Ecotoxicology – How to Assess the Impact of Toxicants in a Multi-Factorial Environment?

Conference paper
Part of the NATO Science for Peace and Security Series book series (NAPSC)

Ecotoxicology assesses the fate of contaminants in the environment and contaminant effects on constituents of the biosphere. With respect to effects assessment, current ecotoxicology uses mainly reductionistic approaches. For concluding from the reductionistic approach to the effects of toxicant exposure in a multifactorial world, ecotoxicology relies on extrapolations: (i) from suborganism and organism effect levels, as determined in laboratory tests, to ecological levels, (ii) from few laboratory test species to the broad range of species and their interactions in the ecosystem and (iii) from the analysis of the effects of single toxicants under standardized laboratory settings to the toxicant response under real world conditions, where biota are exposed to combinations of chemical, biological and physical stressors. The challenge to ecotoxicology is to identify strategies and approaches for reducing uncertainty and ignorance being inherent to such extrapolations. This chapter discusses possibilities to improve ecotoxicological risk assessment by integrating mechanistic and ecological information, and it highlights the urgent need to develop concepts and models for predicting interactions between multiple stressors. Keywords: ecotoxicology; risk assessment; effect propagation; interspecies extrapolation; multiple stressors


Ecological Risk Assessment Environ Toxicol Mixture Effect Species Sensitivity Distribution Toxicant Exposure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahlers J, Diderich R. 1998. Legislative perspective in ecological risk assessment. In: Schüürmann G, Markert B (eds). Ecotoxicology–ecological fundamentals, chemical exposure and biological effects. John Wiley & Sons/Spektrum Akademischer Verlag, New York/Heidelberg. pp. 841–868.Google Scholar
  2. Altenburger R, Nendza M, Schüürmann G. 2003. Miture toxicity and its modeling by quantitative structure activity relationships. Environ Toxicol Chem 22:1900–1915.CrossRefGoogle Scholar
  3. Altenburger R, Walter H, Grote M. 2004. What contributes to the combined effect of a complex mixture? Environ Sci technol 38:6353–6362.CrossRefGoogle Scholar
  4. Bayne BL, Brown DW, Burns K, Dixon DR, Ivanovici A, Livingstone DR, Lowe DM, Moore MN, Stebbing ARD, Widdows J. 1985. The effects of stress and pollution on aquatic animals. Praeger, New York. 384 pp.Google Scholar
  5. Barnthouse LW, Suter II GW, Rosen AE, Beauchamp JJ. 1987. Estimating responses of fish populations to toxic contaminants. Environ Toxicol Chem 6:811–824.CrossRefGoogle Scholar
  6. Behrens A, Segner H. 2005. Cytochrome P4501A induction in brown trout exposed to small streams of an urbanised area: results of a five-year-study. Environ Poll 136:231–242.CrossRefGoogle Scholar
  7. Berishvili G, D’Cotta H, Baroiller JF, Segner H, Reinecke M. 2006. Differential expression of IGF-I mRNA and peptide in the male and female gonad during early development of a bony fish, the tilapia Oreochromis niloticus. Gen Comp Endocrinol 146:204–210.CrossRefGoogle Scholar
  8. Blanck H, Wängberg SH, Molander S. 1988. Pollution-induced community tolerance. A new ecotoxicological tool. In: Cairns JJ, Pratt JR (eds). Functional testing of aquatic biota for estimating hazards of chemicals. American Society for Testing and Materials, Philadelphia, PA, USA, pp. 219–230.CrossRefGoogle Scholar
