Skip to main content

Electric Field Alignment of Diblock Copolymer Thin Films

  • Chapter
Book cover Nanostructured Soft Matter

Part of the book series: NanoScience and Technology ((NANO))

Block copolymers self-assemble into arrays of microdomains, e.g. lamellae, cylinders, or spheres, depending on the volume fraction of the components and _N, where _ is the Flory-Huggins segmental interaction parameter and N is the degree of polymerization [1, 2]. The sizes of the microdomains are dictated by the total molecular weight of the copolymer and, hence, are tens of nanometers in size. This size scale cannot be easily achieved using conventional photolithographic techniques and makes block copolymer thin films ideal can- didates for template and scaffolds for the fabrication of nanostructured ma- terials [3-8]. For applications, controlling the microdomain orientation is es- sential. In a copolymer thin film, the grains of the copolymer microdomains are found where the ordering is high locally, but globally there is no preferred orientation of the grains; on average, they are randomly arranged. Various external fields, such as shear, electric and surface fields have been used to manipulate the microdomain alignment in block copolymer thin films. Here, we focus primarily on the electric field alignment of diblock copolymers in thin films a few hundred nanometers in thickness. The preferential interac- tion and segregation of one block to the substrate orients the microdomains parallel to the substrate surface. Electric fields normal to the surface are used to overcome these interfacial interactions and orient the microdomains in the direction of the applied field [9-14]. We will first discuss the influence of the interfacial interaction on the microdomain orientation in a copolymer thin film; then the effect of interfacial interaction on the electric field alignment. We will subsequently discuss the electric field alignment of the lamellar and cylindrical microdomains in thin films and the electric field induced sphere-to- cylinder transition. Finally, we will discuss the effect of the ionic impurities, such as lithium ions, on the electric field alignment of copolymer thin films. Discussion of the electric field alignment of block copolymers in the bulk or solution can be found elsewhere [9-12, 15, 16].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bates, F. S., Fredrickson, G. H. Annual Reviews of Physics and Chemistry 1990, 41,5252-537.

    Google Scholar 

  2. Leibler, L. Macromolecules 1980, 13, (6), 1602-1617.

    Article  ADS  Google Scholar 

  3. Angelescu, D. E., Waller, J. H., Register, R. A., Chaikin, P. M. Advanced Ma- terials 2005,17 (15),1878.

    Google Scholar 

  4. Kim, S. H., Misner, M. J., Xu, T., Kimura, M., Russell, T. P. Advanced Materials 2004,16,226.

    Article  Google Scholar 

  5. Morkved, T. L., Lu, M., Urbas, A. M., Ehrichs, E. E., Jaeger, H. M., Mansky, P., Russell, T. P. Science 1996,273 (5277),931-933.

    Article  ADS  Google Scholar 

  6. Park, M., Harrison, C., Chaikin, P. M., Register, R. A., Adamson, D. Science 1997,276 (May 30), 1401.

    Article  Google Scholar 

  7. Segalman, R. A., Yokoyama, H., Kramer, E. J. Advanced Materials 2001, 13 (15),1152.

    Article  Google Scholar 

  8. Thurn-Albrecht, T., Steiner, R., DeRouchey, J., Stafford, C. M., Huang, E., Bal, M., Tuominen, M., Hawker, C. J., Russell, T. Advanced Materials 2000,12 (11), 787-791.

    Article  Google Scholar 

  9. Amundson, K., Helfand, E., Davis, D. D., Quan, X., Patel, S. S., Smith, S. D. Macromolecules 1991,24 (24),6546-6548.

    Article  ADS  Google Scholar 

  10. Amundson, K., Helfand, E., Quan, X., Smith, S. D. Macromolecules 1993, 26 (11),2698-2703.

    Article  ADS  Google Scholar 

  11. Amundson, K., Helfand, E., Quan, X. N., Hudson, S. D., Smith, S. D. Macro- molecules 1994,27 (22),6559-6570.

    ADS  Google Scholar 

  12. Boker, A., Elbs, H., Hansel, H., Knoll, A., Ludwigs, S., Zettl, H., Zvelindovsky, A. V., Sevink, G. J. A., Urban, V., Abetz, V., Muller, A. H. E., Krausch, G. Macromolecules 2003,36,8078.

