Skip to main content

Satellite Observation of Biomass Burning

Implications in Global Change Research

  • Chapter
Earth Observation of Global Change

Abstract

Biomass burning, which involves wildland fires as well as agricultural and grassland burnings, plays a critical role in the environmental equilibrium of our planet, since it is a major driving force in land cover transformations and contributes significantly to greenhouse gas emissions. Several satellite missions provide critical information required to better understand the temporal and spatial distribution of biomass burning. Satellite images provide objective and comprehensive information on global patterns of fire occurrence, as well as data on factors affecting fire ignition and propagation. Recent improvements in spatial, temporal, and spectral resolution of satellite remote sensing systems reduce past uncertainties – systems can now be used to obtain a more precise evaluation of burned areas and post-fire effects on soils and plants. Greater efforts are required to operationally use Earth Observation data in fire prevention and early warning. Longer time series data are required to acquire a better understanding of fire regimes, and their mutual relationships with global warming.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahern, F. J., Goldammer, J. G., & Justice, C. O. (Eds.). (2001) Global and regional vegetation fire monitoring from space: Planning a coordinated international effort. The Haghe, The Netherlands: SPB Academic Publishing.

    Google Scholar 

  • Allgöwer, B., Carlson, J. D., & van Wagtendonk, J. W. (2003) Introduction to fire danger rating and remote sensing. Will remote sensing enhace wildland fire danger rating? In E. Chuvieco (Ed.), Wildland fire danger estimation and mapping. The role of remote sensing data (pp. 1–19). Singapore: World Scientific Publishing.

    Google Scholar 

  • Alonso, M., Camarasa, A., Chuvieco, E., Cocero, D., Kyun, I., Martín, M. P., & Salas, F. J. (1996) Estimating temporal dynamics of fuel moisture content of Mediterraneam species from NOAA-AVHRR data. EARSEL Advances in Remote Sensing, 4, 9–24.

    Google Scholar 

  • Ambrosia, V. G., & Brass, J. A. (1988) Thermal analysis of wildfires and effects on global ecosystem cycling. Geocarto International, 1, 29–39.

    Article  Google Scholar 

  • Ambrosia, V. G., Wegener, S. S., Sullivan, D. V., Buechel, S. W., Dunagan, S. E., & Brass, J. A. et al. (2003) Demostrating UAV-Acquired real-time thermal data over fires. Photogrammetric Engineering and Remote Sensing, 69, 391–402.

    Google Scholar 

  • Anderson, G. L., Hanson, J. D., & Haas, R. J. (1993) Evaluating Landsat Thematic Mapper derived vegetation indices for estimating above-ground biomass on semiarid rangelands. Remote Sensing of Environment, 45, 165–175.

    Google Scholar 

  • Andreae, M. O. (1991) Biomass burning: Its history, use and distribution and its impacts on environmental quality and global climate. In J. S Levine, (Ed.), Global biomass burning : Atmospheric, climatic, and biospheric implications (pp. 3–21). Cambridge, Mass: MIT Press.

    Google Scholar 

  • Arroyo, L. A., Healey, S. P., Cohen, W. B., Cocero, D., & Manzanera, J. A. (2006) Using object-oriented classification and high-resolution imagery to map fuel types in a Mediterranean region. Journal of Geophysical Research-Biogeosciences, 111, doi:10.1029/2005JG000120.

    Google Scholar 

  • Barbosa, P. M., Grégoire, J. M., & Pereira, J. M. C. (1999a). An algorithm for extracting burned areas from time series of AVHRR GAC data applied at a continental scale. Remote Sensing of Environment, 69, 253–263.

    Google Scholar 

  • Barbosa, P. M., Stroppiana, D., Gregoire, J. M., & Pereira, J. M. C. (1999b). An assessment of vegetation fire in Africa (1981–1991): Burned areas, burned biomass, and atmospheric emissions. Global Biogeochemical Cycles, 13, 933–950.

    Google Scholar 

  • Beaudoin, A., Vidal, A., Desbois, N., & Debaux- Ros, C. (1995) Monitoring the water status of Mediterranean forests using ERS-1 to support fire risk prevention. In International Geoscience and Remote Sensing Symposium, IGARSS ’95. ‘Quantitative Remote Sensing for Science and Applications’, (pp. 963–966). Firenze, Italy.

    Google Scholar 

  • Boschetti, L., Eva, H. D., Brivio, P. A., & Gregoire, J. M. (2004) Lessons to be learned from the comparison of three satellite-derived biomass burning products. Geophysical Research Letters, 31, L21501, doi:21510.21029/22004GL021229.

    Google Scholar 

  • BourgeauChavez, L. L., Kasischke, E. S., & Rutherford, M. D. (1999) Evaluation of ERS SAR data for prediction of fire danger in a boreal region. International Journal of Wildland Fire, 9, 183–194.

    Google Scholar 

  • Briess, K., Lorenz, E., Oertel, D., Skrbek, W., & Zhukov, B. (2001) Fire recognition potential of the Bi-spectral Infrared Detection (BIRD) Satellite. Berlin: Institute of Space Sensor Technology and Planetary Exploration, 2.

    Google Scholar 

  • Burgan, R. E., & Rothermel, R. C. (1984) BEHAVE: Fire behavior prediction and fuel modeling system. Fuel subsystem. Ogden, Utah: USDA Forest Service, GTR INT-167.

    Google Scholar 

  • Caetano, M. S., Mertes, L. A. K., & Pereira, J. M. C. (1994) Using spectral mixture analysis for fire severity mapping. Proceedigns of 2nd International Conference on Forest Fire Research (pp. 667–677). Coimbra.

    Google Scholar 

  • Calle, A., Casanova, J. L., & Romo, A. (2006) Fire detection and monitoring using MSG Spinning Enhanced Visible and Infrared Imager (SEVIRI) data. Journal of Geophysical Research – Biosciences, 111, doi:10.1029/2005JG000116.

    Google Scholar 

  • CarmonaMoreno, C., Belward, A., Malingreau, J. P., Hartley, A., Garcia Alegre, M., & Antonovskiy, M., et al. (2005) Characterizing interannual variations in global fire calendar using data from Earth observing satellites. Global Change Biology, 11, 1537–1555.

    Google Scholar 

  • Ceccato, P., Flasse, S., Tarantola, S., Jacquemoud, S., & Grégoire, J. M. (2001) Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sensing of Environment, 77, 22–33.

    Google Scholar 

  • Ceccato, P., Leblon, B., Chuvieco, E., Flasse, S., & Carlson, J. D. (2003) Estimation of live fuel moisture content. In E. Chuvieco (Ed.), Wildland fire danger estimation and mapping. The role of remote sensing data (pp. 63–90). Singapore: World Scientific Publishing.