  9. Boxall AB, Brown CD, Barrett KL, 2002. Highertier laboratory methods for assessing the aquatic toxicity of pesticides. Pest Manag Sci 58:637–648.CrossRefGoogle Scholar
  10. Brack W. 2003. Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures. Anal Bioanal Chem 377:397–407.CrossRefGoogle Scholar
  11. Bradbury SP, Feijtel TCJ, van Leeuweb NC. 2004. Meeting the scientific needs of ecological risk assessment in a regulatory context. Environ Sci Technol 38:463A–470A.CrossRefGoogle Scholar
  12. Braunbeck T, Segner H. 1992. Pre-exposure temperature acclimation and diet as modifying factors for the tolerance of golden ide (Leuciscus idus melanotus) to short-term exposure to 4-chloroaniline. Ecotoxicol Environ Safety 24:72–94.CrossRefGoogle Scholar
  13. Brown AR, Riddle AM, Cunningham NL, Kedwards TJ, Shillabeer N, Hutchninson TH. 2003. Predicting the effects of endocrine disrupting chemicals on fish populations. Human Ecol Risk Assess 9:761–788.CrossRefGoogle Scholar
  14. Burkhardt-Holm P, Scheurer K. 2007. Application of a weight-of-evidence approach to assess the decline of brown trout (Salmo trutta) in Swiss rivers. Aquatic Sciences, 69:51–70.CrossRefGoogle Scholar
  15. Burkhardt-Holm P, Giger W, Güttinger H, Ochsenbein U, Peter A, Scheurer K, Segner H, Staub E, Suter MJF. 2005. Where have all the fish gone? Environ Sci Technol 39:441A–447A.CrossRefGoogle Scholar
  16. Burki R, Krasnov A, Bettge K, Antikainen M, Burkhardt-Holm P, Wahli T, Segner H. 2007. Combined effects of 17beta-estradiol and the parasite Tetaracapsuloides bryosalmonae on rainbow trout. submitted.Google Scholar
  17. Cairns J, Cherry DS. 1993. Fresh water multi-species test systems. In: Calow P (ed). Handbook of Ecotoxicology. Blackwell Scientific, Oxford, UK, pp. 101–118.Google Scholar
  18. Calow P, Forbes VE. 2003. Does ecotoxicology inform ecological risk assessment? Environ Sci Technol 37:146A–151A.CrossRefGoogle Scholar
  19. Carlson EA, Li Y, Zelikoff JT. 2002. Exposure of Japanese medaka (Oryzias latipes) to benzo(a) pyrene suppresses immune function and host resistance against bacterial challenge. Aquat Toxicol 56:289–301.CrossRefGoogle Scholar
  20. Carson R. 1962. Silent spring. Houghton-Mifflin Co. Boston, USA.Google Scholar
  21. Cheshenko K, Brion F, Le Page Y, Hinfray N, Pakdel F, Kah O, Segner H, Eggen RIL. 2007. Expression of zebrafish aromatase cyp19a and cyp19b genes in response to the ligands of estrogen receptor and aryl hydrocarbon receptor. Toxicol Sci, 96:255–267.CrossRefGoogle Scholar
  22. Desbrow C, Routledge EJ, Brighty G, Sumpter JP, Waldock M. 1998. Identification of estrogenic chemicals in STW effluent. 1. Chemical fractionation and in vitro biological screening. Environ Sci Technol 32:1549–1558.CrossRefGoogle Scholar
  23. De Zwart D, Posthuma L. 2005. Complex mixture toxicity for single and multiple species: proposed methodologies. Environ Toxicol Chem 24:2665–2672.CrossRefGoogle Scholar
  24. Downes BJ, Barmuta LA, Fairweather PG, Keough MJ, Faith DP, Lake PS, Mapstone BD, Quinn GP. 2002. Monitoring ecological impacts. Concepts and practice in flowing waters. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  25. Eggen RIL, Segner H. 2003. The potential of mechanism-based bioanalytical tools in ecotoxicological exposure and effect assessment. Anal Bioanal Chem 377:386–396.CrossRefGoogle Scholar
  26. Eggen RIL, Suter MJF. 2007. Analytical chemistry and ecotoxicology–tasks, needs and trends. J Toxicol Environ Health, 70:724–726.CrossRefGoogle Scholar
  27. Eggen RIL, Behra R, Burkhardt-Holm P, Escher BI, Schweigert N. 2004. Challenges in ecotoxicology. Environ Sci Technol. 38:58A–64A.CrossRefGoogle Scholar
