Advertisement

Role of Genetic Susceptibility in Environmental Exposure Induced Diseases

Conference paper
Part of the NATO Science for Peace and Security Series book series (NAPSC)

Inherited susceptibility due to a defective gene is a factor in a small percentage of people who develop cancer (<5 %), while induced susceptibility, which is due to the wide variation in individual responses to exogenous agents, is believed to result from the great diversity in responsiveness to risk factors in the environment. Interindividual variations in DNA repair capacity for specific types of DNA damage are documented.

Keywords

Nitric Oxide Chronic Granulomatous Disease Extracellular Superoxide Dismutase Familial Combine Hyperlipidemia Atherogenic Lipoprotein Phenotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adachi, T., Yamada, H., Yamada, Y., Morihara, N., Yamazaki. N., Murakami, T., Futenma, A., Kato, K., Hirano, K., 1996, Substitution of glycine for arginine-2.13 in extracellular-superoxide dismutase impairs affinity for heparin and endothelial cell surface. Biochem. J. 313: 235–239.Google Scholar
  2. Adams, J. and Cory, S., 1998, The Bcl-2 protein family: arbiters of cell survival. Science 281: 1322–1326.Google Scholar
  3. Aebersod, D., Burri, P., Beer, K., Laissue J., Djonov, V., Greiner, R., and Semenza G. L., 2001, Expression of hypoxia-inducible factor-1alpha: a novel predictive and prognostic parameter in the radiotherapy of oropharyngeal cancer. Cancer Res. 61(7): 2911–2916.Google Scholar
  4. Ahn, K., and Aggarwal, B., 2005, Transcription Factor NF-{kappa}B: A Sensor for Smoke and Stress Signals. Ann. NY Acad. Sci. 1056: 218–233.Google Scholar
  5. Alder, V., Yin, Z., Tew, K. D., and Ronai, Z., 1999, Role of redox potential and reactive oxygen species in stress signaling. Oncogene 18: 6104–6111.Google Scholar
  6. Allayee, H., Aouizerat, B., Cantor, R., Dallinge-Thie, G., Krauss, R., Lanning, C., Rotter, J., Lusis, A., and de Briun, T., 1998, Families with familial combined hyperlipidemia and families enriched for coronary artery disease share genetic determinants for the atherogenic lipoprotein phenotype. Am. J. Hum. Genet. 63(2): 577–585.Google Scholar
  7. Ambrosone, C., 2000, Oxidants and antioxidants in breast cancer. Antioxid. Redox Signal 2: 903–917.Google Scholar
  8. Ames, B., 1983, Dietary carcinogens and anticarcinogens, Science 121: 1250–1264.Google Scholar
  9. Amstad, P., and Cerutti, P., 1990, Genetic modulation of the cellular antioxidant defense capacity, Environ. Health Perspect. 88: 77–82.Google Scholar
  10. Artiukhov, V., Gusinskaia, V., and Mikhileva, E., 2005, Level of nitric oxide and tumor necrosis factor-alpha production by human blood neutrophils under UV-irradiation. Radiat. Biol. Radioecol. 45(5): 576–580.Google Scholar
  11. Attene-Ramos, M., Kitiphongspattana, K., Ishii-Schrade, K., and Gaskins, H., 2005, Temporal changes of multiple redox couples from proliferation to growth arrest in IEC-6 intestinal epithelial cells, Am. J. Physiol. Cell Physiol. 289(5): C1220–C1228.Google Scholar
  12. Au, W., Wilkinson, G., Tyring, S., Legator, M., El Zein, R., Hallberg, L., and Heo, M., 1996, Monitoring populations for DNA repair deficiency and for cancer susceptibility. Environ. Health Perspect. 104(Suppl 3): 579–584.Google Scholar
  13. Aupperle, K., Boyle, D., Hendrix, M., Seftor, E., Zvaifler, N., Barbosa, M., and Firestein, G., 1998, Regulation of synoviocyte proliferation, apoptosis, and invasion by the p53 tumor suppressor gene. Am. J. Pathol. 152: 1091–1098.Google Scholar
  14. Badawi, A., 1996, Molecular and genetic events in schistosomiasis-associated human bladder cancer: role of oncogenes and tumor suppressor genes. Cancer Lett. 105(2): 123–138.Google Scholar
  15. Baldwin A., 1996, The NF-BB and IBB Proteins: New Discoveries and Insights. Ann. Rev. Immunol. 14: 649–681.Google Scholar
  16. Ballinger, S., Patterson, C., Knight-Lozano, C., Burow, D. et al., 2002, Mitochondrial integrity and function in atherogenesis. Circulation 106: 544–549.Google Scholar
  17. Barazzone, C. and White, C., 2000, Mechanisms of cell injury and death in hyperoxia. Role of cytokines and Bcl-2 family proteins. Am. J. Resp. Cell Mol. Biol. 22: 517–519.Google Scholar
  18. Brennan, P., 2002, Gene–environment interaction and aetiology of cancer: what does it mean and how can we measure it? Carcinogenesis 23(3): 381–387.Google Scholar
  19. Boger, R. and Zoccali, G., 2003, ADMA: a novel risk factor that explains excess cardiovascular event rate in patients with end-stage renal disease. Atheroscler. Suppl. 4(4): 23–28.Google Scholar