    Google Scholar 

  • Chen, D. (2005) Vegetation water content estimation for corn and soybeans using spectral indices derived from MODIS near- and short-wave infrared bands. Remote Sensing of Environment, 98, 225–236.

    Google Scholar 

  • Cheng, Y. B., ZarcoTejada, P. J., Riaño, D., Rueda, C. A., & Ustin, S. (2006) Estimating vegetation water content with hyperspectral data for different canopy scenarios: Relationships between AVIRIS and MODIS indexes. Remote Sensing of Environment, 105, 354–366.

    Google Scholar 

  • Chladil, M. A., & Nunez, M. (1995) Assessing grassland moisture and biomass in Tasmania. The application of remote sensing and empirical models for a cloudy environment. International Journal of Wildland Fire, 5, 165–171.

    Google Scholar 

  • Chuvieco, E. (Ed.). (1999) Remote sensing of large wildfires in the european mediterranean basin. Berlin: Springer-Verlag.

    Google Scholar 

  • Chuvieco, E. (Ed.). (2003) Wildland fire danger estimation and mapping. The role of remote sensing data. Singapore: World Scientific Publishing.

    Google Scholar 

  • Chuvieco, E., Aguado, I., Cocero, D., & Riaño, D. (2003a). Design of an empirical index to estimate fuel moisture content from NOAA-AVHRR analysis in forest fire danger studies. International Journal of Remote Sensing, 24, 1621–1637.

    Google Scholar 

  • Chuvieco, E., Allgöwer, B., & Salas, F. J. (2003b). Integration of physical and human factors in fire danger assessment. In E. Chuvieco (Ed.), Wildland fire danger estimation and mapping. The role of remote sensing data (pp. 197–218). Singapore: World Scientific Publishing.

    Google Scholar 

  • Chuvieco, E., Cocero, D., Aguado, I., PalaciosOrueta, A., & Prado, E. (2004a). Improving burning efficiency estimates through satellite assessment of fuel moisture content. Journal of Geophysical Research – Atmospheres, 109, D14S07, doi:10.1029/2003JD003467, 1–8.

    Google Scholar 

  • Chuvieco, E., Cocero, D., Riaño, D., Martín, M. P., MartínezVega, J., de la Riva, J., & Pérez, F. (2004b). Combining NDVI and surface temperature for the estimation of live fuel moisture content in forest fire danger rating. Remote Sensing of Environment, 92, 322–331.

    Google Scholar 

  • Chuvieco, E., & Congalton, R. G. (1988) Mapping and inventory of forest fires from digital processing of TM data. Geocarto International, 4, 41–53.

    Google Scholar 

  • Chuvieco, E., De Santis, A., Riaño, D., & Halligan, K. (2007) Simulation approaches for burn severity estimation using remotely sensed images. Journal of Fire Ecology, in press.

    Google Scholar 

  • Chuvieco, E., & Martín, M. P. (1994) Global fire mapping and fire danger estimation using AVHRR images. Photogrammetric Engineering and Remote Sensing, 60, 563–570.

    Google Scholar 

  • Chuvieco, E., Martín, M. P., & Palacios, A. (2002a). Assessment of different spectral indices in the red-near-infrared spectral domain for burned land discrimination. International Journal of Remote Sensing, 23, 5103–5110.

    Google Scholar 

  • Chuvieco, E., Riaño, D., Aguado, I., & Cocero, D. (2002b). Estimation of fuel moisture content from multitemporal analysis of Landsat Thematic Mapper reflectance data: Applications in fire danger assessment. International Journal of Remote Sensing, 23, 2145–2162.

    Google Scholar 

  • Chuvieco, E., Riaño, D., Danson, F. M., & Martín, M. P. (2006) Use of a radiative transfer model to simulate the post-fire spectral response to burn severity. Journal of Geophysical Research – Biosciences, 111, doi:10.1029/2005JG000143.

    Google Scholar 

  • Chuvieco, E., Riaño, D., Van Wagtendok, J., & Morsdof, F. (2003c). Fuel Loads and Fuel Type Mapping. In E. Chuvieco (Ed.), Wildland fire danger estimation and mapping. The role of remote sensing data (pp. 119–142). Singapore: World Scientific Publishing.

    Google Scholar 

  • Chuvieco, E., Ventura, G., Martín, M. P., & Gomez, I. (2005) Assessment of multitemporal compositing techniques of MODIS and AVHRR images for burned land mapping. Remote Sensing of Environment, 94, 450–462.

    Google Scholar 

  • Cocero, D., Chuvieco, E., & Salas, J. (2001) El sensor SPOT-Vegetation, una nueva alternativa en la estimación de la humedad de la vegetación. In J. I. Rosell & J. A. Martínez-Casasnovas (Eds.), Teledetección. Medioambiente y Cambio Global (pp. 179–182). Lleida: Universitat de Lleida y Editorial Milenio.

    Google Scholar 

  • Cochrane, M. A., Alencar, A., Schulze, M. D., Souza, C. M., Nepstad, D. C., Lefebvre, P., & Davidson, E. A. (1999) Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science, 284, 1832–1835.

    Google Scholar 

  • Cocke, A. E., Fule, P. Z., & Crouse, J. E. (2005) Comparison of burn severity assessments using Differenced Normalized Burn Ratio and ground data. International Journal of Wildland Fire, 14, 189–198.

    Google Scholar 

  • Couturier, S., Taylor, D., Siegert, F., Hoffmann, A., & Bao, M. Q. (2001) ERS SAR backscatter. A potential real-time indicator of the proneness of modified rainforests to fire. Remote Sensing of Environment, 46, 410–417.

    Google Scholar 

  • Csiszar, I., Denis, L., Giglio, L., Justice, C. O., & Hewson, J. (2005) Global fire activity from two years of MODIS data. International Journal of Wildland Fire, 14, 117–130.

    Google Scholar 

  • Csiszar, I. A., Morisette, J. T., & Giglio, L. (2006) Validation of active fire detection from moderate-resolution satellite sensors: The MODIS example in Northern Eurasia. IEEE Transactions on Geoscience and Remote Sensing, 44, 1757–1764.

    Google Scholar 

  • Danson, F. M., & Bowyer, P. (2004) Estimating live fuel moisture content from remotely sensed reflectance. Remote Sensing of Environment, 92, 309–321.

    Google Scholar 

  • De Santis, A., & Chuvieco, E. (2007) Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models. Remote Sensing of Environment, doi:10.1016/j.rse.2006.1011.1022.

    Google Scholar 

  • De Santis, A., Vaughan, P., & Chuvieco, E. (2006) Foliage moisture content estimation from 1-D and 2-D spectroradiometry for fire danger assessment. Journal of Geophysical Research – Biosciences, 111, doi:10.1029/2005JG000149.