  28. Escher BI, Hermens JLM. 2002. Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs and mixture effects. Environ Sci Technol 36:4201–4217.CrossRefGoogle Scholar
  29. Filby AL, Thorpe KL, Tyler CR. 2006. Multiple molecular effect pathways of an environmental oestrogen in fish. J Molec Endocrinol 37:121–134.CrossRefGoogle Scholar
  30. Folt CL, Chen CY, Moore MV, Burnaford J. 1999. Synergism and antagonism among multiple stressors. Limnol Oceanogr 44:864–877.Google Scholar
  31. Forbes VE, Forbes TL. 1994. Ecotoxicology in theory and practice. Chapman & Hall, London, UK.Google Scholar
  32. Forbes VE, Palmquist A, Bach L. 2006. The use and misuse of biomarkers in ecotoxicology. Environ Toxicol Chem 25:272–280.CrossRefGoogle Scholar
  33. Gleason TR, Nacci DE. 2001. Risks of endocrine-disrupting compounds to wildlife: extrapolating from effects on individuals to population response Hum Ecol Risk Assess 7:1027–1042.CrossRefGoogle Scholar
  34. Grist EPM, Wells MC, Whitehouse P, Brighty G, Crane M. 2003. Estimating the effects of 17alpha-ethynylestradiol on populations of fathead minnow: are conventional toxicological endpoints adequate? Environ Sci Technol 27:1609–1616.CrossRefGoogle Scholar
  35. Gurney WSC. 2006. Modeling the demographic impact of endocrine disruptors. Environ Health Persp 114(suppl 1):122–126.Google Scholar
  36. Hermens J, Canton H, Steyger N, Wegman R. 1984. Joint toxicity of a mixture of 14 chemicals on mortality and reproduction of Daphnia magna. Aquat Toxicol 5:315–322.CrossRefGoogle Scholar
  37. Heugens EHW, Hendriks AJ, Dekker T, van Straalen NM, Admiraal W. 2001. A review of the effects of multiple stressors on aquatic organisms and analysis of uncertainty factors for use in risk assessment. Crit Rev Toxicol 31:247–284.CrossRefGoogle Scholar
  38. Hoffmann-Riem H, Wynne B. 2002. In risk assessment, one has to admit ignorance. Nature 416:223.CrossRefGoogle Scholar
  39. Hutchinson TH, Ankley GT, Segner H, Tyler CR. 2006. Screening and testing for endocrine disruption in fish–biomarkers as signposts, not traffic lights, in risk assessment. Environ Health Persp 114(suppl 1):106–114.CrossRefGoogle Scholar
  40. Jorgensen SE. 1998. Ecotoxicological research–historical development and perspectives. In: Schüürmann G, Markert B (eds). Ecotoxicology–ecological fundamentals, chemical exposure and biological effects. John Wiley & Sons/Spektrum Akademischer Verlag, New York/Heidelberg. pp. 3–15.Google Scholar
  41. Kallivretaki E, Eggen RIL, Neuhauss SCF, Segner H. 2007. Knockdown of cyp19a1 aromatase gene decreases neuromast number in the lateral line organ of zebrafish embryos. submitted.Google Scholar
  42. Kiesecker JM. 2002. Synergism between trematode infection and pesticide exposure: a link to amphibian limb deformities in nature? Proc Natl Acad Sci USA 99:9900–9904.CrossRefGoogle Scholar
  43. Köllner B, Wasserrab B, Kotterba G, Fischer U. 2002. Evaluation of immune functions of rainbow trout (Oncorhynchus mykiss)–how can environmental influences be detected? Toxicol Lett 131:83–95.CrossRefGoogle Scholar
  44. Könnemann WH. 1981. Fish toxicity tests with mixtures of more than two chemicals, a proposal for a quantitative approach and experimental results. Toxicology 19:229–238.CrossRefGoogle Scholar
  45. Kooijman SALM. 1998. Process-oriented descriptions of toxic effects. In: Schüürmann G, Markert B (eds). Ecotoxicology–ecological fundamentals, chemical exposure and biological effects. John Wiley & Sons/Spektrum Akademischer Verlag, New York/Heidelberg. pp. 483–520.Google Scholar