  20. Bohr, V., Phillips, D., and Hanawalt, P., 1987, Heterogeneous DNA damage and repair in the mammalian genome. Cancer Res. 47: 6426–6436.Google Scholar
  21. Borm, M., van Bodegraven, A., Mulder, C., Kraal, G., Bouma, G., 2005, A NFKB1 promoter polymorphism is involved in susceptibility to ulcerative colitis. Int. J. Immunogenet. 32(6): 401.Google Scholar
  22. Bove, P. and van der Vilet, A., 2006, Nitric oxide and reactive nitrogen species in airway epithelial signaling and inflammation. Free Rad. Biol. Med. 41(4): 515–527.Google Scholar
  23. Busse, W. and Lemanske, R., 2001, Asthma. N. Engl. J. Med. 344: 350–362.Google Scholar
  24. Cabelof. D., Raffoul, J., Ge, Y., Van Remmen, H., Matherly, L., and Hedari, A., 2006, Age-related loss of the DNA repair response following exposure to oxidative stress. J. Gerontol. A Biol. Sci. Med. Sci. 61(5): 427–434.Google Scholar
  25. Cemerski, S., Cantagrl, A., Van Meerwijki, J., and Romagnoli, P., 2002. Immediate and delayed VEGF-mediated NO synthesis in endothelial cells: role of PI3K, PKC and PLC pathways. Br. J. Pharmacol. 137(7): 1021–1030.Google Scholar
  26. Cerutti, P., 1985, Prooxidant states and tumor promotion. Science 227: 375–381.Google Scholar
  27. Chen, L., Knutsen, S., Shavlik, D., Beeson W., Petersen, F., Ghamsary, M., and David, A., 2005, The association between fatal coronary heart disease and ambient particulate air pollution: are females at greater risk? Environ. Health. Perspect. 113 (12): 1723–1729.Google Scholar
  28. Cheng, S., Kuchiiwa, S., Ren, X., Gao, H., Kuchiiwa, T., and Nakagawa, S., 2003, Dioxin exposure down-regulates nitric oxide synthase and NADPH-diaphorase activities in the hypothalamus of Long-Evans rat. Neurosci. Lett. 345(1): 5–8.Google Scholar
  29. Cheng, S., Chen, Z., Siu, B., Ho, Y., Vincent R et al., 1998, Overexpression of MnSOD protects against myocardial ischemia/reperfusion injury in transgenic mice. J. Mol. Cell. Cardiol. 30: 2281–2289.Google Scholar
  30. Cory, S., 1995, Regulation of lymphocyte survival by the bcl-2 gene family. Annu. Rev. Immunol. 13: 513–543.Google Scholar
  31. Chi, C., Ozawa, T., and Anazi, T., 2006, In vivo nitric oxide production and iNOS expression in X-ray irradiated mouse skin. Biol. Pharm. Bull. 29(2): 348–353.Google Scholar
  32. Chu, G. and Chang, E., 1988, Xeroderma Pigmentosum Group E Cells Lack a Nuclear Factor that Binds to Damaged DNA, Science 242: 564–567.Google Scholar
  33. Chu, F., Esworthy, R., Chu, P., Longmate, J., Huycke, M., Wilczynski, S., and Doroshow, J., 2004, Bacteria-induced intestinal cancer in mice with disrupted Gpx1 and Gpx2 genes. Cancer Res. 64: 962–968.Google Scholar
  34. Chu, Y., Alwahdani, A., Iida, S., Lund, D., Faraci, F., and Heistad, D., 2005, Vascular effects of the human extracellular superoxide dismutase R213G variant. Circulation 112(7): 1047–1053.Google Scholar
  35. Clifford, S., Astuti, D., Hooper, L., Maxwell, P., Ratcliffe, P., and Maher E., 2001, The pVHL-associated SCF ubiquitin ligase complex: molecular genetic analysis of elongin Band C, Rbx1, and HIF-1 in renal cell carcinoma. Oncogene 20: 5067–5074.Google Scholar
  36. Clough, G., 1999, Role of nitric oxide in the regulation of microvascular perfusion in human skin in vivo. J. Physiol. 516: 549–557.Google Scholar
  37. Cosma, M., 2002, Ordered recruitment: gene-specific mechanism of transcription activation. Mol. Cell 10(2): 227–236.Google Scholar
  38. D’Angio, C., and Finkelstein, J., 2000, Oxygen regulation of gene expression: a study in opposites. Mol. Genet. Metab. 71: 371–380.Google Scholar
  39. Dahr, A., Young, M., and Colbum, N., 2002, The role of AP-1, NF-kappaB and ROS/NOS in skin carcinogenesis: the JB6 model is predictive. Mol. Cell Biochem. 234–235(1–2): 185–193.Google Scholar
  40. Dayal, S., Wilson, K., Leo, L., Aming, E., Bottiglieri, T., and Lentz, S., 2006, Enhanced susceptibility to arterial thrombosis in a murine model of hyperhomocysteinemia. Blood 108(7): 2237–2243.Google Scholar
  41. Ding, M., Shi, X., Castranova, V., and Vallyathan, V., 2000, Predisposing factors in occupational lung cancer: inorganic minerals and chromium. J. Environ. Pathol. Toxicol. Oncol. 19(1–2): 129–138.Google Scholar
  42. Dong, Z., 2002, The molecular mechanisms of arsenic-induced cell transformation and apoptosis. Environ. Health Perspect. 110(Suppl 5): 757–759.Google Scholar
  43. Dooly, M. and Hogan, S., 2003, Environmental epidemiology and risk factors for autoimmune disease. Curr. Opin. Rheumatol. 15(2): 99–103.Google Scholar
