Skip to main content

Polyelectrolyte Diblock Copolymer Micelles: Small Angle Scattering Estimates of the Charge Ordering in the Coronal Layer

  • Chapter
Nanostructured Soft Matter

Part of the book series: NanoScience and Technology ((NANO))

  • 1512 Accesses

Amphiphilic diblock copolymers with a polyelectrolyte block comprise two linearly attached moieties: a charged and a hydrophobic chain part. Owing to their specific properties and the increased need of water supported poly- mer materials, these copolymers have found widespread applications from the stabilization of colloidal suspensions, through encapsulation and delivery of bioactive agents, to the control of gelation, lubrication, and flow behavior [1,2]. Besides these technological applications, progress in this area also has implica- tions for biophysics. Polyelectrolyte brushes are a model system for the exter- nal envelope of certain microorganisms (glycocalix) and are thought to play a role in, e.g., cell recognition and cushioning properties of synovial fluid [3, 4]. The hydrophobic attachment provides a mechanism for self-assembling of the copolymers into units of mesoscopic size, which are large compared to the molecular dimensions. Major factors controlling the self-assembled structures are solvent composition, charge, ionic strength, and chemical nature and the respective sizes of the blocks. For ionic diblocks of poly(styrene-block-acrylate) (PS-b-PA) with a polyelectrolyte (PA) block length smaller than the length of the polystyrene (PS) block, a multitude of different “crew-cut” structures has been observed by Eisenberg and coworkers [5-7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Riess, Prog. Polym. Sci. 28, 1107 (2003).

    Article  Google Scholar 

  2. S. R. Bhatia, A. Mourchid, and M. Joanicot, Curr. Opin. Colloid Interface Sci. 6,471 (2001).

    Article  Google Scholar 

  3. A. Albersdörfer and E. Sackmann, Eur. Phys. J. B 10, 663 (1999).

    Article  ADS  Google Scholar 

  4. M. Tanaka, F. Rehfeldt, M. F Schneider, G. Mathe, A. Albersdörfer, K. R Neumaier, O. Purrucker, and E. Sackmann, J. Phys.: Condens. Matter 17, S649 (2005).

    Article  ADS  Google Scholar 

  5. L. Zhang and A. Eisenberg, Science 268, 1728 (1995).

    Article  ADS  Google Scholar 

  6. M. Moffitt, K. Khougaz, and A. Eisenberg, Acc. Chem. Res. 29, 95 (1996).

    Article  Google Scholar 

  7. N. S. Cameron, M. K. Corbierre, and A. Eisenberg, Can. J. Chem. 77, 1311 (1999).

    Article  Google Scholar 

  8. P. Guenoun, F. Muller, M. Delsanti, L. Auvray, Y.J. Chen, J.W. Mays, and M. Tirrell, Phys. Rev. Letters 81, 3872 (1998).

    Article  ADS  Google Scholar 

  9. S. Förster, N. Hermsdorf, C. Bottcher, and P. Lindner, Macromolecules 35, 4096 (2002).

    Article  ADS  Google Scholar 

  10. J.R.C. van der Maarel. W. Groenewegen, S.U. Egelhaaf, and A. Lapp, Langmuir 16,7510 (2000).

    Article  Google Scholar 

  11. M. Daoud, and J.-P. Cotton, J. Phys. 43, 531 (1982).

    Google Scholar 

  12. W. D. Dozier, J. S. Huang, and L. J. Fetters, Macromolecules 24, 2810 (1991).

    Article  ADS  Google Scholar 

  13. K. A. Cogan, A. P. Gast, and M. Capel, Macromolecules 24, 6512 (1991).

    Article  ADS  Google Scholar 

  14. S. Förster, E. Wenz, and P. Lindner, Phys. Rev. Letters 77, 95 (1996).

    Article  ADS  Google Scholar 

  15. C. M. Marques, D. Izzo, T. Charitat, and E. Mendes, Eur. Phys. J. B. 3, 353. (1998).

    Article  ADS  Google Scholar 

  16. W. Groenewegen, S. U. Egelhaaf, A. Lapp, and J. R. C. van der Maarel, Macro- molecules 33, 3283 (2000).

    ADS  Google Scholar 

  17. W. Groenewegen, A. Lapp, S. U. Egelhaaf, and J. R. C. van der Maarel, Macro- molecules 33, 4080 (2000).

    ADS  Google Scholar 

  18. L. Belloni, M. Delsanti, P. Fontaine, F. Muller, P. Guenoun, J.W. Mays, P. Boesecke, and M. Alba, J. Chem. Phys. 119, 7560 (2003).