  46. Koppe JG, Bartonova A, Bolte G, et al. 2006. Exposure to multiple environmental agents and their effects. Acta Paed 95 suppl 453:106–113.CrossRefGoogle Scholar
  47. Lanno RP, Hickie BE, Dixon DG. 1989. Feeding and nutritional considerations in aquatic toxicology. Hydrobiologia 188/189:525–531.Google Scholar
  48. Mackay ME, Lazier CB. 1993. Estrogen responsiveness of vitellogenin gene expression in rainbow trout (Oncorhynchus mykiss) kept at different temperatures. Gen Comp Endocrinol 89:255–266.CrossRefGoogle Scholar
  49. McCarthy LS, Ozburn GW, Smith AD, Dixon DG. 1992. Toxicokinetic modelling of mixtures of organic chemicals. Environ Toxicol Chem 11:1037–1047.CrossRefGoogle Scholar
  50. Miracle AL, Ankley GT. 2005. Ecotoxicogenomics: linkages between exposure and effects in assessing risks of aquatic contaminants to fish. Reprod Toxicol 19:321–326.CrossRefGoogle Scholar
  51. Miracle AL, Toth GP, Lattier DL. 2003. The path from molecular indicators of exposure to describing dynamic biological systems in an aquatic organisms: microarrays and fathead minnow. Ecotoxicology 12:457–462.CrossRefGoogle Scholar
  52. Monosson E. 2005. Chemical mixtures: considering the evolution of toxicology and chemical assessment. Environ Health Persp 113:383–390.CrossRefGoogle Scholar
  53. Moore MN. 2002. Biocomplexity: the post-genome challenge in ecotoxicology. Aquat Toxicol 59:1–15.CrossRefGoogle Scholar
  54. Moriarty F. 1983. Ecotoxicology. The study of pollutants in ecosystems. Academic Press, New York, USA.Google Scholar
  55. Navas JM, Segner H. 2001. Estrogen-mediated suppression of cytochrome P4501A (CYP1A) expression in rainbow trout hepatocytes: role of estrogen receptor. Chemico-Biological Interactions 138:285–298.CrossRefGoogle Scholar
  56. Newman MC. 1998. Fundamentals of ecotoxicology. Sleeping Bear/Ann Arbor Press, Chelsea, USA.Google Scholar
  57. Newman MC. 2001. Population ecotoxicology. John Wiley & Sons, New York.Google Scholar
  58. Odum EP. 1985. Trends expected in stressed ecosystems. BioScience 35:419–422.CrossRefGoogle Scholar
  59. Peakall DB. 1994. Biomarkers. The way forward in environmental assessment. Toxicol Ecotoxicol News 1:55–60.Google Scholar
  60. Posthuma L, de Zwart D. 2005. Predicted effects of toxicant mixtures are confirmed by changes in fish species assemblages in Ohio, USA, rivers. Environ Toxicol Chem 25:1095–1105.Google Scholar
  61. Posthuma L, Traas TP, Suter II GW (eds). 2002. Species Sensitivity Distributions in Ecotoxicology. Lewis Publishers, Boca Raton, FL, USA.Google Scholar
  62. Ramade F. 1977. Ecotoxicologie. Masson, Paris, France.Google Scholar
  63. Rolland, RM. 2000. Ecoepidemiology of the effects of pollution on reproduction and survival of early life stages in teleosts. Fish and Fisheries 1:41–72.CrossRefGoogle Scholar
  64. Schäfers C, Teigeler M, Wenzel A, Maack G, Fenske M, Segner H. 2007. Concentration- and time-dependent effects of the synthetic estrogen, 17alpha-ethynylestradiol, on reproductive capabilities of zebrafish, Danio rerio. J Toxicol Environ Health 70:768–779.CrossRefGoogle Scholar
  65. Schmitt-Janssen M, Altenburger R. 2005. Predicting and observing responses of algal communities to photosystem II-herbicide exposure using pollution–induced community tolerance and species sensitivity distributions. Environ Toxicol Chem 24:304–312.CrossRefGoogle Scholar
  66. Schüürmann G. 1998. Ecotoxic modes of action of chemical substances. In: Schüürmann G, Markert B (eds). Ecotoxicology–ecological fundamentals, chemical exposure and biological effects. John Wiley & Sons/Spektrum Akademischer Verlag, New York/Heidelberg. pp. 665–749.Google Scholar