  44. Dopp, E., Yadav, S., Ansari, F., Bhattacharya, K., von Recklinghausen, U., Rauen, U., Rodelsperger, K., Shokouhi, B., Geh, S., and Rahman Q., 2005, ROS-mediated genotoxicity of asbestos-cement in mammalian lung cells in vitro. Part. Fibre Toxicol. 6: 2–9.Google Scholar
  45. Eggleston, P., Buckley, T., Breysse, P., Wills-Karp, M., Kleeberger, S., and Jaakkola, J., 1999, The environment and asthma in U.S. inner cities. Environ. Health Perspect. 107(Suppl 3): 439–450.Google Scholar
  46. Erdos, B., Snipes, J., Miller, A., and Busija, D., 2004, Cerebrovascular dysfunction in Zucker obese rats is mediated by oxidative stress and protein kinase C. Diabetes 53: 1352–1359.Google Scholar
  47. El Batanouny, M. and Korraa, S., 2002, Effects of low intensity laser on the activity and expression of nitric oxide synthase in human polymorphonuclear leucocytes in vitro, Arab J. Lab. Med. 28(3): 289–297.Google Scholar
  48. Elena, S. and de Visser, J., 2003, Environmental stress and the effects of mutation. J. Biol. 2(2): 12–17.Google Scholar
  49. Elosua, R., Molina, L., Fito, M., Arquer, A., Sanchez-Quesada, J., Covas, M., Ordonez-Llanos, J., and Marrugat, J., 2003, Response of oxidative stress biomarkers to a 16-week aerobic physical activity program, and to acute physical activity, in healthy young men and women. Atherosclerosis 167(2): 327–334.Google Scholar
  50. Escoubet-Lozach, L., Glass, C. K., and Wasserman, S. I, 2002, The role of transcription factors in allergic inflammation. Allergy Clin. Immunol. 110(4): 553–564.Google Scholar
  51. Fakhrzadeh, L., Laskin, J., and Laskin, D., 2004, Ozone-induced production of nitric oxide and TNF-alpha and tissue injury are dependent on NF-kappaB p50. Am. J. Physiol. Lung Cell Mol. Physiol. 87(2): L279–L285.Google Scholar
  52. Fang, X., Weintraub, N., Rios, C., Chappell D., et al., 1998, Overexpression of human superoxide dismutase inhibits oxidation of low-density lipoprotein by endothelial cells. Circ. Res. 82: 1289–1297.Google Scholar
  53. Fattman, C., Schaefer, L., and Oury, T., 2003, Extracelluar superoxide dismutase in biology and medicine. Free Radic. Biol. Med. 35: 236–256.Google Scholar
  54. Faux, S. and Howden, J., 1997, Possible Role of Lipid Peroxidation in the Induction of NF- FB and AP-1 in RFL-6 Cells by Crocidolite Asbestos: Evidence following Protection by Vitamin E. Environ. Health Perspect. 105(Suppl 5): 1127–1130.Google Scholar
  55. Favier, A., 2006, Oxidative stress in human diseases. Ann. Pharm. Fr. 64(6): 390–396.Google Scholar
  56. Fialkow, L., Chan, C., Rotin, D., Grinstein, S., and Downey, G., 1994, Activation of the mitogen-activated protein kinase signaling pathway in neutrophils. Role of oxidants. J. Biol. Chem. 269(49): 31234–31242.Google Scholar
  57. Freeman, B., and Crapo, J., 1982, Biology of disease: free radicals and tissue injury. Lab. Invest. 47: 412–426.Google Scholar
  58. Frenklakh, L., Bhat, R., Bhaskaran, M., Sharma, S., Sharma, M., Dinda, A., and Singhal, P., 2006, Morphine-induced degradation of the host defense barrier role of intestinal mucosal injury. Dig. Dis. Sci. 51(2): 318–325.Google Scholar
  59. Fujimura, N., 2000, Pathology and pathophysiology of pneumoconiosis. Curr. Opin. Pulm. Med. 6: 140–144.Google Scholar
  60. Fuss, J. and Cooper, P., 2006, DNA repair: dynamic defenders against cancer and aging. PLoS. Biol. 4(6): e203.Google Scholar
  61. Genbacev, O., McMaster, M., Zdravkovic, T., and Fischer, S., 2003, Disruption of oxygen-regulated responses underlies pathological changes in the placentas of women who smoke or who are passively exposed to smoke during pregnancy. Reprod. Toxicol. 17(5): 509–518.Google Scholar
  62. Gelinas, D., Bernatchez, P., Rollin, S., Bazan, N., and Sirois, M., 2002, Reactive oxygen species differentially affect T cell receptor-signaling pathways. J. Biol. Chem. 277(22): 19585–19593.Google Scholar
  63. Gisone, P., Robello, E., Sanjurjo, J., Dubner, D., Perez Mdel R., Michelin, S. and Puntarulo, S., 2006, Reactive species and apoptosis of neural precursor cells after gamma-irradiation. Neurotoxicology 27(2): 253–259.Google Scholar
  64. Goto, Y., Ando, T., Naito, M., Goto, H., and Hamajima N., 2006, Inducible nitric oxide synthase polymorphism is associated with the increased risk of differentiated gastric cancer in a Japanese population. World J. Gastroenterol. 12(39): 6361–6365.Google Scholar
  65. Green, D., 1998, Apoptotic pathways: the roads to ruin. Cell 94: 695–698.Google Scholar