    Google Scholar 

  • Deeming, J. E., Burgan, R. E., & Cohen, J. D. (1978) The national fire-danger rating system – 1978. Ogden, UT: USDA Forest Service, GTR INT-39..

    Google Scholar 

  • Dennison, P. E., Roberts Dar, A., Peterson, S. H., & Rechel, J. (2005) Use of normalized difference water index for monitoring live fuel moisture content. International Journal of Remote Sensing, 26, 1035–1042.

    Google Scholar 

  • DíazDelgado, R., Pons, X., & Lloret, F. (2001) Fire severity effects on vegetation recovery after fire. The Bigues I Riells wildfire case study. In E. Chuvieco & M. P. Martín (Eds.), Third International workshop on remote sensing and gis applications to forest fire management. New methods and sensors (pp. 152–155). Paris: EARSeL.

    Google Scholar 

  • Dimitrakopoulos, A., & Papaioannou, K. K. (2001) Flammability assessment of Mediterranean forest fuels. Fire Technology, 37, 143–152.

    Google Scholar 

  • Dobson, J. E., Bright, E. A., Coleman, P. R., Purfee, R. C., & Worley, B. A. (2000) Landscan: A global population database for estimating populations at risk. Photogrammetric Engineering and Remote Sensing, 66, 849–857.

    Google Scholar 

  • Dozier, J. (1981) A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sensing of Environment,11, 221.

    Google Scholar 

  • Dwyer, E., Pereira, J. M. C., Grégorie, J.-M., & DaCamara, C. C. (2000) Characterization of the spatio-temporal patterns of global fire activity using satellite imagery for the period April 1992 to March 1993. Journal of Biogeography, 27, 57–69.

    Google Scholar 

  • Eidenshink, J. C., & Faundeen, J. L. (1994) The 1 km AVHRR Global Land Data Set – 1st Stages in implementation. International Journal of Remote Sensing, 15, 3443–3462.

    Google Scholar 

  • Elvidge, C. D. (2001) DMSP-OLS estimation of tropical forest area impacted by surface fires in Roraima, Brazil: 1995 versus 1998. International Journal of Remote Sensing, 22, 2661–2673.

    Google Scholar 

  • Epting, J., Verbyla, D. L., & Sorbel, B. (2005) Evalation of remotely senses indices for assessing burn severity in interior Alaska using Landsat TM and ETM+. Remote Sensing of Environment, 96, 328–339.

    Google Scholar 

  • Everitt, J. H., & Nixon, P. R. (1986) Canopy Reflectance of two drought-stressed shrubs. Photogrammetric Engineering and Remote Sensing, 52, 1189–1192.

    Google Scholar 

  • Fazakas, Z., Nilsson, M., & Olsson, H. (1999) Regional forest biomass and wood volume estimation using satellite data and ancillary data. Agricultural and Forest Meteorology, 98–99, 417–425.

    Google Scholar 

  • Fearnside, P. M., Lima de Alencastro Graça, P. M., & Alves Rodriguez, F. J. (2001) Burning of Amazonian rainforests: Burning efficiency and charcoal formation in forest cleared for cattle pasture near Manaus, Brazil. Forest Ecology and Management, 146, 115–128.

    Google Scholar 

  • Ferek, R. J., Reid, J. S., Hobbs, P. V., Blake, D. R., & Liousse, C. (1998) Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil. Journal of Geophysical Research-Atmosphere, 103, 32107–32118.

    Google Scholar 

  • Ferrare, R. A., Fraser, R. S., & Kaufman, Y. J. (1990) Satellite measurements of large-scale air pollution: Measurements of forest fire smoke. Journal of Geophysical Research, 95, 9911–9925.

    Google Scholar 

  • Flannigan, M. D., & Vonder Haar, T. H. (1986) Forest fire monitoring using NOAA satellite AVHRR. Canadian Journal of Forest Research, 16, 975–982.

    Google Scholar 

  • Flasse, S. P., & Ceccato, P. (1996) A contextual algorithm for AVHRR fire detection. International Journal of Remote Sensing, 17, 419–424.

    Google Scholar 

  • Fourty, T., & Baret, F. (1997) Vegetation water and dry matter contents estimated from top-of-the atmosphere reflectance data: A simulation study. Remote Sensing of Environment, 61, 34–45.

    Google Scholar 

  • França, H., & Setzer, A. W. (2001) AVHRR analysis of a savanna site through a fire season in Brazil. International Journal of Remote Sensing, 22, 2449–2461.

    Google Scholar 

  • Fraser, R. H., Li, Z., & Cihlar, J. (2000) Hotspot and NDVI Differencing Synergy (HANDS): A new technique for burned area mapping over boreal forest. Remote Sensing of Environment, 74, 362–376.

    Google Scholar 

  • Friedl, M. A., McIver, D. K., Hodges, J. C. F., Zhang, X. Y., Muchoney, D., & Strahler, A. H., et al. (2002) Global land cover mapping from MODIS: Algorithms and early results. Remote Sensing of Environment, 83, 287–302.

    Google Scholar 

  • Fuller, D. O., & Fulk, M. (2000) Comparison of NOAA-AVHRR and DMSP-OLS for operational fire monitoring in Kalimantan, Indonesia. International Journal of Remote Sensing, 21, 181–187.

    Google Scholar 

  • García Haro, F. J., Gilabert, M. A., & Meliá, J. (2001) Monitoring fire-affected areas using Thematic Mapper data. International Journal of Remote Sensing, 22, 533–549.

    Google Scholar 

  • Garcia, M., & Chuvieco, E. (2004) Assessment of the potential of SAC-C/MMRS imagery for mapping burned areas in Spain. Remote Sensing of Environment, 92, 414–423.

    Google Scholar 

  • Giglio, L., Csiszar, I., & Justice, C. O. (2006a). Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. Journal of Geophysical Research-Biogeosciences, 111, doi:10.1029/2005JG000142.

    Google Scholar 

  • Giglio, L., Descloitres, J., Justice, C. O., & Kauffmam, J. B. (2003a). An enhanced contextual fire detection algorithm for MODIS. Remote Sensing of Environment, 87, 273–282.

    Google Scholar 

  • Giglio, L., Kendall, J. D., & Mack, R. (2003b). A multi-year active fire dataset for the tropics derived from the TRMM VIRS. International Journal of Remote Sensing, 24, 4505–4525.

    Google Scholar 

  • Giglio, L., van der Werf, G. R., Randerson, J. T., Collatz, G. J., & Kasibhatla, P. S. (2006b). Global estimation of burned area using MODIS active fire observations. Atmospheric Chemistry and Physics, 6, 957–974.

    Google Scholar 

  • Gillon, D., Dauriac, F., Deshayes, M., Vallette, J. C., & Moro, C. (2004) Estimation of foliage moisture content using near infrared reflectance spectroscopy. Agricultural and Forest Meteorology, 124, 51–62.