    Article  ADS  Google Scholar 

  19. A. V. Korobko, W. Jesse, S. U. Egelhaaf, A. Lapp, and J. R. C. van der Maarel, Phys. Rev. Letters 93, 177801 (2004).

    Google Scholar 

  20. A. V. Korobko, W. Jesse, A. Lapp, S. U. Egelhaaf, and J. R. C. van der Maarel, J. Chem. Phys. 122, 024902 (2005).

    Google Scholar 

  21. . Notice that this definition differs from the situation for homopolymers, where the monomer is usually considered the elementary scattering unit.

    Google Scholar 

  22. J. K. Percus and G. J. Yevick, Phys. Rev. 110, 1 (1958).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. C. N. Likos, H. Lowen, M. Watzlawek, B. Abbas, O. Jucknischke, J. Allgaier, and D. Richter, Phys. Rev. Letters 80, 4450 (1998).

    Article  ADS  Google Scholar 

  24. J. B. Hayter and J. Penfold, Mol. Phys. 42, 109 (1991).

    Article  ADS  Google Scholar 

  25. R.J. Baxter, J. Chem. Phys. 49, 2770 (1968).

    Article  ADS  Google Scholar 

  26. S. Förster and C. Burger, Macromolecules 31, 879 (1998).

    Article  ADS  Google Scholar 

  27. L. Auvray, C. R. Acad. Sc. Paris 302, 859 (1986).

    Google Scholar 

  28. L. Auvray and P. G. de Gennes, Europhys. Letters 2, 647 (1986).

    Article  ADS  Google Scholar 

  29. P. G. de Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, 1979.

    Google Scholar 

  30. A. Yu. Grosberg and A. R. Khohklov, Statitical Physics of Macromolecules, American Institute of Physics Press, New York, 1994.

    Google Scholar 

  31. O. V. Borisov, J. Phys. II 6, 1 (1996).

    Google Scholar 

  32. O. V. Borisov and E. B. Zhulina, Eur. Phys. J. B 4, 205 (1998).

    Article  ADS  Google Scholar 

  33. . This value was obtained from the experimental pK = 7.2 of simple salt-free 0.014 mole of PA/dm3 PS-b-PA solutions, unpublished results.

    Google Scholar 

  34. M. Heinrich, M. Rawiso, J. G. Zilliox, P. Lesieur, J. P. Simon, Eur. Phys. J. E 4,131 (2001).

    Article  Google Scholar 

  35. J. R. C. van der Maarel, L. C. A. Groot, J. G. Hollander, W. Jesse, M. E. Kuil, J. C. Leyte, L. H. Leyte-Zuiderweg, M. Mandel, J. -P. Cotton, G. Jannink, A. Lapp, and B. Farago, Macromolecules 26, 7295 (1993).

    Article  ADS  Google Scholar 

  36. A. Jusufi, C. N. Likos, and H. Löwen, Phys. Rev. Letters 88, 8301 (2002).

    ADS  Google Scholar 

  37. A. Jusufi, C. N. Likos, and H. Löwen, J. Chem. Phys. 116, 11011 (2002).

    Article  ADS  Google Scholar 

  38. H. H. Winter and M. Mours, Adv. Polym. Sci. 134, 165 (1997).

    Article  Google Scholar 

  39. A. V. Korobko, C. Backendorf, and J. R. C. van der Maarel, J. Phys. Chem. B 110,14550 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Canopus Publishing Limited

About this chapter

Cite this chapter

van der Maarel, J.R.C. (2007). Polyelectrolyte Diblock Copolymer Micelles: Small Angle Scattering Estimates of the Charge Ordering in the Coronal Layer. In: Zvelindovsky, A.V. (eds) Nanostructured Soft Matter. NanoScience and Technology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6330-5_4

Download citation

Publish with us

Policies and ethics