  66. Greenblatt, M., Bennett, W., Hollstein, M., and Harris, C., 1994, Mutations in the p53 tumor suppressor gene: clues to cancer etiology and molecular Pathogenesis. Cancer Res. 54(18): 4855–4878.Google Scholar
  67. Gross, S. and Wolin, M., 1995, Nitric oxide: pathophysiological mechanisms. Ann. Rev. Physiol. 57: 737–769.Google Scholar
  68. Gursinsky, T., Ruhs, S., Friess, U., Diabate, S., Krug, H., Silber, R., and Simm, A., 2006, Air pollution-associated fly ash particles induce fibrotic mechanisms in primary fibroblasts. Biol. Chem. 387(10–11): 1411–1420.Google Scholar
  69. Guzik, T., Korbut, R., and Adamek-Guzik, T., 2003, Nitric oxide and superoxide in inflammation and immune regulation. J. Physiol. Pharmacol. 54(4): 469–487.Google Scholar
  70. Halliwell, B., 1994, Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet 344: 721–724.Google Scholar
  71. Han, Z., Boyle, D. L., Shi, Y., Green, D., and Firestein, G., 1999, Dominant-negative p53 mutations in rheumatoid arthritis. Arthritis Rheum. 42: 1088–1092.Google Scholar
  72. Henson, P. and Johnston, R., 1987, Tissue injury in inflammation, oxidants, proteinases and cationic proteins. J. Clin. Invest. 79: 669–674.Google Scholar
  73. Hengartner, M., 2000, The biochemistry of apoptosis. Nature 407: 770–776.Google Scholar
  74. Hiroi S., Harada, H., Nishi, H., Satoh, M., Nagai, R., and Kimura, A., 1999, Polymorphisms in the SOD2 and HLA-DRB1 genes are associated with nonfamilial idiopathic dilated cardiomyopathy in Japanese. Biochem. Biophys. Res. Commun. 261: 332–339.Google Scholar
  75. Hsu, Y., Chen, J., Chang, C., Chen, C., Liu, J., Chen, T., Jeng, C., Chao, H., and Chen, T., 2004, Role of reactive oxygen species-sensitive extracellular signal-regulated kinase pathway in angiotensin II-induced endothelin-1 gene expression in vascular endothelial cells. J. Vasc. Res. 41(1): 64–74.Google Scholar
  76. Hu, Y. and Diamond, A., 2003, Role of glutathione peroxidase 1 in breast cancer: loss of heterozygosity and allelic differences in the response to selenium. Cancer Res. 63: 3347–3351.Google Scholar
  77. Hu, Y., Dolan, M., Bae, R., Yee, H., Roy, M., Glickman, R., Kiremidjian-Schumacher, L., and Diamond, A., 2004, Allelic Loss at the GPx-1 Locus in Cancer of the Head and Neck. Biol. Trace Elem. Res. 101: 97–106.Google Scholar
  78. Huang, L., Willmore, W., Gu, J. Goldberg, M., and Bunn, H., 1999, Inhibition of hypoxia-inducible factor 1 activation by carbon monoxide and nitric oxide, Implications for oxygen sensing and signaling. J. Biol. Chem. 274(13): 9038–9044.Google Scholar
  79. Iarilin, A., 1999, Radiation and immunity, interference of ionizing radiation with key immune processes. Radiat. Biol. Radioecol. 39(1): 181–189.Google Scholar
  80. Inazuka, M., Tahira, T., Horiuchi, T., Harashima, S., Sawabe, T., Kondo, M., Miyahara, H., and Hayashi, K., 2000, Analysis of p53 tumour suppressor gene somatic mutations in rheumatoid arthritis synovium. Rheumatology 39: 262–266.Google Scholar
  81. James, S., 1995, Role of nitric oxide in parasitic iInfection. Microbiol. Rev. 59(4): 533–547.Google Scholar
  82. Jaruga, B., Hong, F., Kim, W., Sun, R., Fan, S., and Gao, B., 2004, Chronic alcohol consumption accelerates liver injury in T cell-mediated hepatitis: alcohol disregulation of NF-{kappa}B and STAT3 signaling pathways. Am. J. Physiol. Gastrointest. Liver Physiol. 87(2): G471–G47.Google Scholar
  83. Kamal, A., Al Khafif, M., Massoud, A., and Korraa, S., 1992, Plasma lipid peroxide and blood superoxide dismutase among asbestos exposed workers. Am. J. Indust. Med. 21(31): 341–352.Google Scholar
  84. Kandacova, N. and Zagrebel'naia, G.V., 2004, The influence of peroxide Radicals & nitric oxide on DNA synthesis in tumour cells. Biomed. Khim. 50: 566–575.Google Scholar
  85. Kanehira, T., Shibata, K., Kashiwazaki, H., Inoue, N., and Morita, M., 2006, Comparison of antioxidant enzymes in saliva of elderly smokers and non-smokers. Gerodontology. 23(1): 38–42.Google Scholar
  86. Kang, J., Jeon, Y., Kim, H., Hans, S., Han, S., and Yang, K., 2002, Inhibition of inducible nitric-oxide synthase expression by silymarin in lipopolysaccharide-stimulated macrophages. J. Pharmacol. Exp. Ther. 302(1): 138–144.Google Scholar
  87. Kassed, C., Willing, A., Garbuzova-Davis, A., Sanberg, P., Pennypacker, K., 2002, Lack of NF-KB p50 exacerbates degeneration of hippocampal neurons after chemical exposure and impairs learning. Exp. Neurol. 176: 277–288.Google Scholar
  88. Kazama, K., Anrather, J., Zhou, P., Girouard, H., Frys, K., Milner, T., and Iadecola, C., 2004, Angiotensin II impairs neurovascular coupling in neocortex through NADPH oxidase-derived radicals. Circ. Res. 95(10): 1019–1026.Google Scholar