    Google Scholar 

  • Grégoire, J. M., Cahoon, D. R., Stroppiana, D., Li, Z., Pinnock, S., & Eva, H., et al. (2001) Forest fire monitoring and mapping for GOFC: Current products and information networks based on NOAA-AVHRR, ERS-ATSR, and SPOT-VGT systems. In F. Ahern, J. Goldammer & C. O. Justice (Eds.), Global and regional fire monitoring from space: Planning a coordinated international effort (pp. 105–124). The Hague: SPB Academic.

    Google Scholar 

  • Hao, W. M., Ward, D. E., Olbu, G., & Baker, S. P. (1996) Emissions of CO2, CO, and Hydrocarbons from fires in diverse african savanna ecosystems. Journal Of Geophysical Research-Atmospheres, 101, 23577–23584.

    Google Scholar 

  • Harding, D. J., & Carabajal, C. C. (2005) ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure. Geophysical Research Letters, 32, doi: 10.1029/2005GL023471, 023474

    Google Scholar 

  • Hardy, C. C., & Burgan, R. E. (1999) Evaluation of NDVI for monitoring live moisture in three vegetation types of the Western U.S. Photogrammetric Engineering and Remote Sensing, 65, 603–610.

    Google Scholar 

  • Hirsch, K. G. (1996) Canadian Forest Fire Behavior Prediction (FBP) System : User’s guide. Edmonton, Canada: Northern Forestry Centre.

    Google Scholar 

  • Hirsch, S. N., Kruckeberg, R. F., & Madden, F. H. (1971) The bispectral forest detection system. In, 7th Inter. Symp. on Remote Sensing of Environment (pp. 2253–2259). Ann Arbor, MI.

    Google Scholar 

  • Hoffa, E. A., Ward, D. E., Hao, W. M., Susott, R. A., & Wakimoto, R. H. (1999) Seasonality of carbon emissions from biomass burning in a Zambian savanna. Journal of Geophysical Research-Atmosphere, 104, 13841–13853.

    Google Scholar 

  • Holben, B. N., Schutt, J. B., & McMurtrey, J. (1983) Leaf water stress detection utilizing thematic mapper bands 3, 4 and 5 in soybean plants. International Journal of Remote Sensing, 4, 289–297.

    Google Scholar 

  • Houghton, R. A. (2005) Tropical deforestation as a source of greenhouse gas emisions. In P. Moutinho & S. Schwartzman (Eds.), Tropical deforestation and climate change (pp. 13–21). Belem: Amazon Institute for Environmental Research.

    Google Scholar 

  • Houghton, R. A., Boone, R. D., Melillo, J. M., Palm, C. A., Woodwell, G. M., & Myers, N., et al. (1985) Net flux of carbon dioxide from tropical forests in 1980. Nature, 316, 617–620.

    Google Scholar 

  • Hunt, E. R., Rock, B. N., & Nobel, P. S. (1987) Measurement of leaf relative water content by infrared reflectance. Remote Sensing of Environment, 22, 429–435.

    Google Scholar 

  • Hyyppa, J., Hyyppa, H., Inkinen, M., Engdahl, M., Linko, S., & Zhu, Y. H. (2000) Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. Forest Ecology and Management, 128, 109–120.

    Google Scholar 

  • Jackson, R. D., Idso, S. B., Reginato, R. J., & Pinter, P. J. (1981) Canopy temperature as a crop water stress indicator. Water Resources Research, 17, 1133–1138.

    Google Scholar 

  • Jain, T. B., Pilliod, D., & Graham, R. T. (2004) Tongue-tied. Confused meanings for common fire terminology can lead to fuels mismanagement. A new framework is needed to clarify and communicate the concepts. Wildfire, 4, 22–26.

    Google Scholar 

  • Jakubauskas, M. E., Lulla, K. P., & Mausel, P. W. (1990) Assessment of vegetation change in a fire-altered forest landscape. Photogrammetric Engineering and Remote Sensing, 56, 371–377.

    Google Scholar 

  • Johnson, E. A., & Miyanishi, K. (2001) Forest fires: Behavior and ecological effects. San Diego, Calif.: Academic Press.

    Google Scholar 

  • Jones, D. A. (1992) Nomenclature of hazard and risk assessment in the process industries. Rugby, Warwickshire, UK: Institution of Chemical Engineers.

    Google Scholar 

  • Justice, C. O., Giglio, L., Korontzi, S., Owens, J., Morisette, J. T., & Roy, D., et al. (2002a). The MODIS fire products. Remote Sensing of Environment, 83, 244–262.

    Google Scholar 

  • Justice, C. O., Townshend, J. R. G., Vermote, E. F., Masuoka, E., Wolfe, R. E., & Saleous, N., et al. (2002b). An overview of MODIS Land data processing and product status. Remote Sensing of Environment, 83, 3–15.

    Google Scholar 

  • Kasischke, E., & French, N. H. (1995) Locating and estimating the areal extent of wildfires in Alaskan boreal forest using multiple-season AVHRR NDVI composite data. Remote Sensing of Environment, 51, 263–275.

    Google Scholar 

  • Kasischke, E. S., Melack, J. M., & Dobson, M. C. (1997) The use of imaging radars for ecological applications – A review. Remote Sensing of Environment, 59, 141–156.

    Google Scholar 

  • Kasischke, E. S., & Turetsky, M. R. (2006) Recent changes in the fire regime across the North American boreal region – Spatial and temporal patterns of burning across Canada and Alaska. Geophysical Research Letters, 33, 1–5.

    Google Scholar 

  • Kaufman, Y. J., Setzer, A., Ward, D., Tanre, D., Holben, B. N., Menzel, P., et al. (1992) Biomass burning airborne and spaceborne experiment in the Amazonas (Base-A). Journal of Geophysical Research, 97, 14581–14599.

    Google Scholar 

  • Kennedy, P. J., Belward, A. S., & Grégoire, J. M. (1994) An improved approach to fire monitoring in West Africa using AVHRR data. International Journal of Remote Sensing, 15, 2235–2255.

    Google Scholar 

  • Key, C. (2005) Remote Sensing sensitivity fo fire severity and fire recovery. In J. Riva, F. Pérez-Cabello & E. Chuvieco (Eds.), Proceedings of the 5th International Workshop on Remote Sensing and GIS applications to Forest Fire Management: Fire Effects Assessment (pp. 29–39). Zaragoza: Universidad de Zaragoza, GOFC-GOLD, EARSeL.

    Google Scholar 

  • Key, C., & Benson, N. (2002) Landscape Assessment, in Fire effects monitoring (FireMon) and inventory protocol: integration of standardized field data collection techniques and sampling design with remote sensing to assess fire effects. In, NPS-USGS National Burn Severity Mapping Project.

