Advertisement

Satellites Oceans Observation in Relation to Global Change

  • Manuel Cantón-Garbín
Chapter
  • 1.2k Downloads

Abstract

In this chapter we emphasize the importance of the oceans in the control of the Earth climate due to its capacity to transfer and redistribute heat over all the planet and due to its greenhouse gases absorption capacity. Satellites are measuring from thirty years ago physical and biological parameters (temperature, productivity, sea level, global winds and waves) that inform us about the global variability of these parameters during the last decades. It is not possible to infer long term changes from this time scale, but the changes measured from the space are in good agreement with the predictions from other data sources and climate models. If we stop immediately our contaminating and emissions of greenhouses gases activities, the Earth could take about 1,000 years to return to its “normal” cycles. It is too late to follow by the way of the sustainable development, it’s time for a sustainable retreat (Lovelock 2007). An irreversible global change could be so close to trust that the international agreements save to the civilization from global change. So, its time for fast actions.

Keywords

Canary Island Synthetic Aperture Radar European Space Agency Gulf Stream Altimeter Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alley, R. B., Clark, P. U., Huybrechts, P., & Joughin, I. (2005). Ice-sheet and sea-level changes. Science, 310, 456–460.CrossRefGoogle Scholar
  2. Aristegui, J., Sangra, P., Hdez.-Leon, S., Cantón, M., Hdez-Guerra, A., & Kerling, J. (1994). Island-induced eddies in the Canary Islands. Deep Sea Research, 41(10), 1509–1525.CrossRefGoogle Scholar
  3. Aristegui, J., Tett, P., Hernandez-Guerra, A., Basterretxea, G., Montero, M.F., Wild, K., Sangra, P., Hernandez-Leon, S., Canton, M., Garcia-Braun, J. A., Pacheco, M., & Barton, E. D. (1997). The influence of island-generated eddies on chlorophyll distribution: a study of mesoscale variation around Gran Canaria. Deep Sea Research I, 44(1), 71–96.CrossRefGoogle Scholar
  4. Barton, E. D., Aristegui, J., Tett, P., Cantón M., García Braun, J., Hernández León S., Nykjaer, L., Almeida, C., Almunia, J., Ballesteros, S., Basterretxea, G., Escánez, J., García-Weill, L., Hernández-Guerra, A., López-Laatzen, A., Molina, R., Montero, M. F., Navarro-Pérez, E., Rodríguez, J. M., Van Lennig, K., Velez, H., Wild, K. (1998). The Transition Zone of the Canary Current Upwelling Region. Progress in Oceanography, 41, 455–504.Google Scholar
  5. Broecker, W. S. (1997). Thermoaline circulation, the Achilles heel of our climate system: Will man-made CO2 upset the current balance? Science 278, 1582–1588.CrossRefGoogle Scholar
  6. Bryden, H., Longworth, H., & Cunningham, S. (2005). Slowing of the atlantic meridional overturning circulation at 25° N. Nature, 438, 655–657.CrossRefGoogle Scholar
  7. Burroughs, W. J. (2001). Climate change: A multidisciplinary approach. Cambridge University Press.Google Scholar
  8. Cabanes, C., Cazenave, A., & Le Provost, C. (2001). Sea level rise during past 40 years determined from satellite and in situ observations. Science, 294, 840–842.Google Scholar
  9. Calvin, W. H. (1998). The great climate flip-flop. http://williamcalvin.com/.Google Scholar
  10. Cantón Garbin, M., & Hernandez Guerra, A. (1991) La Teledetección de los océanos desde el espacio: Principios Físicos y Aplicaciones. Rev. Española de Física, 5(3), 8–14.Google Scholar
  11. CCLRC (2003). The ATSR Project. www.atsr.rl.ac.uk/images/sample/atsr-1/index.html.Google Scholar
  12. Curry, R. (2005). Dilution of the Northern North Atlantic ocean in recent decades. Science, 308, 1772–1774.CrossRefGoogle Scholar
  13. Delibes, M., & Delibes de Castro, M. (Eds.). (2005). La Tierra herida. Destino, Spain.Google Scholar
  14. Donnadieu, Y., Godderis, Y., Ramstein, G., & Meert, J. (2004). A “snowball Earth” climate triggered by break up through changes in continental runoff. Nature, 428, 303–306.CrossRefGoogle Scholar
  15. Dwyer, G. S. (2000). Unraveling the signals of global climate change. Science, 287, 246–247.CrossRefGoogle Scholar
  16. ESA (2005). What causes El Ni no?. www.esa.int/esaEO/.Google Scholar
  17. ESA (2007). ESA’s water mission: SMOS. www.esa.int/esaLP/.Google Scholar
  18. Gregg, W., Conkright, M., Ginoux, P., O’Reilly, J., & Casey, N. (2003) Ocean primary production and climate: Global decadal changes. Geophysical Research. Letters, 30(15), 1809–1812.CrossRefGoogle Scholar
  19. Gribbin, J. (1986). El Clima futuro. Salvat. Spain.Google Scholar
  20. Hadley Centre, Meteorological Office, UK (2006). Climate Change Science. www.mettoffice. com/research/hadleycentre/pubs/brochures/B1. ldots .Google Scholar
