Skip to main content

Understanding Liquid/Colloids Composites with Mesoscopic Simulations

  • Chapter
Book cover Nanostructured Soft Matter

Part of the book series: NanoScience and Technology ((NANO))

  • 1517 Accesses

The study of complex fluids and soft materials contains a number of basic conceptual and practical challenges. The most basic difficulties are related to the fact that different length and time scales compete, making it impractical to carry out first principles modeling of these materials [1]. Colloidal particles are rigid molecular aggregates of sizes varying between a few nanometers and a micron. As a result, they are at least one order of magnitude larger than the molecules that characterize the solvent they are suspended in. Colloids move at smaller velocities than solvent molecules as a result of their size mismatch, and hence their characteristic time scales are also orders of magnitude larger than solvent ones. Moreover, colloid interactions also differ qualitatively from their molecular counterparts. Although they derive from the specific atomic interactions among the atoms that constitute the colloids, the fact that colloids are made of thousands of atoms implies that the effective strength is typically of a few times the characteristic thermal energy, kBT, at room temperature, with kB referring to the Boltzmann constant [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. “Soft and fragile matter: Nonequilibrium dynamics, metastability and flow”, M.E. Cates and M.R. Evans eds., SUSSP Publications and Institute of Physics Publishing, Bristol (2000).

    Google Scholar 

  2. T.A. Witten, Rev. Mod. Physics 71, S367 (199).

    Article  MathSciNet  Google Scholar 

  3. J. Israelachvili, ”Intermolecular and surface forces”, Academic Press London (1992).

    Google Scholar 

  4. T.A. Witten, ”Structured fluids. Polymers, colloids surfactants”, Oxford University Press, Oxford (2004)

    Google Scholar 

  5. R.G. Larson, ”The structure and rheology of complex fluids”, Oxford University Press, New York (1999).

    Google Scholar 

  6. J.K.G. Dhont, ”An Introduction to dynamics of colloids”, Elsevier, Amsterdam (1996)

    Google Scholar 

  7. M.J. Nuevo, J.J. Morales and D.M. Heyes, Phys. Rev. E 58, 5845 (1998)

    Article  ADS  Google Scholar 

  8. F. Ould-Kaddour and D. Levesque, J. Chem. Phys. 118,7888 (2003)

    Article  ADS  Google Scholar 

  9. M. Allen and D. Tildesley, ”Computer simulation of liquids”, Oxford University Press, Oxford (2000).

    Google Scholar 

  10. P. Español and P.B. Warren, Europhys. Lett. 30, 191 (1995).

    Article  ADS  Google Scholar 

  11. C.P. Lowe, Europhys. Lett.47, 145 (1999).

    Article  ADS  Google Scholar 

  12. C.A. Marsh, G. Backx and M.H. Ernst, Phys. Rev. E 56, 1676 (1997).

    Article  ADS  Google Scholar 

  13. The effective potentials are introduced naively by regarding a particle in these models as representing a bunch of molecules. For an attempt to link the effective forces to microscopic one, see e.g. E.G. Flekkoy and P.V. Coveney, Phys. Rev. Lett. 83, 1775 (1999).

    Article  ADS  Google Scholar 

  14. D.H. Rothman and S. Zaleski, Lattice-gas cellular automata: simple models of complex hydrodynamics, Cambridge University Press (1997).

    Google Scholar 

  15. S. Succi, ”The Lattice Boltzmann equation for fluid dynamics ad beyond”, Ox- ford University press, Oxford (2001).

    Google Scholar 

  16. U. Frish, B. Hasslacher and Y. Pomeau, Phys. Rev. Lett. 56, 1505 (1986).

    Article  ADS  Google Scholar 

  17. S. Wolfram, J. Stat. Phys. 45, 471 (1986).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. F. Higuera, S. Succi and R. Benzi, Europhys. Lett. 9, 345 (1989).

    Article  ADS  Google Scholar 

  19. R. Verberg and A.J.C. Ladd, J. Stat. Phys. 104, 1191 (2001).

    Article  MATH  MathSciNet  Google Scholar 

  20. V.M. Kendon, M.E. Cates, I. Pagonabarraga, J.-C. Desplat and P. Bladon, J. Fluid. Mech. 440, 147 (2001).

    Article  MATH  ADS  Google Scholar 

  21. O. Behrend R. Harris and P.B. Warren, Phys. Rev. E 50, 4586 (1994).

    Article  ADS  Google Scholar 

  22. A.J. Wagner, Prog. Comput. Fluid Dyn. 5, 20 (2005).

    Article  Google Scholar 

  23. X. Shan and H. Chen, Phys. Rev. E 49, 2941 (1994).

    Article  ADS  Google Scholar 

  24. L.-S. Luo, Phys. Rev. E 62, 4982 (2000).

    Article  MathSciNet  ADS  Google Scholar 

  25. M.R. Swift, W.R. Osborn, and J.M. Yeomans, Phys. Rev. Lett. 75, 830 (1995); M. R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans, Phys. Rev. E 54, 5041 (1996).