  89. Kelly, B., Hackett, S., Hirota, K., Oshima, Y., Cai, Z., Berg-Dioxin, S., Rowan, A., Yan, Z., Campochiaro, P., and Semensa, G., 2003, Cell type-specific regulation of angiogenic growth factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active form of hypoxia-inducible factor 1. Circ. Res. 93: 1074–1081.Google Scholar
  90. Khurana, V., Sohni, Y., Mangrum, W., McClelland, R., O’Kane, D., Meyer, D. and Meisser, I., 2004, Endothelial nitric oxide synthase gene polymorphisms predict susceptibility to aneurysmal subarachnoid hemorrhage and cerebral vasospasms. J. Cereb. Blood Flow. Metab. 24(3): 291–297.Google Scholar
  91. Kim, D., Suh, Y., Lee, M., Kim, K., Lee J., Lee, H., Hong, K., and Kim, C., 2002, Vascular NAD(P) H oxidase triggers delayed cerebral vasospasm after subarachnoid hemorrhage in rats. Stroke 33: 2687–2691.Google Scholar
  92. Kinscherf, R., Deigner, H., Usinger, C., Pill, J., Wagner, M., Kamencic, H., Hou, D., Chen, M., Schmiedt, W., Schrader, M., Kovacs, G., Kato, K., and Metz, J., 1997, Induction of mitochondrial manganese superoxide dismutase in macrophages by oxidized LDL: its relevance in atherosclerosis of humans and heritable hyperlipidemic rabbits. FASEB J. 11: 1317–1328.Google Scholar
  93. Kouroumalis, E. and Notas, G., 2006, Pathogenesis of primary biliary cirrhosis: a unifying model. World J. Gastroenterol. 12(15): 2320–2327.Google Scholar
  94. Kowluruet, R., Atasi, I., and Ho, Y., 2006, Role of mitochondrial superoxide dismutase in the development of diabetic retinopathy. Invest. Ophthalmol. Vis. Sci. 47(4): 1594–1599.Google Scholar
  95. Kuchiiwa, S., Ren, X., Gao, H., Kuchiiwa, T., and Nakagawa, S., 2003, Dioxin exposure down-regulates nitric oxide synthase and NADPH-diaphorase activities in the hypothalamus of Long-Evans rat. Neurosci. Lett. 345(1): 5–8.Google Scholar
  96. Lagorio, S., Forastiere, F., Pistelli, R., Iavarone, I., Michelozz, P., Fano, V., Marconi, A., Ziemacki, G., and Ostro, B., 2006, Air pollution and lung function among susceptible adult subjects: a panel study. Environ. Health. 5: 11–16.Google Scholar
  97. Landrigan, P., Sonawane, B., Butler, R., Trasande, T., Richard, Callan, R., and Droller, D., 2005, Early environmental origins of neurodegenerative disease in later life. Environ. Health Perspect. 113(9): 1230–1233.CrossRefGoogle Scholar
  98. Lee, C., Lee, K., Choe, K., Hong, Y., Noh, S., Eom, S., Ko, Y., Zhang, y., Yim, D., Kang, J., Kim, H., and Kim Y., 2006, Effects of oxidative DNA damage and genetic polymorphism of the glutathione peroxidase 1 (GPX1) and 8-oxoguanine glycosylase 1 (hOGG1) on lung cancer. J. Prev. Med. Pub. Health 39(2): 130–134.Google Scholar
  99. Lee, D., Lee, I., Song, K., Steffes, M., Toscano, W., Baker, B., and Jascobs, D., 2006, A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999–2002. Diabetes Care 29(7): 1638–1644.Google Scholar
  100. Lee, S. H., Shin, M. S., Park, W. S., Kim, S. Y., Kim, S. H., Han, J. Y., et al., 1999, Alterations of Fas (Apo-1/CD95) gene in non-small cell lung cancer. Oncogene 18: 3754–3760.Google Scholar
  101. Li, N. and Karin, M., 1998, Ionizing radiation and short wavelength UV activate NF-LB through two distinct mechanisms. Cell Biol. 95(22): 13012–13017.Google Scholar
  102. Liu, X., Kim, C., Yang, J., Jemmerson, R., and Wang, X., 1996, Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86: 147–157.Google Scholar
  103. Loffredo, L., Pignatelli, P., Cangemi, R., Andreozzi, P., Panico, M., Meloni, V., and Violi, F., 2006, Imbalance between nitric oxide generation and oxidative stress in patients with peripheral arterial disease: effect of an antioxidant treatment. J. Vasc. Surg. 44(3): 525–530.Google Scholar
  104. Lu, D., Liou, H., Tang, C., and Fu, W., 2006, Hypoxia-induced iNOS expression in microglia is regulated by the PI3-kinase/Akt/mTOR signaling pathway and activation of hypoxia inducible factor-1alpha. Biochem. Pharmacol. 72(8): 992–1000.Google Scholar
  105. Lui, Y., Christou, H., Morita, T., Laughner, E., Semenza, G., and Kourembanas, S., 1998, Carbon monoxide and nitric oxide suppress the hypoxic induction of vascular endothelial growth factor gene via the 5′ enhancer. J. Biol. Chem. 273(24): 15257–15262.Google Scholar
  106. Mak, T. and Yeh, W., 1999, Genetic analysis of apoptotic and survival signals. Cold Spring Harb. Symp. Quant. Biol. 64: 335–342.Google Scholar
  107. Mak, J., Leung, Ho, S., Ko, F., Cheung, A., Ip, M., and Chan-Yeung, M., 2006, Polymorphisms in manganese superoxide dismutase and catalase genes: functional study in Hong Kong Chinese asthma patients. Clin. Exp. Allergy 36(4): 440–447.Google Scholar