    Google Scholar 

  • Key, C. H., & Benson, N. (2004) Ground Measure of Severity: The Composite Burn Index. FIREMON Landscape Assessment V4. http://burnseverity.cr.usgs.gov/methodology.asp

    Google Scholar 

  • Korontzi, S., Roy, D. P., Justice, C. O., & Ward, D. E. (2004) Modeling and sensitivity analysis of fire emissions in southern Africa during SAFARI 2000. Remote Sensing of Environment, 92, 255–275.

    Google Scholar 

  • Koutsias, N., Karteris, M., Fernández, A., Navarro, C., Jurado, J., Navarro, R., & Lobo, A. (1999) Burnt land mapping at local scale. In E. Chuvieco (Ed.), Remote sensing of large wildfires in the european mediterranean basin (pp. 123–138). Berlin: Springer-Verlag.

    Google Scholar 

  • Langaas, S. (1992) Temporal and spatial distribution of Savanna fires in Senegal and the Gambia, West Africa, 1989–1990, derived from multi-temporal AVHRR night images. International Journal of Wildland Fire, 2, 21–36.

    Google Scholar 

  • Leblon, B., Kasischke, E. S., Alexander, M. E., Doyle, M., & Abbott, M. (2002) Fire danger monitoring using ERS-1 SAR images in the case of northern boreal forests. Natural Hazards 27, 231–255.

    Google Scholar 

  • Lefsky, M. A., Harding, D. J., Keller, M., Cohen, W. B., Carabajal, C. C., & Espirito-Santo, F. D. et al. (2005) Estimates of forest canopy height and aboveground biomass using ICESat. Geophysical Research Letters, 32, doi:10.1029/2005GL023971.

    Google Scholar 

  • Lentile, L. B., Holden, Z. A., Smith, A. M. S., Falkowski, M. J., Hudak, A. T., & Morgan, P. et al. (2006) Remote sensing techniques to assess active fire characteristics and post-fire effects. International Journal of Wildland Fire, 15, 319–345.

    Google Scholar 

  • Levine, J. S. (2000) Global biomass burning: A case study of the looseness-1 gaseous and particulate emissions released to the atmosphere during the 1997 Fires in Kalimantan and Sumatra, Indonesia. In J. L. Innes, M. Beniston & M. M. Verstraete (Eds.), Biomass burning and its inter-relationships with the climate system (pp. 15–31). Dordrecht – Boston – London: Kluwer Academic Publishers.

    Google Scholar 

  • Li, R. R., Kaufman, Y. J., Hao, W. M., Salmon, J. M., & Gao, B. C. (2004) A technique for detecting burn scars using MODIS Data. IEEE Transactions on Geoscience and Remote Sensing, 42, 1300–1308.

    Google Scholar 

  • Li, Z., Nadon, S., & Cihlar, J. (2000) Satellite-based detection of Canadian boreal forest fires: Development and application of the algorithm. International Journal of Remote Sensing, 21, 3057–3069.

    Google Scholar 

  • Liousse, C., Andreae, M. O., Artaxo, P., Barbosa, P., Cachier, H., & Grégoire, J. M. et al. (2004) Deriving global quantitative estimates for spatial and temporal distributions of biomass burning emissions. In C. Granier, P. Artaxo & C. E. Reeves (Eds.), Emissions of atmospheric trace compounds (pp. 77–120). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • López García, M. J., & Caselles, V. (1991) Mapping burns and natural reforestation using thematic mapper data. Geocarto International, 1, 31–37.

    Google Scholar 

  • Maggi, M., & Stroppiana, D. (2002) Advantages and drawbacks of NOAA–AVHRR and SPOT–VGT for burnt area mapping in a tropical savanna ecosystem. Canadian Journal of Remote Sensing, 28, 231–245.

    Google Scholar 

  • Malingreau, J. P., Stevens, G., & Fellows, L. (1985) Remote sensing of forest fires: Kalimantan and North Borneo in 1982–1983. Ambio, 14, 314–321.

    Google Scholar 

  • Martín, M. P., Ceccato, P., Flasse, S., & Downey, I. (1999) Fire detection and fire growth monitoring using satellite data. In E. Chuvieco (Ed.), Remote sensing of large wildfires in the european mediterranean basin (pp. 101–122). Berlin: Springer-Verlag.

    Google Scholar 

  • Martín, M. P., & Chuvieco, E. (1995) Mapping and evaluation of burned land from multitemporal analysis of AVHRR NDVI images. EARSeL Advances in Remote Sensing, 4(3), 7–13.

    Google Scholar 

  • Martín, M. P., Díaz Delgado, R., Chuvieco, E., & Ventura, G. (2002) Burned land mapping using NOAA-AVHRR and TERRA-MODIS. In D. X. Viegas (Ed.), IV International conference on forest fire research. 2002 Wildland fire safety summit (p. 45). Luso, Coimbra, Portugal: Millpress.

    Google Scholar 

  • Martínez, S., Tourné, I., Gonzalo de Grado, J., & Casanova, J. L. (2000) Programa FUEGO: Detección y seguimiento de incendios desde el espacio. In IX Simposio Latinoamericano de Percepción Remota. Iguazú.

    Google Scholar 

  • Matson, M., & Holben, B. (1987) Satellite detection of tropical burning in Brazil. International Journal of Remote Sensing, 8, 509–516.

    Google Scholar 

  • Matson, M., Schneider, S. R., Aldridge, B., & Satchwell, B. (1984) Fire detection using the NOAA-Series satellites. Washington, DC: NOAA, NESDIS 7.

    Google Scholar 

  • Matson, M., Stephens, G., & Robinson, J. (1987) Fire detection using data from the NOAA-N satellites. International Journal of Remote Sensing, 8, 961–970.

    Google Scholar 

  • Merrill, D. F., & Alexander, M. E. (1987) Glossary of forest fire management terms. Ottawa: National Research Council of Canada, Committee for Forest Fire Management.

    Google Scholar 

  • Miller, H. J., & Yool, S. R. (2002) Mapping forest post-fire canopy consumption in several overstory types using multi-temporal Landsat TM and ETM data. Remote Sensing of Environment, 82, 481–496.

    Google Scholar 

  • Minick, G. R., & Shain, W. A. (1981) Comparison of satellite imagery and conventional aerial photography in evaluating a large forest fire. In Seventh International Symposium Machine Processing of Remotely Sensed Data (pp. 544–546). West Lafayette.

    Google Scholar 

  • Mollicone, D., Eva, H. D., & Achard, F. (2006). Human role in Russian wild fires. Nature, 440, 436–437.

    Google Scholar 

  • Moran, M. S., Clarke, T. R., Inoue, Y., & Vidal, A. (1994) Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment, 49, 246–263.

