes in mountain glaciers and ice caps during the 20th century, Annals of Glaciology, 43: 361–368.CrossRefGoogle Scholar
  89. Paterson, W.S.B. 1994. The Physics of Glaciers, 3rd edn. London: Pergamon press.Google Scholar
  90. Papa F., B. Legrésy, N. Mognard, E.D. Josberger and Rémy, F. 2002. Snow depth estimations with the Topex-Poseidon altimeter and radiometer, IEEE Geoscience and Remote Sensing, 40(10): 2162–2170..Google Scholar
  91. Paul, F., A. Kääb, M. Maisch, T. Kellenberger and W. Haeberli, 2004. Rapid disintegration of Alpine glaciers observed with satellite data, Geophysical Research Letters, 31, L21402, doi:10.1029/2004GL020816, 2004.CrossRefGoogle Scholar
  92. Ramsay, B., 1998. The interactive multisensor snow and ice mapping system, Hydrological Processes, 12: 1537–1546.CrossRefGoogle Scholar
  93. Rawlins, M.A., K.C. McDonald, S. Frolking, R.B. Lammers, M. Fahnestock, J.S. Kimball , and C.J. Vorosmarty, 2005. Remote sensing of snow at the pan-Arctic scale using the SeaWinds scatterometer. Journal of Hydrology, 312: 294–311.CrossRefGoogle Scholar
  94. Richter-Menge, J. and 24 others, 2006. State of the Arctic Report. NOAA OAR Special Report, NOAA/OAR/PMEL, Contribution No. 2952 from NOAA, Pacific Marine Environmental Laboratory, Seattle, WA, 36 p.Google Scholar
  95. Riggs, G.A., D.K. Hall and V. Salomonson, 2006. MODIS Snow Product User Guide to Collection 5, NASA Goddard Space Flight Center, Scholar
  96. Rignot, E. and P. Kanagaratnam. 2006. Changes in the velocity structure of the Greenland Ice Sheet. Science, 311: 986–990.CrossRefGoogle Scholar
  97. Robinson, D.A., 1993. Hemispheric snow cover from satellites, Annals of Glaciology, 17: 367–371.Google Scholar
  98. Robinson, D.A. 1997. Hemispheric snow cover and surface albedo for model validation. Annals of Glaciology, 25: 241–245.Google Scholar
  99. Robinson, D.A. and A. Frei, 2000. Seasonal Variability of Northern Hemisphere Snow Extent Using Visible Satellite, Data. Professional Geographer, 51: 307–314.CrossRefGoogle Scholar
  100. Robinson, D.A. and G. Kukla, 1985. Maximum surface albedo of seasonally snow covered lands in the Northern Hemisphere. Journal of Climate and Applied Meteorology, 24: 402–411.CrossRefGoogle Scholar
  101. Rott, H., 1984. The analysis of backscattering properties from SAR data of mountainous regions, IEEE Journal of Oceanic Engineering, OE-0: 347–355.CrossRefGoogle Scholar
  102. Rott, H. and T. Nagler, 1993. Capabilities of ERS-1 SAR for snow and glacier monitoring in alpine areas, In Proceedings of the Second ERS-1 Symposium, 1–6, ESA SP-359.Google Scholar
  103. Schanda, E., C. Mätzler and K. Künzi, 1983. Microwave remote sensing of snow cover, International Journal of Remote Sensing, 4(1): 149–158.CrossRefGoogle Scholar
  104. Shi, J., J. Dozier and H. Rott, 1994. Snow mapping in alpine regions with synthetic aperture radar, IEEE Journal of Geoscience and Remote Sensing, 32(1): 152–158.CrossRefGoogle Scholar
  105. Shi, J.C. and J. Dozier, 1995. Inferring snow wetness using SIR-C C-band polarimetric synthetic aperture radar, IEEE Transactions on Geoscience and Remote Sensing, 33(4): 905–914.CrossRefGoogle Scholar
  106. Singer, F.S. and R.W. Popham, 1963. Non-meteorological observations from weather satellites, Astronautics and Aerospace Engineering, 1(3): 89–92.Google Scholar
  107. Slaymaker, H.O. and R.E.J. Kelly, 2007. The Cryosphere and Global Environmental Change, Oxford: Blackwell Publishing, 272pp.Google Scholar
  108. Steffen, K., S.V. Nghiem, R. Huff, and G. Neumann. 2004. The melt anomaly of 2002 on the Greenland Ice Sheet from active and passive microwave satellite observations. Geophysical Research Letters, 31, L20402, doi:10.1029/2004GL020444.CrossRefGoogle Scholar
  109. Steffen, K. and R. Huff, 2005. Greenland melt extent: 2005, Scholar
  110. Steffen, K. and J. Box. 2001. Surface climatology of the Greenland ice sheet: Greenland climate network 1995–1999. Journal of Geophysical Research, 106(D24): 33: 951–964.Google Scholar
  111. Stiles, W.H. and F.T. Ulaby, 1980. The active and passive microwave response to snow parameters – 1. Wetness, Journal of Geophysical Research, 85(C2): 1037–1044.Google Scholar