  108. Malkin, D., 1995, Age-specific oncogenesis: the genetics of cancer susceptibility. Environ. Health Perspect. 103(Suppl 5): 45–48.Google Scholar
  109. Marklund S., Nilsson, P., Israelsson, K, Schampi, I., Peltonen. M., Asplund. K., 1997, Two variants of extracellular-superoxide dismutase: relationship to cardiovascular risk factors in an unselected middle-aged population. J. Intern. Med. 242: 5–14.Google Scholar
  110. McDonnell, T., 1993, Cell division versus cell death: a functional model of multistep neoplasia. Mol. Carcinog. 8: 209–213.Google Scholar
  111. Meikrantz, W., and Schlegel, R., 1995, Apoptosis and the Cell Cycle. J. Cell Biochem. 58: 160–174.Google Scholar
  112. Melchers, I., Blaschke, S., Hecker, M., and Cattaruzza, M., 2006, The -786C/T single-nucleotide polymorphism in the promoter of the gene for endothelial nitric oxide synthase: insensitivity to physiologic stimuli as a risk factor for rheumatoid arthritis. Arthritis. Rheum. 54(10): 3144–3151.Google Scholar
  113. Mercer, I., Blashke, S., Hecker, M., and Cattaruzza, M., 2005, Endogenous p53 protects vascular smooth muscle cells from apoptosis and reduces atherosclerosis in ApoE knockout mice. Circ. Res. 96(6): 667–674.Google Scholar
  114. Miyaki, K., Tohyana, S., Murata, M., Kikuchi, H., Takei, I., Watanabe, K., and Omae K., 2005, Salt intake affects the relation between hypertension and the T-786C polymorphism in the endothelial nitric oxide synthase gene. Am. J. Hypertens. 18(12 Pt 1): 1556–1562.Google Scholar
  115. Moore, K., 2006, Glucose fluctuations and oxidative stress. JAMA 296(14): 1730.Google Scholar
  116. Moscow, J., Schmidt, L., Ingram, D., Gnarra, J., Johnson, B., Cowan, K., 1994, Loss of heterozygosity of the human cytosolic glutathione peroxidase I gene in lung cancer. Carcinogenesis 15: 2769–2773.Google Scholar
  117. Moskaleva, Elu., Tobolov, I., Shumilov, V., Demina, T., and Gorbunov, E., 1988, Decreased capacity of the peripheral blood lymphocytes for excisional DNA repair in disseminated sclerosis. Zh. Nevropatol. Psikhiatr. Im S. S. Korsakova. 88(7): 87–88.Google Scholar
  118. Muschen, M., Warskulat, U., and Beckmann, M. W., 2000, Defining CD95 as a tumor suppressor gene. J. Mol. Med. 78: 312–325.Google Scholar
  119. Nair, V., Yuen, T., Olanow, C., and Sealfon, S., 2004, Early single cell bifurcation of pro- and antiapoptotic states during oxidative stress. J. Biol. Chem. 279(26): 27494–27501.Google Scholar
  120. Nagata, S. and Golstein, P., 1995, The Fas death factor. Science 267: 1449–1456.Google Scholar
  121. Nakajima, T., Elovaara, E., Okino, T., Gelboin, H., Klockars, M., Riihimaki, V., Aoyama, T., and Vainio, H., 1995, Different contributions of cytochrome P450 2E1 and P450 2B1/2 to chloroform hepatotoxicity in rat. Toxicol. Appl. Pharmacol. 133(2): 215–222.Google Scholar
  122. Nathan, C., 1992, Nitric oxide as a secretory product of mammalian cells, FASEB J. 6: 3051–3064.Google Scholar
  123. Nathan, C. and Xie, Q., 1994, Nitric oxide synthetases: roles, tolls and controls, Cell 78: 915–918.Google Scholar
  124. Nouni, H., Rotrosen, D., Gallin, J., and Malech, H., 1998, Two forms of autosomal chronic granulomatous disease lack distinct neutrophil cytosol factors. Science 242(4883): 1298–1301.Google Scholar
  125. Oh, G., Pae, H., Lee, B., Kim, B., Kim, J., Jeon, S., Jeon, W., Chae, H., and Chung, H., 2006, Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic. Biol. Med. 41(1): 106–119.Google Scholar
  126. Onyango, L. and Khan, S., 2006, Oxidative stress, mitochondrial dysfunction, and stress signaling in Alzheimer’s disease. Curr. Alzheimer Res. 3(4): 339–349.Google Scholar
  127. Oyama, T., Kawamoto, T., Mizoue, T., Sugio, K., Kodama, Y., Mitsudomi, T., and Yasumoto, K., 1997, Cytochrome P450 2E1 polymorphism as a risk factor for lung cancer: in relation to p53 gene mutation. Anticancer Res. 17: 583–588.Google Scholar
  128. Pap, T., Aupperle, K. R., Gay, S., Firestein, G., and Gay, R., 2001, Invasiveness of synovial fibroblasts is regulated by p53 in the SCID mouse in vivo model of cartilage invasion. Arthritis Rheum. 44: 676–681.Google Scholar
  129. Parsonnet, J., 1995, Bacterial infection as a cause of cancer. Environ. Health Perspect. 103(Suppl 8): 263–268.Google Scholar
  130. Qui, M., Paromov, V., Yang, H., Smith, M., and Stone, W., 2006, Inhibition of inducible nitric oxide synthase by a mustard gas analog in murine macrophages. BMC Cell Biol. 30: 7–39.Google Scholar