    Article  ADS  Google Scholar 

  13. Thurn-Albrecht, T., DeRouchey, J., Russell, T. P., Jaeger, H. M. Macromolecules 2000,33,3250-3253.

    Article  ADS  Google Scholar 

  14. Thurn-Albrecht, T., Schotter, J., Kastle, C. A., Emley, N., Shibauchi, T., Krusin-Elbaum, L., Guarini, K., Black, C. T., Tuominen, M. T., Russell, T. P. Science 2000,290 (5499),2126-2129.

    Article  ADS  Google Scholar 

  15. Boker, A., Elbs, H., Hansel, H., Knoll, A., Ludwigs, S., Zettl, H., Urban, V., Abetz, V., Muller, A. H. E., Krausch, G. Physical Review Letters 2002,89 (13), 135502.

    Article  ADS  Google Scholar 

  16. Boker, A., Knoll, A., Elbs, H., Abetz, V., Muller, A. H. E., Krausch, G. Macro- molecules 2002,35 (4),1319-1325.

    ADS  Google Scholar 

  17. Ashok, B., Muthukumar, M., Russell, T. P. Journal of Chemical Physics 2001, 115 (3),1559-1564.

    Article  ADS  Google Scholar 

  18. Coulon, G., Deline, V. R., Russell, T. P., Green, P. F. Macromolecules 1989, 22,2581.

    Google Scholar 

  19. Fredrickson, G. H. Macromolecules 1987,20 (10),2535-2542.

    Article  ADS  Google Scholar 

  20. Henkee, C. S., Thomas, E. L., Fetters, L. J. Journal of Materials Science 1988, 23 (5),1685-1694.

    Article  ADS  Google Scholar 

  21. Huang, E., Rockford, L., Russell, T. P., Hawker, C. J. Nature 1998,395 (6704), 757-758.

    Article  ADS  Google Scholar 

  22. Huang, E., Russell, T. P., Harrison, C., Chaikin, P. M., Register, R. A., Hawker, C. J., Mays, J. Macromolecules 1998,31,(22), 7641-7650.

    Article  ADS  Google Scholar 

  23. Karim, A., Singh, N., Sikka, M., Bates, F. S. Journal of Chemical Physics 1994, 100,1620.

    Article  ADS  Google Scholar 

  24. Mansky, P., Russell, T. P., Hawker, C. J., Mays, J., Cook, D. C., Satija, S. K. Physical Review Letters 1997, 79 (2), 237-240.

    Article  ADS  Google Scholar 

  25. Menelle, A., Russell, T. P., Anastasiadis, S. H., Satija, S. K., Majkrzak, C. F. Physical Review Letters 1992, 68 (1), 67.

    Article  ADS  Google Scholar 

  26. Xu, T., Kim, H. C., DeRouchey, J., Seney, C., Levesque, C., Martin, P., Stafford, C. M., Russell, T. P. Polymer 2001, 42 (21), 9091-9095.

    Article  Google Scholar 

  27. Anastasiadis, S. H., Russell, T. P., Satija, S. K., Majkrzak, C. F. Physical Review Letters 1989, 62 (16), 1852.

    Article  ADS  Google Scholar 

  28. Mansky, P., Liu, Y., Huang, E., Russell, T. P., Hawker, C. Science 1997, 275, 1458-1460.

    Article  Google Scholar 

  29. Xu, T., Hawker, C. J., Russell, T. P. Macromolecules 2005,38 (7),2802-2805.

    Article  ADS  Google Scholar 

  30. Xu, T., Hawker, C. J., Russell, T. P. Macromolecules 2003,36 (16),6178-6182.

    Article  ADS  Google Scholar 

  31. Pereira, G. G., Williams, D. R. M. Macromolecules 1999,32 (24),8115-8120.

    Article  ADS  Google Scholar 

  32. Tsori, Y., Andelman, D. European Physical Journal E 2001,5 (5),605-614.

    Article  ADS  Google Scholar 

  33. Tsori, Y., Andelman, D. Macromolecules 2002,35 (13),5161-5170.

    Article  ADS  Google Scholar 

  34. Burgaz, E., Gido, S. P. Macromolecules 2000,33,8739.

    Article  ADS  Google Scholar 

  35. . Gido, S. P., Thomas, E. L. Macromolecules 27,6137.