  21. Häkkinen, S., & Rhines, P. (2004). Decline of subpolar north atlantic circulation during the 1990s. Science, 304, 555–559.CrossRefGoogle Scholar
  22. Hernandez Guerra, A., Aristegui, J., Canton Garbin, M., & Nykjaer, L. (1993). Phytoplankton pigment patterns in the Canary Islands area as determined using Coastal Zone Colour Scanner Data. Int. J. of Remote Sensing, 14(7), 1431–1437.CrossRefGoogle Scholar
  23. Houghton, J. T. (2004). Global warming: the complete briefing. Cambridge University Press.Google Scholar
  24. IFM (2006). Altimetry, ocean currents and the marine geoid. www.ifm.uni-hamburg.de/~ wwwrs/altimetry.html.Google Scholar
  25. IPCC (2001). The Scientific Basis. Intergubernamental Panel for Climate Change.Google Scholar
  26. Johannessen, O. M., Khvorostovsky, K., Miles, M. W., & Bobylev, M. (2005). Recent ice-sheet growth in the interior of Greenland. Science, 310, 1013–1016.CrossRefGoogle Scholar
  27. Levitus, S., Antonov, I., Boyer, T., & Sthephens, C. (2000). Warming of the worlds oceans. Science, 287, 2225–2229.CrossRefGoogle Scholar
  28. Lovelock K. J. (2007). La venganza de la Tierra. Planeta. Spain.Google Scholar
  29. Maslin, M. (2004). Global warming: A very short introduction. Oxford University Press.Google Scholar
  30. McPhaden, M. (1999). El Niño: The child prodigy of 1997–1998. Nature, 398, 559–562.CrossRefGoogle Scholar
  31. Meehl, G. A., Washington, W., Arblaster, J., Hu, A., Buja, L., Strand, W., & Teng, H. (2005). Science, 307, 1769–1772.CrossRefGoogle Scholar
  32. NASA (2003). www.earthobservatory.nasa.gov.Google Scholar
  33. NASA (2005). The physical ocean. http://science.hq.nasa.gov/oceans/physical/index.htmlGoogle Scholar
  34. Ohmoto, H., Watanabe, Y., & Kumazawa, K. (2004). Evidence from massive siderite beds for a CO2-rich atmosphere 1.8 billion years ago. Nature, 429, 395–399.Google Scholar
  35. Osborn, T., (2006). The thermoaline circulation. Climatic research Unit, UK. www.cru.uea.ac.uk/cru/info/thc.Google Scholar
  36. Parada Sanguino, M., Canton Garbin, M. (1998). Sea surface temperature variability in the Alboran sea from satellite data. Int. Journal of Remote Sensing. 19(13), 2439–2450.Google Scholar
  37. Rahmstorff, S. (2002). Ocean circulation and climate during the past 120000 years. Nature, 419, 207–214.CrossRefGoogle Scholar
  38. Ramos, A. G., Pep, J., Williams, A., Petit, M., & Cantón, M. (1997a). Satellite derived scatterometer/ERS-1 sea surface wind stress curls in the oceans. ESA SP-414, 1391–1395.Google Scholar
  39. Ramos, A. G., Coca, J., Williams, A., & Cantón, M. (1997b). Satellite derived scatterometer ERS-1 sea surface wind vorticity in the Southwestern Indian Ocean. ESA Publications SP-405. The use and applications of ERS in Latin America, 235–239.Google Scholar
  40. Robinson, I., (1994). Satellite oceanography. John Wiley & Sons.Google Scholar
  41. Schiermeier, Q., (2006). Climate change: A sea change. Nature, 439, 256–315.CrossRefGoogle Scholar
  42. Schmittner, A., (2005). Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation. Nature, 434, 628–633.CrossRefGoogle Scholar
  43. Stocker, T. F., (1998). The seesow effect. Science, 282, 61–62.CrossRefGoogle Scholar
  44. Strong, A. E. (1989). Greater global warming revealed by satellite-derived sea-surface-temperature trends. Nature, 338, 642–645.CrossRefGoogle Scholar
  45. Tejera Cruz, A., Garcia Weil, L., Cantón-Garbín, M. (1997a). Study of mesoscale features and seasonal variability in the Canary Basin from GEOSAT, ERS-1 and TOPEX/POSEIDON altimeters data. ESA Publications SP-405. The use and applications of ERS in Latin America, pp. 211–218.Google Scholar
  46. Tejera Cruz, A., Garcia Weil, L., Cantón-Garbín, M. (1997b). Mesoscale variability in the Canary region from Altimetry. ESA Publications SP-414, pp. 1509–1515.Google Scholar
  47. Tejera, A., García-Weil, L., Heywood, K., & Cantón-Garbín, M., (2002). Observations of Oceanic Mesoscale Features and Variability in the Canary Islands area from ERS-1 Altimeter data, satellite infrared imagery and hydrographic measurements. International Journal of Remote Sensing, 23(22), 4897–4916.CrossRefGoogle Scholar
  48. The Open University (1989). Ocean Circulation. Pergamon Press.Google Scholar
  49. Velicogna, I., & Wahr, J., (2006). Measurements of time-variable gravity show mass loss in Antarctica. Science, 311, 1754–1756.CrossRefGoogle Scholar
  50. Uriarte, A. (2003). Historia del Clima. Servicio de Publicaciones del Gobierno Vasco. Spain.Google Scholar

Copyright information

© Springer Science + Business Media B.V. 2008

Authors and Affiliations

  • Manuel Cantón-Garbín

There are no affiliations available

Personalised recommendations