  131. Ratnasinghe, D., Tangrea, J., Andersen, M., Barrett, M., Virtamo, J., Taylor, P., and Albanes, D., 2000, Glutathione peroxidase codon 198 polymorphism variant increases lung cancer risk. Cancer Res. 60: 6381–6383.Google Scholar
  132. Reichmann, E., 2002, The biological role of the Fas/FasL system during tumor formation and progression. Semin. Cancer Biol. 12: 309.Google Scholar
  133. Resar, J., Roguin, A., Voner, J., Nasir, K., Hennebry, T., Miller, J. M., Ingersoll, R., Kasch, L., and Semenza, G., 2005, Hypoxia-inducible factor 1alpha polymorphism and coronary collaterals in patients with ischemic heart disease. Chest 128(2): 787–791.Google Scholar
  134. Risch, N., 2000, Searching for genetic determinants in the new millennium. Nature 405: 847–856.Google Scholar
  135. Ruiz-Ramos, R., Cebrian, M., and Garrido, E., 2005, Benzoquinone activates the ERK/MAPK signaling pathway via ROS production in HL-60 cells. Toxicology 209(3): 279–287.Google Scholar
  136. Rossi, G., Cesari, M., Zanchetta, M., Colonna, G., Pedon, L., Cavalin, M., Maiolino, P., and Pession, A., 2003, The T-786C endothelial nitric oxide synthase genotype is a novel risk factor for coronary artery disease in Caucasian patients of the GENICA study. J. Am. Coll. Cardiol. 41(6): 930–937.Google Scholar
  137. Sandrini, A., Johnson. A., Thomas, P., and Yates, D., 2006, Fractional exhaled nitric oxide concentration is increased in asbestosis and pleural plaques. Respirology 11(3): 325–329.Google Scholar
  138. Sandström, J., Carlsson, L., Marklund, S., and Edlund, T., 1992, The heparin-binding domain of extracellular superoxide dismutase C and formation of variants with reduced heparin affinity. J. Biol. Chem. 267: 18205–18209.Google Scholar
  139. Sandström, J., Karlsson, K., Edlund, T., and Marklund, S., 1993, Heparin-affinity patterns and composition of extracellular superoxide dismutase in human plasma and tissues. Biochem. J. 294: 853–857.Google Scholar
  140. Sandström, J., Nilsson, P., Karlsson, K., and Marklund, S., 1994, Ten-fold increase in human plasma extracellular superoxide dismutase content caused by a mutation in heparin-binding domain. J. Biol. Chem. 269: 19163–19166.Google Scholar
  141. Schulte-Hermann, R., Bursch, W., Gras-kraupp, B., Torok, L., and Ellinger, A., 1995, Role of active cell death (apoptosis) in multi-stage carcinogenesis. Toxicol Lett. 82–83: 143–148.Google Scholar
  142. Semenza, G. L., 2000, Surviving ischemia: adaptive responses mediated by hypoxia-inducible factor 1. J. Clin. Invest. 106: 809–812.Google Scholar
  143. Semenza, G. L., 2003, Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3: 721–732.Google Scholar
  144. Shah, S., 2006, Oxidants and iron in progressive kidney disease. J. Ren. Nutr. 16(3): 185–189.Google Scholar
  145. Shen, J., Wang, R., Wang, L., Xu, Y., Wang X., 2004, A novel genetic polymorphism of inducible nitric oxide synthase is associated with an increased risk of gastric cancer. World J. Gastroenterol. 10: 3278–3283.Google Scholar
  146. Siebenlist, U., Franzoco, G., and Brown, K., 1994, Structure, regulation and function of NF-SB. Annu. Rev. Cell Biol. 10: 405–455.Google Scholar
  147. Soini, Y., Kallio, J., Hirvikoski, P., helin, H., Kellokumpu-Lehtinen, P., Tammela, T., Peltoniemi, M., Martikainen, P., and Kinnula, L., 2006, Antioxidant enzymes in renal cell carcinoma. Histol. Histopathol., 21(2): 157–165.Google Scholar
  148. Spoto, B., Benedetto, F., Testa, E., Tripepi, G., Mallamaci, F., Maas, R., Boeger, R., Zoccali, C., Parlongo, R. and Pisano, A., 2005, Atherosclerosis and the Glu298Asp polymorphism of the eNOS gene in white patients with end-stage renal disease. Am. J. Hypertens. 18(12 Pt 1): 1549–1555.Google Scholar
  149. Strålin, P., Karlsson, K., Johansson, B., and Marklund, S., 1995, The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler. Thromb. Vasc. Biol. 15: 2032–2036.Google Scholar
  150. Tanimoto, K., Yoshiga, K., Eguchi, H., Kaneyasu, M., Ukon, K., Kumazak, T., Oue, N., Yasui, W., Imai K., Nakachi, K., Poellinger, L., Nishiyama, M., 2003, Hypoxia-inducible factor-1 polymorphisms associated with enhanced transactivation capacity, implying clinical significance. Carcinogenesis 24: 1779–1783.Google Scholar
  151. Thakali, K., Lau, Y., Fink, G., Gallican, J., Chen, A. and Watts, S., 2006, Mechanisms of hypertension induced by nitric oxide (NO) deficiency: focus on venous function. J. Cardiovasc. Pharmacol. 47(6): 742–750.Google Scholar
  152. Thompson, C., 1995, Apoptosis in the pathogenesis and treatment of disease. Science 10: 1456–1462.Google Scholar