    Google Scholar 

  26. R. Evans, Density functionals in the theory of nonuniform fluids”, p. 85, in “Fundamentals of Inhomogeneous Fluids”, D. Henderson ed., Marcel Dekker Inc., New York 1992.

    Google Scholar 

  27. A.J. Wagner, Int. J. Mod. Phys. B 17, 193 (2003).

    Article  ADS  Google Scholar 

  28. G. Tóth, C. Denniston, and J. M. Yeomans Phys. Rev. Lett. 88, 105504 (2002); C. Denniston, E. Orlandini, and J. M. Yeomans, Phys. Rev. E 64, 021701 (2001).

    Google Scholar 

  29. G. Gonnella, E. Orlandini and J.M. Yeomans, Phys. Rev. E 58, 480 (1998)

    Article  ADS  Google Scholar 

  30. O. Theissen, G. Gommper and D.M. Kroll, Europhys. Lett. 42, 419 (1998).

    Article  ADS  Google Scholar 

  31. F. Capuani, I. Pagonabarraga and D. Frenkel, J. Chem. Phys. 121, 973 (2004); ibid, 124, 124903 (2006).

    Google Scholar 

  32. A.J. Bray, Adv. Phys. 43, 357 (1994).

    Article  MathSciNet  ADS  Google Scholar 

  33. V.M. Kendon, J-C. Desplat, P. Bladon, and M.E. Cates Phys. Rev. Lett. 83, 576 (1999).

    Article  ADS  Google Scholar 

  34. I. Pagonabarraga, A.J. Wagner and M.E. Cates, J. Stat. Phys. 107, 39 (2002).

    Article  MATH  Google Scholar 

  35. I. Pagonabarraga, J.-C. Desplat, A.J. Wagner and M.E. Cates, New Journ. of Phys. 3, 91 (2001).

    Google Scholar 

  36. A.J.C. Ladd, J. Fluid Mech. 271, 285 (1994); J. Fluid Mech. 271, 311 (1994).

    Google Scholar 

  37. M.W. Heemels, M.H.J. Hagen and C.P. Lowe, J. Comput. Phys. 164, 48 (2000).

    Article  MATH  ADS  Google Scholar 

  38. C.P. Lowe, D. Frenkel and A.J. Masters, J. Chem. Phys. 76, 1582 (1995).

    Article  ADS  Google Scholar 

  39. J.A. Kaandorp and C.P. Lowe, Phys. Rev. Lett. 77, 2328 (1996).

    Article  ADS  Google Scholar 

  40. C.P. Lowe and D. Frenkel, Phys. Rev. E 54, 2704 (1996).

    Article  ADS  Google Scholar 

  41. M.H. Hagen, D. Frenkel and C.P. Lowe, Physica A 272, 376 (1996).

    Article  Google Scholar 

  42. P. Ahlrichs and B. Dünweg, J. Chem. Phys. 111, 4453 (1999).

    Article  Google Scholar 

  43. V. Lobaskin, B. Dünweg, New J. Physics 6, 54 (2004).

    Google Scholar 

  44. A. Chatterji and J. Horbach, J. Chem. Pys. 122, 184903 (2005)

    Google Scholar 

  45. R. Adhikari, K. Stratford, A.J. Wagner and M.E. Cates, Europhys. Lett. 71, 473 (2005).

    Article  ADS  Google Scholar 

  46. N.Q. Nguyen and A.J.C. Ladd, Phy. Rev. E 66, 046708 (2002).

    Google Scholar 

  47. K. Stratford, R. Adhikari, I. Pagonabarraga and J.-C. Desplat, J. Stat. Phys. 121,163 (2005).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  48. J.-C. Desplat, I. Pagonabarraga and P. Bladon, Comp. Phys. Comm. 134, 273 (2001).

    Article  MATH  ADS  Google Scholar 

  49. J.F. Brady and G. Bossis, Ann. Rev. Fluid Mech. 20, 111 (1988).

    Article  ADS  Google Scholar 

  50. M.E. Cates, K. Stratford, R. Adhikari, P. Stansell, J.-C. Desplat, I. Pagonabar- raga and A.J. Wagner, J. Phys. Cond. Matt. 16 S3903 (2004).

    Article  ADS  Google Scholar 

  51. A.J.C. Ladd, J. Chem. Phys. 88, 5051 (1988).

    Article  ADS  Google Scholar 

  52. J.X. Zhu, D.J. Durian, D.A. Weitz and D.J. Pine, Phys. Rev. Lett. 68, 2559 (1992); A.J.C. Ladd, H. Gang, J.X. Zhu and .A. Weitz, Phys. Rev. E 52, 6550 (1995).