    Google Scholar 

  • Moreno, J. M., & Oechel, W. C. (1989) A simple method for estimating fire intensity after a burn in California Chaparral. Acta Ecologica (Ecologia plantarum), 10, 57–68.

    Google Scholar 

  • Morisette, J. T., Giglio, L., Csiszar, I., & Justice, C. O. (2005) Validation of the MODIS active fire product over Southern Africa with ASTER data. International Journal of Remote Sensing, 26, 4239–4264.

    Google Scholar 

  • Morisette, J. T., Privette, J. L., & Justice, C. O. (2002) A framework for the validation of MODIS Land products. Remote Sensing of Environment, 83, 77–96.

    Google Scholar 

  • Morsdorf, F., Meier, E., Kotz, B., Itten, K. I., Dobbertin, M., & Allgower, B. (2004) LIDAR-based geometric reconstruction of boreal type forest stands at single tree level for forest and wildland fire management. Remote Sensing of Environment, 92, 353–362.

    Google Scholar 

  • Morton, D., DeFries, R., Giglio, L., Schroeder, W., Csiszar, I., & Morisette, J. et al. (2006) Distinguishing between conversion and maintenance fires in the Amazon. In Tenth LBA-ECO Science Team Meeting. Brasilia, Brazil.

    Google Scholar 

  • Nelson, R. M. (2001) Water relations of forest fuels. In E. A. Johnson & K. Miyanishi (Eds.), Forest fires : Behavior and ecological effects (pp. 79–149). San Diego, Calif.: Academic Press.

    Google Scholar 

  • Omi, P. N. (2005) Forest fires : A reference handbook. Santa Barbara, Calif.: ABC-CLIO.

    Google Scholar 

  • PalaciosOrueta, A., Chuvieco, E., Parra, A., & Carmona-Moreno, C. (2005) Biomass burning emissions: A review of models using remote-sensing data. Environmental Monitoring and Assessment, 104, 189–209.

    Google Scholar 

  • PalaciosOrueta, A., Parra, A., Chuvieco, E., & Carmona, C. (2004) Remote sensing and geographic information system methods for global spatiotemporal modelling of biomass burning emissions: Assessment in the African continent. Journal of Geophysical Research – Atmospheres, 109, 1–12.

    Google Scholar 

  • Paltridge, G. W., & Barber, J. (1988) Monitoring grassland dryness and fire potential in Australia with NOAA/AVHRR data. Remote Sensing of Environment, 25, 381–394.

    Google Scholar 

  • Parra, A., & Chuvieco, E. (2005) Assessing burn severity using Hyperion data. In J. Riva, F. Pérez-Cabello & E. Chuvieco (Eds.), Proceedings of the 5th International workshop on remote sensing and GIS applications to Forest Fire Management: Fire Effects Assessment (pp. 239–244). Paris: Universidad de Zaragoza, GOFC-GOLD, EARSeL.

    Google Scholar 

  • Peñuelas, J., Piñol, J., Ogaya, R., & Filella, I. (1997) Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). International Journal of Remote Sensing, 18, 2869–2875.

    Google Scholar 

  • Pereira, J. M. C. (1999) A comparative evaluation of NOAA/AVHRR Vegetation indexes for burned surface detection and mapping. IEEE Transactions on Geoscience and Remote Sensing, 37, 217–226.

    Google Scholar 

  • Pereira, J. M. C., Mota, B., Privette, J. L., Caylor, K. K., Silva, J. M. N., Sa, A. C. L., & Ni-Meister, W. (2004) A simulation analysis of the detectability of understory burns in miombo woodlands. Remote Sensing of Environment, 93, 296–310.

    Google Scholar 

  • Pereira, J. M. C., Sa, A. C. L., Sousa, A. M. O., Silva, J. M. N., Santos, T. N., & Carreiras, J. M. B. (1999) Spectral characterisation and discrimination of burnt areas. In E. Chuvieco (Ed.), Remote sensing of large wildfires in the European mediterranean basin (pp. 123–138). Berlin: Springer-Verlag.

    Google Scholar 

  • Pérez, B., & Moreno, J. (1998) Methods for quantifying fire severity in shrubland-fires. Plant Ecology, 139, 91–101.

    Google Scholar 

  • Peters, A. J., WalterShea, E. A., Ji, L., Viña, A., Hayes, M., & Svodoba, M. D. (2002) Drought monitoring with NDVI-based standardized vegetation index. Photogrammetric Engineering and Remote Sensing, 62, 71–75.

    Google Scholar 

  • Piccolini, I., & Arino, O. (2000) Towards a global burned surface world Atlas. Earth Observation Quartely, 65, 14–18.

    Google Scholar 

  • Pinnock, S., & Grégoire, J. M. (Eds.). (1999) World fire web: A global fire observation system. Luxembourg: Publications of the European Communities.

    Google Scholar 

  • Price, J. C. (2003) Comparing MODIS and ETM+ data for regional and global land clasification. Remote Sensing of Environment, 86, 491–499.

    Google Scholar 

  • Prins, E. M., Feltz, J. M., Menzel, W. P., & Ward, D. E. (1998) An overview of GOES-8 diurnal fire and smoke results for SCAR-B and 1995 fire season in South America. Journal of Geophysical Research, 103, 31821–31836.

    Google Scholar 

  • Prins, E. M., & Menzel, W. P. (1992) Geostationary satellite detection of biomass burning in South America. International Journal of Remote Sensing, 13, 2783–2799.

    Google Scholar 

  • Pyne, S. J. (1995) World fire. The culture of fire on earth. Seattle and London: University of Washington Press.

    Google Scholar 

  • Radeloff, V. C., Hammer, R. B., Stewart, S. I., Fried, J. S., Holcomb, S. S., & McKeefry, J. F. (2005) The wildland-urban interface in the United States. Ecological Applications, 15, 799–805.

    Google Scholar 

  • Randerson, J. T., Liu, H., Flanner, M. G., Chambers, S. D., Jin, Y., & Hess, P. G. et al. (2006) The impact of boreal forest fire on climate warming. Science, 314, 1130–1132.

    Google Scholar 

  • Randerson, J. T., van der Werf, G. R., Collatz, G. J., Giglio, L., Still, C. J., & Kasibhatla, P. et al. (2005) Fire emissions from C 3 and C 4 vegetation and their influence on interannual variability of atmospheric CO 2 and D13 CO2. Global Biogeochemical Cycles, 19, doi:10.1029/2004GB002366.

    Google Scholar 

  • Randriambelo, T., Baldy, S., & Bessafi, M. (1998) An improved detection and characterization of active fires and smoke plumes in south-eastern Africa and Madagascar. International Journal of Remote Sensing, 19, 2623–2638.

    Google Scholar 

  • Ranson, K. J., Sun, G., Kharuk, V. I., & Kovacs, K. (2001) Characterization of forests in Western Sayani Mountains, Siberia from SIR-C SAR data. Remote Sensing of Environment, 75, 188–200.

