Advertisement

Evolution Processes in Populations of Plantain, Growing around the Radiation Sources: Changes in Plant Genotypes Resulting From Bystander Effects And Chromosomal Instability

Conference paper
Part of the NATO Science for Peace and Security Series book series (NAPSC)

The viability of seeds growing around the nuclear power plant (NPP) can decrease up to 20–30 %. We consider the appearance of both multiple secondary cells and chromosomes with abnormalities. We used the ideas of adaptation to explain these phenomena. The aim was the statistical analysis of the appearances of cells and chromosomes with abnormalities in dependence on radiation factor around the NPP and seeds’ antioxidant status (AOS).

Keywords

Dose Rate Nuclear Power Plant Antioxidant Status Moscow Region Meristem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akaike, H., 1974, A new look at the statistical model identification. IEEE Trans. Automatic Control, AC-19, 716–723.Google Scholar
  2. Alenitskaja, S.I., Bulah, O.E., Buchnev, V.N., Zueva, M.V., Kargin, A.N., Florko, B.V., 2004, Results of long-term supervision over the environment radioactivity in area of JINR arrangement. PAPAN Lett. 1, 5(122), 88–96.Google Scholar
  3. Amiro, B.D., 1992, Radiological dose conversion factors for generic non-human biota. Used for screening potential ecological impacts. J. Environ. Radioact. 35(1), 37–51.CrossRefGoogle Scholar
  4. Arutyunyan, R., Neubauer, S., Martus, P., Durk, T., Stumm, M., and Gebhart, E., 2001, Intercellular distributions of aberrations detected by means of chromosomal painting in cells of patients with cancer prone chromosome instability syndromes. Exp. Oncol. 23, 23–28.Google Scholar
  5. Burlakova, E.B., Mikhailov, V.F., and Mazurik V.K., 2001, The redox homeostasis system in radiation-induced genomic instability. Radiat. Biol. Radioecol. 4(5), 489–499 (in Russian).Google Scholar
  6. Chebotarev, A.N., 2000, A mathematical model of origin multi-aberrant cell during spontaneous mutagenesis, Dokl. Biol. Sci. 371, 207–209.Google Scholar
  7. Davies, K.J., 2000, Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life, 50(4–5), 279–289.CrossRefGoogle Scholar
  8. EC, 1998, Atlas of cesium contamination in Europe after the Chernobyl accident European Commission. DG XII. Safety Programme for Nuclear Fission (Protection against Radiation).Google Scholar
  9. Eigen, M. and Schuster, P., 1979, The Hypercycle, Berlin-Heidelberg-NY: Springer-Verlag, p. 270.Google Scholar
  10. Florko, B.V., and Korogodina, V.I., 2007, Analysis of the Distribution Structure as Exemplified by One Cytogenetic Problem. Physics of Particles and Nuclei Letters, 4(4), 331–338.CrossRefGoogle Scholar
  11. Geras’kin, S.A. and Sarapul’tzev, B.I., 1993, Automatic classification of biological entities by the level of radiation stability. Avtomatika & telemechanika, 2, 183–189 (in Russian).Google Scholar
  12. Glotov, N.V., Zhivotovskjy, L.A., Khovanov, N.V. and Khromov-Borisov, N.N., 1982, Biometrics, Leningrad: Leningrad State University.Google Scholar
  13. Gudkov, I., 1985, Cell mechanisms of postradiation repair in plants, Kiev: Naukova Dumka, 224 (in Russian).Google Scholar
  14. Gusev, N.G. and Beljaev, V.A., 1986, Radionuclide releases into Biosphery. M: EnergoAtomIzdat, (in Russian).Google Scholar
  15. Hosker, R.P. Jr., 1974, Estimates of dry deposition and plume depletion over forests and grasslands. Proceedings of Physical behavior of radioactive contaminants in the atmosphere. IAEA, 291–309.Google Scholar
  16. Ivanov, V.I., Lyszov, V.N., and Gubin, A.T., 1986, Handbook on microdosimetry. M: AtomIzdat, (in Russian).Google Scholar
  17. Janssen, Y.M., Van Houten, B., Borm, P.J., Mossman, B.T., 1993, Cell and tissue responses to oxidative damage. Lab. Invest. 69(3), 261–274.Google Scholar