  67. Safe S. 1990. Polychlorinated biphenyls (PCBs), dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs) and related compounds: environmental and mechanistic considerations which support the development of toxic equivalency factors (TEFs). Crit Rev Toxicol 21:51–88.CrossRefGoogle Scholar
  68. Segner H. 2003. The need for integrated programs to monitor endocrine active compounds. Pure Appl Chem 75:2435–2444.CrossRefGoogle Scholar
  69. Segner H. 2006. Comment on “Lessons from endocrine disruption and their application to other issues concerning trace organics in the aquatic environment”. Environ Sci Technol 40:1084–1085.CrossRefGoogle Scholar
  70. Segner H, Braunbeck T. 1988. Cellular response profile to chemical stress. In: Schüürmann G, Markert B (eds). Ecotoxicology–ecological fundamentals, chemical exposure and biological effects. John Wiley & Sons/Spektrum Akademischer Verlag, New York/Heidelberg. pp. 521–569.Google Scholar
  71. Segner H, Eppler E, Reinecke M. 2006. The impact of environmental hormonally active substances on the endocrine and immune systems of fish. In: Reinecke M, Zaccone G, Kapoor BG (eds). Fish Endocrinology. Science Publishers, Enfield (NH). pp. 809–865.Google Scholar
  72. Segner H, Chesne C, Cravedi JP, Fauconneau B, Houlihan D, LeGac F, Loir M, Mothersill C, Pärt P, Valotaire Y. 2001. Cellular approaches for diagnostic effects assessment in ecotoxicology: introductory remarks to an EU-funded project. Aquat Toxicol 53:153–158.CrossRefGoogle Scholar
  73. Sibly RM, Calow P. 1989. A life cycle theory of responses to stress. Biol J Linnean Soc 37:101–116.CrossRefGoogle Scholar
  74. Silva E, Rajapakse N, Kortenkamp A. 2002. Something from “nothing”–eight weak estrogenic chemicals combined at concentrations below NOEC produce significant mixture effects. Environ Sci Technol 15:1751–1756.CrossRefGoogle Scholar
  75. Slikker W, Andersen ME, Bogdanffy MS, Bus JS, Cohen SD, Conolly RB, David RM, Doerre NG, Dorman DC, Gaylor DW, Hattin D, Rogers JM, Setzer WR, Swenberg JA, Wallace K. 2004. Dose-dependent transitions in mechanisms of toxicity. Toxicol Appl Pharmacol 201:203–225.CrossRefGoogle Scholar
  76. Sumpter JP, Johnson AP. 2006. Lessons from endocrine disruption and their applications to other issues concerning trace organics in the aquatic environment. Environ Sci Technol. 39:4321–4332.CrossRefGoogle Scholar
  77. Truhaut R. 1977. Ecotoxicology: objectives, principles and perspectives. Ecotoxicol Environ Safety 1:151–173.CrossRefGoogle Scholar
  78. Underwood AJ, Peterson CH. 1988. Towards an ecological framework for investigating pollution. Mar Ecol Progr Ser 46:227–234.CrossRefGoogle Scholar
  79. Van der Ost R. 2003. Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149.CrossRefGoogle Scholar
  80. van Straalen NM. 2003. Ecotoxicology becomes stress ecology. Environ Sci Technol 37:324A–330A.CrossRefGoogle Scholar
  81. Walker CH, Hopkin SP, Sibly RM, Peakall DB. 1996. Principles of ecotoxicology. Taylor & Francis, London, UK.Google Scholar
  82. Williams P, Whitfield M, Biggs J, Fox G, Nicoelt P, Shillabeer N, Sheratt T, Heneghan P, Jepson P, Maund S. 2002. How realistic are outdoor microcosms ? A comparison of the biota of microcosms and natural ponds. Environ Toxicol Chem 21:143–150.CrossRefGoogle Scholar
  83. Winemiller, KO, Rose, KA. 1992. Patterns of life-history diversification in North American fishes: implications for population regulation. Can. J. Fish. Aquat. Sci. 49:2196–2218.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Centre for Fish and Wildlife Health, Vetsuisse FacultyUniversity of BernSwitzerland

Personalised recommendations