    Google Scholar 

  36. Thurn-Albrecht, T., DeRouchey, J., Russell, T. P., Kolb, R. Macromolecules 2002,35 (21),8106-8110.

    Article  ADS  Google Scholar 

  37. Xu, T., Zhu, Y., Gido, S. P., Russell, T. P. Macromolecules 2004,37 (7),2625-2629.

    Article  ADS  Google Scholar 

  38. Onuki, A., Fukuda, J. Macromolecules 1995,28 (26),8788-8795.

    Article  ADS  Google Scholar 

  39. Zvelindovsky, A. V., A., S. G. J. Phys. Rev. Lett. 2003,90,049601.

    Google Scholar 

  40. Kyrylyuk, A. V., Sevink, G. J. A., Zvelindovsky, A. V., Fraaije, J. G. E. M. Macromolecular Theory and Simulations 2003,12 (7),508-511.

    Article  Google Scholar 

  41. Kyrylyuk, A. V., Zvelindovsky, A. V., Sevink, G. J. A., Fraaije, J. G. E. M. Macromolecules 2002,35,1473.

    Article  ADS  Google Scholar 

  42. Xu, T., Zvelindovsky, A. V., Sevink, G. J. A., Lyakhova, K. S., Jinnai, H., Russell, T. P. Macromolecules 2005,38 (26),10788-10798.

    Article  ADS  Google Scholar 

  43. Jinnai, H., Ikehara, T., Nishi, T. Advances in Polymer Science 2004,170,115.

    Article  Google Scholar 

  44. Jinnai, H., Nishikawa, Y., Spontak, R. J., Smith, S. D., Agard, D. A., Hashimoto, T. Phys. Rev. Lett. 2000,84,518.

    Article  ADS  Google Scholar 

  45. Ryu, C. Y., Lodge, T. P. Macromolecules 1999,32,7190.

    Article  ADS  Google Scholar 

  46. Ryu, C. Y., Vigild, M. E., Lodge, T. P. Physical Review Letters 1998,81 (24), 5354.

    Article  ADS  Google Scholar 

  47. Kimishima, K., Koga, T., Hashimoto, T. Macromolecules 2000,33 (3),968.

    Article  ADS  Google Scholar 

  48. Kimura, M., Misner, M. J., Xu, T., Kim, S. H., Russell, T. P. Langmuir 2003, 19 (23),9910-9913.

    Article  Google Scholar 

  49. Landau, L. D., Lifshitz, E. M., Electrodynamics of Continuous Media, Pergam- mon: Oxford, 1960.

    MATH  Google Scholar 

  50. Harrison, C., Angelescu, D. E., Trawick, M., Cheng, Z. D., Huse, D. A., Chaikin, P. M., Vega, D. A., Sebastian, J. M., Register, R. A., Adamson, D. H. Euro- physics Letters 2004,67 (5),800-806.

    Article  ADS  Google Scholar 

  51. Xu, T., Zvelindovsky, A. V., Sevink, G. J. A., Gang, O., Ocko, B., Zhu, Y., Gido, S. P., Russell, T. P. Macromolecules 2004,37,(18), 6980-6984.

    Article  ADS  Google Scholar 

  52. Xu, T., Goldbach, J. T., Leiston-Belanger, J., Russell, T. P. Colloid and polymer science 2004,282 (8),927-931.

    Article  Google Scholar 

  53. Kim, C. S., Oh, S. M. Electrochim. Acta 2000,45,2101.

    Google Scholar 

  54. Wang, J. Y., Xu, T., Leiston-Belanger, J. M., Gupta, S., Russell, T. P. Physical Review Letters 2006,96 (12),128301.

    Article  ADS  Google Scholar 

  55. Tsori, Y., Tournilhac, F., Andelman, D., Leibler, L. Physical Review Letters 2003,90 (14),145504.

    Article  ADS  Google Scholar 

  56. Winey, K. I., Patel, S. S., Larson, R. G., Watanabe, H. Macromolecules 1993, 26,4373.

    Article  ADS  Google Scholar 

  57. Xu, T., Goldbach, J. T., Russell, T. P. Macromolecules 2003, 36 (19), 7296-7300.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Canopus Publishing Limited

About this chapter

Cite this chapter

Xu, T., Wang, J., Russel, T.P. (2007). Electric Field Alignment of Diblock Copolymer Thin Films. In: Zvelindovsky, A.V. (eds) Nanostructured Soft Matter. NanoScience and Technology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6330-5_6

Download citation

Publish with us

Policies and ethics