    Google Scholar 

  • Riaño, D., Chuvieco, E., Condés, S., GonzálezMatesanz, J., & Ustin, S. L. (2004) Generation of crown bulk density for Pinus sylvestris L. from lidar. Remote Sensing of Environment, 92, 345–352.

    Google Scholar 

  • Riaño, D., Chuvieco, E., Salas, J., PalaciosOrueta, A., & Bastarrica, A. (2002) Generation of fuel type maps from Landsat TM images and ancillary data in Mediterranean ecosystems. Canadian Journal of Forest Research, 32, 1301–1315.

    Google Scholar 

  • Riaño, D., Chuvieco, E., Ustin, S. L., Salas, J., Rodríguez-Pérez, J. R., & Ribeiro, L. M. et al. (2007a). Estimation of shrub height for fuel type mapping combining airborne LiDAR and simultaneous color infrared ortho image. International Journal of Wildland Fire, 16, 341–348.

    Google Scholar 

  • Riaño, D., Meier, E., Allgöwer, B., Chuvieco, E., & Ustin, S. L. (2003) Modeling airborne laser scanning data for the spatial generation of critical forest parameters in fire behavior modeling. Remote Sensing of Environment, 86, 177–186.

    Google Scholar 

  • Riaño, D., Ruiz, J. A. M., Isidoro, D., Ustin, S. L., & Riaño, D. (2007b). Global spatial patterns and temporal trends of burned area between 1981 and 2000 using NOAA-NASA Pathfinder. Global Change Biology, 13, 40–50, doi: 10.1111/j.1365–2486.2006.01268.

    Google Scholar 

  • Riaño, D., Vaughan, P., Chuvieco, E., ZarcoTejada, P., & Ustin, S. L. (2005) Estimation of fuel moisture content by inversion of radiative transfer models to simulate equivalent water thickness and dry matter content: Analysis at leaf and canopy level. IEEE Transactions on Geoscience and Remote Sensing, 43, 819–826.

    Google Scholar 

  • Roberts, D. A., Peterson, S., Dennison, P. E., Sweeney, S., & Rechel, J. (2006) Evaluation of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Moderate Resolution Imaging Spectrometer (MODIS) measures of live fuel moisture and fuel condition in a shrubland ecosystem in southern California. Journal of Geophysical Research, 111, G04S02, doi:10.1029/2005JG000113.

    Google Scholar 

  • Rogan, J., & Franklin, J. (2001) Mapping wildfire burn severity in Southern California Forests and shrublands using enhanced Thematic Mapper imagery. Geocarto International, 16, 89–99.

    Google Scholar 

  • Rollins, M. G., Keane, R. E., & Parsons, R. A. (2004) Mapping fuels and fire regimes using remote sensing, ecosystem simulation, and gradient modeling. Ecological Applications, 14, 75–95.

    Google Scholar 

  • Roy, D., Frost, P., Justice, C., Landmann, T., Roux, J., & Gumbo, K. et al. (2005a). The Southern Africa Fire Network (SAFNet) regional burned area product validation protocol. International Journal of Remote Sensing, 26, 4265–4292.

    Google Scholar 

  • Roy, D., Jin, Y., Lewis, P., & Justice, C. (2005b). Prototyping a global algorithm for systematic fire-affected area mapping using MODIS time series data. Remote Sensing of Environment, 97, 137–162.

    Google Scholar 

  • Roy, D., & Landmann, T. (2005) Characterizing the surface heterogeneity of fire effects using multi-temporal reflective wavelength data. International Journal of Remote Sensing, 26, 4197–4218.

    Google Scholar 

  • Roy, D., Lewis, P. E., & Justice, C. O. (2002) Burned area mapping using multi-temporal moderate spatial resolution data—a bi-directional reflectance model-based expectation approach. Remote Sensing of Environment, 83, 263–286.

    Google Scholar 

  • Roy, D. P., Boschetti, L., & Trigg, S. N. (2006) Remote sensing of fire severity: Assessing the performance of the normalized burn ratio. IEEE Transactions on Geoscience and Remote Sensing, 3, 112–116.

    Google Scholar 

  • Roy, D. P., Giglio, L., Kendall, J. D., & Justice, C. O. (1999) Multi-temporal active-fire based burn scar detection algorithm. International Journal of Remote Sensing, 20, 1031–1038.

    Google Scholar 

  • Sá, A. C. L., Silva, J. M. N., Pereira, J. M. C., & Vasconcelos, M. J. (2001) Burned area detection in the Miombo of Northern Mozambique using MODIS and Landsat Data. In E. Chuvieco & M. P. Martín (Eds.), Third international workshop on remote sensing and GIS applications to Forest Fire Management. New methods and sensors (pp. 156–160). Paris: EARSeL.

    Google Scholar 

  • Salvador, R., Valeriano, J., Pons, X., & Díaz-Delgado, R. (2000) A semi-automatic methodology to detect fire scars in shrubs and evergreen forests with Landsat MSS time series. International Journal of Remote Sensing, 21, 655–671.

    Google Scholar 

  • Sandholt, I., Rasmussen, K., & Andersen, J. (2002) A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment, 79, 213–224.

    Google Scholar 

  • Saunders, R. W., & Kriebel, K. T. (1988) An improved method for detecting clear sky and cloudy radiances from AVHRR data. International Journal of Remote Sensing, 9, 123–150.

    Google Scholar 

  • Seiler, W., & Crutzen, P. J. (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change, 2, 207–247.

    Google Scholar 

  • Setzer, A. W., & Pereira, M. C. (1991) Operational detection of fires in Brazil with NOAA-AVHRR. In Twenty-fourth. International Symp. on Remote Sensing of Environment (pp. 469–482). Rio de Janeiro.

    Google Scholar 

  • Siljeström, P., & Moreno, A. (1995) Monitoring burnt areas by principal components analysis of multi-temporal TM data. International Journal of Remote Sensing, 16, 1577–1587.

    Google Scholar 

  • Simon, M., Plummer, S., Fierens, F., Hoelzemann, J. J., & Arino, O. (2004) Burnt area detection at global scale using ATSR-2: The GLOBSCAR products and their qualification. Journal of Geophysical Research – Atmospheres, 109, D14S02, doi:10.1029/2002JD003622, 1–16.

    Google Scholar 

  • Sims, D. A., & Gamon, J. A. (2003) Estimation of vegetation water content and photosynthetic tissue area from spectral reflectance: A comparison of indices based on liquid water and chlorophyll absorption features. Remote Sensing of Environment, 84, 526–537.

    Google Scholar 

  • Skole, D., & Tucker, C. (1993) Tropical deforestation and habitat fragmentation in the Amazon. Satellite data from 1978 to 1988. Science, 260, 1905–1910.