    Google Scholar 

  53. A. F. Bakker and C. P. Lowe: J. Chem. Phys. 116, 5817 (2002)

    ADS  Google Scholar 

  54. P.N. Segré, O.P. Behrend and P.N. Pusey, Phys. Rev. E 52, 5070 (1995).

    Article  ADS  Google Scholar 

  55. T.M. Squires and S.R. Quake, Rev. Mod. Phys. 77, 977 (2005).

    Article  ADS  Google Scholar 

  56. M.A. van der Hoef, D. Frenkel and A.J.C. Ladd, Phys. Rev. Lett. 67, 3459 (1991).

    Article  ADS  Google Scholar 

  57. M.H.J. Hagen, I. Pagonabarraga, C.P. Lowe and D. Frenkel, Phys. Rev. Lett. 78,3785 (1997)

    Article  ADS  Google Scholar 

  58. I. Pagonabarraga, M.H.J. Hagen, C.P. Lowe and D. Frenkel, Phys. Rev. E 58, 7288 (1998).

    Article  ADS  Google Scholar 

  59. P.N. Segré, E. Herbolzheimer and P.M. Chaikin, Phys. Rev. Lett. 79, 2574 (1997).

    Article  ADS  Google Scholar 

  60. R.E. Caflisch and J.H.C. Luke, Phys. Fluids 28, 259 (1985).

    Article  Google Scholar 

  61. N.-Q. Nguyenm A.J.C. Ladd, J. Fluid. Mech. 525, 73 (2005).

    Article  ADS  Google Scholar 

  62. A. Levine, S. Ramaswamy, E. Frey and R. Bruinsma, Phys. Rev. Lett. 81, 5944 (1998).

    Article  ADS  Google Scholar 

  63. J.T. Padding and A.A. Louis, Phys. Rev. Lett. 93, 220601 (2004).

    Article  ADS  Google Scholar 

  64. A.D. Dinsmore, M.F. Hsu, M.G. Nikolaides, M. Marquez, A.R. Bausch and D.A. Weitz, Science 298, 1006 (2002).

    Article  ADS  Google Scholar 

  65. A.B. Subramaniam, M. Abkarian, L. Mahadevan and H.A. Stone, Nature 438, 930 (2005).

    Article  ADS  Google Scholar 

  66. R. Adhikari, K. Sratford and M.E. Cates, J. Phys. Cond. Matt. 17, S2771 (2005).

    Article  Google Scholar 

  67. K. Stratford, R. Adhikari, I. Pagonabarraga, J.-C. Desplat y M.E. Cates, Science 309,2174 (2005).

    Google Scholar 

  68. J. Horbach and S. Succi, Pys. Rev. Lett. 96, 224503 (2006).

    Google Scholar 

  69. P.B. Warren, Curr. Opin. Coll. Int. Sci. 3, 620 (1998).

    Article  Google Scholar 

  70. A. Malevanets and R. Kapral, J. Chem. Phys. 112, 7260 (2000).

    Article  ADS  Google Scholar 

  71. R.D. Groot and P.B. Warren, J. Chem. Phys. 107, 4423 (1997).

    Article  ADS  Google Scholar 

  72. A.A. Louis, J. Phys. Cond. Matt. 14, 9187 (2002).

    Article  ADS  Google Scholar 

  73. I. Pagonabarraga and D. Frenkel, J. Chem. Phys. 115, 5015 (2001).

    Article  ADS  Google Scholar 

  74. S. Merabia and I. Pagonabarraga, Eur. J. Phys. E 20, 209 (2006).

    Article  Google Scholar 

  75. P. Español and M. Revenga, Phys. Rev. E 67, 026705 (2003).

    Google Scholar 

  76. E.S. Boek, P.V. Coveney, H.N.W. Lekkerkerker and P. van der Schoot, Phys. Rev. E 55, 3124 (1997).

    Article  ADS  Google Scholar 

  77. M.P. Allen, J. Phys. Chem. B 110, 3823 (2006).

    Article  Google Scholar 

  78. G. Bird, ”Molecular gas dynamics and the direct simulation of gas flows”, Clarendon Press, Oxford (1994).

    Google Scholar 

  79. N. Kikuchi, C.M. Pooley, J.F. Ryder and J.M. Yeomans, J. Chem. Phys. 119, 6388 (2003).

    Article  ADS  Google Scholar 

  80. S.H. Lee and R. Kapral, Physica A 298, 56 (2001).

    Article  ADS  Google Scholar 

  81. M. Hecht, J. Harting, T. Ihle and H.J. Hermann, Phys. Rev. E 72, 011408 (2005).

    Google Scholar 

  82. J.T. Padding and A.A. Louis, Phys. Rev. E 74, 031402 (2006)

    Google Scholar 

  83. Y.N. Kikuchi, J.F. Ryder, C.M. Pooley and J.M. Yeomans, Phys. Rev. E 71, 061804 (2005).

    Google Scholar 

  84. M. Ripoll, R.G. Winkler and G. Gompper, Phys. Rev. Lett. 96, 188302 (2006).

    Google Scholar 

  85. H. Noguchi and G. Gompper, Proc. Nat. Acad. Sci. 102, 14159 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Canopus Publishing Limited

About this chapter

Cite this chapter

Pagonabarraga, I. (2007). Understanding Liquid/Colloids Composites with Mesoscopic Simulations. In: Zvelindovsky, A.V. (eds) Nanostructured Soft Matter. NanoScience and Technology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6330-5_19

Download citation

Publish with us

Policies and ethics