  112. Stiles, W.H., F.T. Ulaby and A. Rango, 1981. Microwave measurements of snowpack properties, Nordic Hydrology, 12: 143–166.Google Scholar
  113. Stroeve, J. and K. Steffen. 1998. Variability of AVHRR-derived clear-sky surface temperature over the Greenland ice sheet. Journal of Applied Meteorology, 37: 23–31.CrossRefGoogle Scholar
  114. Stroeve, J., A. Nolin and K. Steffen. 1997. Comparison of AVHRR-derived and in situ surface albedo over the Greenland Ice Sheet, Remote Sensing of Environment, 62: 262–276.CrossRefGoogle Scholar
  115. Stroeve, J., J.E. Box, C. Fowler, T. Haran, and J. Key, 2001. Intercomparison between in situ and AVHRR polar pathfinder-derived surface albedo over Greenland. Remote Sensing of Environment. 75: 360–374.CrossRefGoogle Scholar
  116. Stroeve, J.,C., J.E. Box and T. Haran, 2006. Evaluation of the MODIS (MOD10A1) daily snow albedo product over the Greenland ice sheet, Remote Sensing of Environment, 105: 155–171.CrossRefGoogle Scholar
  117. Sun, C.Y, C.M.U. Neale and J.J. McDonnell, 1996. Snow wetness estimates of vegetated terrain from satellite passive microwave data. Hydrological Processes, 10: 1619–1628.CrossRefGoogle Scholar
  118. Tait, A. 1998. Estimation of snow water equivalent using passive microwave radiation data. Remote Sensing of Environment, 64: 286–291.CrossRefGoogle Scholar
  119. Tait A.B., D.K. Hall, J.L. Foster, and R.L. Armstrong, 2000. Utilizing multiple datasets for snow-cover mapping Remote Sensing of Environment 72(1): 111–126..CrossRefGoogle Scholar
  120. Tait A.B., J.S. Barton and D.K. Hall, 2001. A prototype MODIS-SSM/I snow-mapping algorithm International Journal of Remote Sensing 22(17): 3275–3284..CrossRefGoogle Scholar
  121. Tarboton, D. and C.Luce, 1996. Utah Energy Balance snow accumulation and melt model (UEB), Computer model technical description and users guide, Utah Water Research Laboratory and USDA Forest Service Intermountain Research Station.Google Scholar
  122. Tedesco M., J. Pulliainen, P. Pampaloni and M. Hallikainen, 2004. Artificial neural network based techniques for the retrieval of SWE and snow depth from SSM/I data, Remote Sensing of Environment, 90(1): 76–85.CrossRefGoogle Scholar
  123. Tribbeck, M., R. Gurney, E. Morris and W. Pearson, 2004. A new Snow-SVAT to simulate the accumulation and ablation of seasonal snow cover beneath a forest canopy, Journal of Glaciology, 50: 171–182.CrossRefGoogle Scholar
  124. Ulaby, F.T. and W.H. Stiles, 1980. The active and passive microwave response to snow parameters 2. water equivalent of dry snow, Journal of Geophysical Research, 85(C2): 1045–1049.Google Scholar
  125. Ulaby, F.T. and W.H. Stiles, 1981. Microwave response of snow, Advanced Space Research, 1: 131–149.CrossRefGoogle Scholar
  126. Ulaby, F.T., R.K. Moore and A.K. Fung, 1986. Microwave remote sensing, active and passive, Vol. 3, From Theory to Applications, Reading, MA, Addison-Wesley Publishing Co., p. 2162Google Scholar
  127. Verseghy, D., 2000. The Canadian Land Surface Scheme (CLASS): Its history and future, Atmosphere-Ocean, 38: 1–13.Google Scholar
  128. Waite, W.P. and H.C. McDonald, 1970. Snowfield mapping with K-band radar, Remote Sensing of Environment, 1: 143–150.CrossRefGoogle Scholar
  129. Walker, A.E. and B.E. Goodison, 1993. Discrimination of a wet snow cover using passive-microwave satellite data, Annals of Glaciolog, 17: 307–311.Google Scholar
  130. Walsh, J. E., 1991. Operational satellites and the global monitoring of snow and ice, Global Planetary Change, 90(1–3): 219–224.CrossRefGoogle Scholar
  131. Wang L.B., M. Sharp, R. Brown, C. Derksen and B. Rivard, 2005. Evaluation of spring snow covered area depletion in the Canadian Arctic from NOAA snow charts, Remote Sensing of Environment, 95 (4): 453–463.CrossRefGoogle Scholar
  132. Warren, S. 1982. Optical properties of snow. Reviews of Geophysics and Space Physics, 20: 67–89.Google Scholar
  133. Warren, S.G. and W.J. Wiscombe, 1980. A model for the spectral albedo of snow, II: Snow containing atmospheric aerosols, Journal of the Atmospheric Sciences, 37: 2734–2745.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • Richard Kelly
  • Dorothy K. Hall

There are no affiliations available

Personalised recommendations