    Google Scholar 

  • Sousa, A. M. O., Pereira, J. M. C., & Silva, J. M. N. (2003) Evaluating the performance of multitemporal image compositing algorithms for burned area analysis. International Journal of Remote Sensing, 24, 1219–1236.

    Google Scholar 

  • Souza, C. M., Roberts, D. A., & Cochrane, M. A. (2005) Combining spectral and spatial information to map canopy damage from selective logging and forest fires. Remote Sensing of Environment, 98, 329–343.

    Google Scholar 

  • Spencer, J. E. (1966) Shifting cultivation in Southeastern Asia. Berkeley: University of California Press.

    Google Scholar 

  • Stow, D., Niphadkar, M., & Kaiser, J. (2005) MODIS-derived visible atmospherically resistant index for monitoring chaparral moisture content. International Journal of Remote Sensing, 26, 3867–3873.

    Google Scholar 

  • Stroppiana, D., Brivio, P. A., & Grégorie, J.-M. (2000a). Modelling the impact of vegetation fires, dectected from NOAA-AVHRR data, on tropospheric chemistry in Tropical Africa. In J. L. Innes, M. Beniston & M. M. Verstraete (Eds.), Biomass burning and its inter-relationships with the climate system (pp. 193–213). Dordrecht, Boston, London: Kluwer Academic Publishers.

    Google Scholar 

  • Stroppiana, D., Pinnock, S., & Gregoire, J. M. (2000b). The global fire product: Daily fire occurrence from April 1992 to December 1993 derived from NOAA AVHRR data. International Journal of Remote Sensing, 21, 1279–1288.

    Google Scholar 

  • Sukhinin, A. I., French, N. H. F., Kasischke, E. S., Hewson, J. H., Soja, A. J., & Csiszar, I. A. et al. (2004) AVHRR-based mapping of fires in Russia: New products for fire management and carbon cycle studies. Remote Sensing of Environment, 93, 546–564.

    Google Scholar 

  • Tansey, K., Grégoire, J M., Stroppiana, D., Sousa, A., Silva, J., & Pereira, J. M. et al. (2004) Vegetation burning in the year 2000: Global burned area estimates from SPOT VEGETATION data. Journal of Geophysical Research – Atmospheres, 109, D14S03, doi:10.1029/2002JD003598, 2–22.

    Google Scholar 

  • Thompson, O. R., & Wehmanen, O. A. (1979) Using Landsat digital data to detect moisture stress. Photogrammetric Engineering and Remote Sensing, 45, 201–207.

    Google Scholar 

  • Tian, Q., Tong, Q., Pu, R., Guo, X., & Zhao, C. (2001) Spectroscopic determination of wheat water status using 1650–1850 nm spectral absorption features. International Journal of Remote Sensing, 22, 2329–2338.

    Google Scholar 

  • Toutin, T., & Amaral, S. (2000) Stereo RADARSAT data for canopy height in Brazilian forests. Canadian Journal of Remote Sensing, 26, 189–199.

    Google Scholar 

  • van der Werf, G. R., Randerson, J., T., Collatz, G. J., Giglio, L., Kasibhatla, P. S., & Arellano, A. F. et al. (2004) Continental Scale-partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period. Science, 303, 73–76.

    Google Scholar 

  • van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J., Kasibhatla, P. S., & Arellano, A. F. (2006) Interannual variability in global biomass burning emissions from 1997 to 2004. Atmospheric Chemistry and Physics, 6, 3423–3441.

    Article  Google Scholar 

  • van Wagtendonk, J. W., Root, R. R., & Key, C. H. (2004) Comparison of AVIRIS and Landsat ETM+ detection capabilities for burn severity. Remote Sensing of Environment, 92, 397–408.

    Google Scholar 

  • Van Wilgen, B. W. (1997) Fire in southern African savannas : Ecological and atmospheric perspectives. Johannesburg, South Africa: Witwatersrand University Press Thorold’s Africana Books [distributor].

    Google Scholar 

  • Vázquez, A., Cuevas, J. M., & González-Alonso, F. (2001) Comparison of the use of WiFS and LISS images to estimate the area burned in a large forest fire. International Journal of Remote Sensing, 22, 901–907.

    Google Scholar 

  • VegaGarcia, C., & Chuvieco, E. (2006) Applying local measures of spatial heterogeneity to Landsat-TM images for predicting wildfire occurrence in Mediterranean landscapes. Landscape Ecology, 21, 595–605.

    Google Scholar 

  • Venkataraman, C., Habib, G., Kadamba, D., Shrivastava, M., Leon, J. F., Crouzille, B., Boucher, O., & Streets, D. G. (2006) Emissions from open biomass burning in India: Integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data. Global Biogeochemical Cycles, 20. GB2013, doi: 2010.1029/2005GB002547

    Google Scholar 

  • Vidal, A., Pinglo, F., Durand, H., DevauxRos, C., & Maillet, A. (1994) Evaluation of a temporal fire risk index in Mediterranean forest from NOAA thermal IR. Remote Sensing of Environment, 49, 296–303.

    Google Scholar 

  • Wheatherspoon, C. P., & Skiner, C. N. (1995) An assessment of factors associate with damage to tree crowns from the 1987 wildfires in Northern California. Forest Science, 41, 430–451.

    Google Scholar 

  • White, J. D., Ryan, K. C., Key, C. C., & Running, S. W. (1996) Remote sensing of forest fire severity and vegetation recovery. International Journal of Wildland Fire, 6, 125–136.

    Google Scholar 

  • Yebra, M., Chuvieco, E., & Riaño, D. (2007) Estimation of live Fuel Moisture Content from MODIS images for fire risk assessment. Agricultural and Forest Meteorology, in press.

    Google Scholar 

  • ZarcoTejada, P. J., Rueda, C. A., & Ustin, S. L. (2003) Water content estimation in vegetation with MODIS reflectance data and model inversion methods. Remote Sensing of Environment, 85, 109–124.

    Google Scholar 

  • Zheng, D. L., Prince, S. D., & Wright, R. (2001) NPP Multi-Biome: Gridded estimates for selected regions worldwide, 1989–2001. Available on-line [http://www.daac.ornl.gov/]. Oak Ridge, Tennessee, U.S.A: Oak Ridge National Laboratory. Distributed Active Archive Center.

    Google Scholar 

  • Zhu, Z., & Evans, D. L. (1994) U.S. forest types and predicted percent forest cover from AVHRR data. Photogrammetric Engineering and Remote Sensing, 60, 525–531.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science + Business Media B.V.

About this chapter

Cite this chapter

Chuvieco, E. (2008). Satellite Observation of Biomass Burning. In: Chuvieco, E. (eds) Earth Observation of Global Change. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6358-9_6

Download citation

Publish with us

Policies and ethics