  18. Korogodina, V., Bamblevskij, V., Grishina, I., Gustova, M., Zabaluev, S., Korogodin, V., Kuraeva, T., Lozovskaja, E., and Maslov, O., 2000, Antioxidant status of plant (Plantago major L.) seeds of the pollution in the Balakovo NPP and chemical enterprisers region. Radiats. Biologija. Radioecologija, 40, 334–338 (in Russian).Google Scholar
  19. Korogodina, V., Bamblevsky, V., Grishina, I., Gustova, M., Florko, B., Javadova, V., Korogodin, V., Lozovskaya, E., Malikov, A., Maslov, O., Melnikova, L., Shlyakhtin, G., Stepanchuk, V., and Zueva, M., 2004, Evaluation of the consequences of stress factors on plant seeds growing in a 30-km zone of Balakovo NPP, Radiats. Biologija. Radioecologija 44(1), 83–90 (in Russian).Google Scholar
  20. Korogodina, V.L., Florko, B.V., and Korogodin, V.I., 2005, Variability of seed plant populations under oxidizing radiation and heat stresses in laboratory experiments. IEEE Trans. Nucl. Sci. 52(4), 125–144.CrossRefGoogle Scholar
  21. Korogodina V. L., Bamblevsky C.P., Florko B.V., and Korogodin V.I. 2006. Variability and viability of seed plant populations around the nuclear power plant, In: Cigna A.A. and Durante (eds.) Impact of radiation risk estimates in normal and emergency situations. Proceedings of a NATO advanced research workshop Yerevan, Armenia, 8–11 Sept. 2005, Springer: 271–282.Google Scholar
  22. Korogodina, V.L., Panteleeva, A., Ganicheva, I., Lazareva, G., Melnikova, L., Korogodin, V., 1998, Influence of the weak gamma-irradiation dose rate on mitosis and adaptive response in meristem cells of pea seedlings. Radiats. Biologija. Radioecologija, 38, 643–649, (in Russian).Google Scholar
  23. Little, J.B., 2006, Cellular radiation effects and the bystander response. Mutat. Res. 11; 597(1–2), 113–118.Google Scholar
  24. Longerich, S., Galloway, A.M., Harris, R.S., Wong, C., and Rosenberg, S.M., 1995, Adaptive mutation sequences reproduced by mismatch repair deficiency. Proc. Natl. Acad. Sci. USA 92, 12017–20.CrossRefGoogle Scholar
  25. MAPRF, 1998, The General Information on Balakovo NPP, The Ministry of Atomic Power of the RF, Rosenergoatom concern, Balakovo NPP: 3–5 (in Russian).Google Scholar
  26. Mothersill, C. and Seymour, C., 2005, Radiation-induced bystander effects: are they good, bad or both? Med. Confl. Surviv., 21(2), 101–110.CrossRefGoogle Scholar
  27. Preobrazhenskaya, E. 1971, Radioresistance of Plant Seeds. M: Atomizdat, (in Russian).Google Scholar
  28. Rainwater, D.T., Gossett, D.R., Millhollon, E.P., Hanna, H.Y, Banks, S.W., and Lucas, M.C., 1996, The relationship between yield and the antioxidant defense system in tomatoes grown under heat stress. Free Radical Res., 25(5), 421–435.CrossRefGoogle Scholar
  29. Schwarz, G., 1978, Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.CrossRefGoogle Scholar
  30. State Committee on the Environment Protection in the Saratov Region (SCEPSR), 2000, Conditions of the environment in the Saratov region in 1999. Acvarius, Saratov: 1–193 (in Russian).Google Scholar
  31. Timofeeff-Ressovsky, N.W., 1939, Genetik und Evolution. Z. und Abst. Vererbl., 76(1–2), 158–218.CrossRefGoogle Scholar
  32. Van der Vaerden, B.L., 1957, Mathematische statistik. Berlin-Göttingen-Heidelberg, Springer-Verlag.Google Scholar
  33. Wiegel, B., Alevra, A.V., Matzke, M., Schrewe, U.J., and Wittstock, J., 2002, Spectrometry using the PTB neutron multisphere spectrometer (NEMUS) at flight altitudes and at ground level. Nucl. Instr. Meth. A, 476 (1–2), 52–57.CrossRefGoogle Scholar
  34. Zykova, A.S., Voronina, T.F., and Pakulo, A.G., 1995, Radiation situation in the Moscow and Moscow region caused by fallouts in 1989–1993. Gigiena i Sanitarija, 2, 25–27 (in Russian).Google Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Joint Institute for Nuclear Researches (JINR)MoscowRussia

Personalised recommendations