  153. Trosko, J., Chang, C., Madhukar, B., 1994, The role of modulated gap junctional intercellular communication in epigenetic toxicology. Risk Anal. 14(3): 303–312.Google Scholar
  154. Uzel, G., 2005, The range of defects associated with nuclear factor kappaB essential modulator. Curr. Opin. Allegy. Clin. Immunol. 5(6): 513–518.Google Scholar
  155. Wang, X. and Wang, J., 2005, Smoking-gene interaction and disease development: relevance to pancreatic cancer and atherosclerosis. World J. Surg. 29(3): 344–353.Google Scholar
  156. Warren, W., Biggs, P., El-Baz, M., Ghoneim, M., Stratton, M., and Vebit, s., 1995, Mutations in the p53 gene in schistosomal bladder cancer: a study of 92 tumours from Egyptian patients and a comparison between mutational spectra from schistosomal and non-schistosomal urothelial tumours. Carcinogenesis 16(5): 1181–1189.Google Scholar
  157. Weinberg, R., 1991, Tumor suppressor genes. Science 254: 1138–146.Google Scholar
  158. Weiss, S., 1986, Oxygen, ischemia and inflammation. Acta Physiol. Scand. Suppl. 548: 9–37.Google Scholar
  159. Whitmarsh, A. J. and Davis, R. J., 2000, Regulation of transcription factor function by phosphorylation. Cell Mol. Life Sci. 57: 1172–1183.Google Scholar
  160. Wiesman, M. and Halliwell, B., 1996, Damage to DNA by reactive oxygen species and nitrogen species: role of inflammatory disease and progression to cancer. Biochem. J. 313: 17–29.Google Scholar
  161. Wu, S., Tan, M., Hu, Y., Wang, J., Scheuner, D., and Kaufman, R., 2004, Ultraviolet light activates NFkappaB through translational inhibition of IkappaBalpha synthesis. J. Biol. Chem. 279(33): 34898–34902.Google Scholar
  162. Var, A., Yi;dirim, Y., Onur, M., Kuscu, E., Uyanik, B., Goktalay. K., and Guvenc, Y., 2003, Endothelial dysfunction in preeclampsia. Increased homocysteine and decreased nitric oxide levels. Gynecol. Obstet. Invest. 56(4): 221–224.Google Scholar
  163. Verma, M. and Srivastava, S., 2002, Epigenetics in cancer: implications for early detection and prevention, Lancet Oncol. 3(12): 755–763.Google Scholar
  164. Vucic, V., Isenovic, E., Adzic, M., Ruzdijic, S., and Radojcic, M., 2006, Effects of gamma-radiation on cell growth, cycle arrest, death, and superoxide dismutase expression by DU 145 human prostate cancer cells. Braz. J. Med. Biol. Res. 39(2): 227–236.Google Scholar
  165. Xiao, G. and Li., H., 2006, Effects of inhalation of oxygen on free radical metabolism and oxidative, antioxidative capabilities of the erythrocyte after intensive exercise. Res. Sports Med. 14(2): 107–115.Google Scholar
  166. Yang, Q. and Hatton, G., 2002, Histamine H(1)-receptor modulation of inter-neuronal coupling among vasopressinergic neurons depends on nitric oxide synthase activation, Brain Res. 955(1–2): 115–122.Google Scholar
  167. Yoshii, Y., Saito, A., Zhao, D., and Nose, T., 1999, Copper/zinc superoxide dismutase, nuclear DNA content, and progression in human gliomas. J. Neurooncol. 42(2): 103–108.Google Scholar
  168. You, M., Candrian, U., Maronpot, R., Stoner, G., and Anderson, M., 1989, Activation of the Ki-ras protooncogene in spontaneously occurring and chemically induced lung tumors of the strain A mouse, Proc. Natl. Acad. Sci. USA 86: 3070–3074.Google Scholar
  169. Yu, Z., Zhou, D., Bruce-Keller, A., Kindy, M., and Mattson, M., 1999, Lack of the p50 subunit of nuclear factor-tB increase the vulnerability of hippocampal neurons to excitotoxic injury. J. Neurosci. 19: 8856–8865.Google Scholar
  170. Zanetti, M., Sato, J., Jost, C., and Gloviczki, P., 2001, Gene transfer of manganese superoxide dismutase reverses vascular dysfunction in the absence but not in the presence of atherosclerotic plaque. Hum. Gene Ther. 12: 1407–1416.Google Scholar
  171. Zelko, N., Mariani, J., and Folz, J., 2002, Superoxide dismutase multigene family: a comparison of the CuZn-SOD (SOD1), Mn-SOD (SOD2), and EC-SOD (SOD3) gene structures, evolution and expression. Free Radic. Biol. Med. 33: 337–349.Google Scholar
  172. Zhang, C., Lopez-Ridaura, R., Hunter, D., Rifai, N., and Hu, F., 2006, Common variants of the endothelial nitric oxide synthase gene and the risk of coronary heart disease among U.S. diabetic men. Diabetes 55(7): 2140–2147.Google Scholar
  173. Zornig, M., Hueber, A., Baum, W., and Evan, G., 2001, Apoptosis regulators and their role in tumorigenesis. Biochim. Biophys. Acta 1551:F1–F37.Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Laboratory of Mutagens and ToxigenomicsNational Center for Radiation Research and TechnologyNasr CityEgypt

Personalised recommendations