Understanding Liquid/Colloids Composites with Mesoscopic Simulations

  • Ignacio Pagonabarraga
Part of the NanoScience and Technology book series (NANO)

The study of complex fluids and soft materials contains a number of basic conceptual and practical challenges. The most basic difficulties are related to the fact that different length and time scales compete, making it impractical to carry out first principles modeling of these materials [1]. Colloidal particles are rigid molecular aggregates of sizes varying between a few nanometers and a micron. As a result, they are at least one order of magnitude larger than the molecules that characterize the solvent they are suspended in. Colloids move at smaller velocities than solvent molecules as a result of their size mismatch, and hence their characteristic time scales are also orders of magnitude larger than solvent ones. Moreover, colloid interactions also differ qualitatively from their molecular counterparts. Although they derive from the specific atomic interactions among the atoms that constitute the colloids, the fact that colloids are made of thousands of atoms implies that the effective strength is typically of a few times the characteristic thermal energy, kBT, at room temperature, with kB referring to the Boltzmann constant [2].


Colloidal Particle Colloidal Suspension Spinodal Decomposition Lattice Boltzmann American Physical Society 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    “Soft and fragile matter: Nonequilibrium dynamics, metastability and flow”, M.E. Cates and M.R. Evans eds., SUSSP Publications and Institute of Physics Publishing, Bristol (2000).Google Scholar
  2. 2.
    T.A. Witten, Rev. Mod. Physics 71, S367 (199).CrossRefMathSciNetGoogle Scholar
  3. 3.
    J. Israelachvili, ”Intermolecular and surface forces”, Academic Press London (1992).Google Scholar
  4. 4.
    T.A. Witten, ”Structured fluids. Polymers, colloids surfactants”, Oxford University Press, Oxford (2004)Google Scholar
  5. 5.
    R.G. Larson, ”The structure and rheology of complex fluids”, Oxford University Press, New York (1999).Google Scholar
  6. 6.
    J.K.G. Dhont, ”An Introduction to dynamics of colloids”, Elsevier, Amsterdam (1996)Google Scholar
  7. 7.
    M.J. Nuevo, J.J. Morales and D.M. Heyes, Phys. Rev. E 58, 5845 (1998)CrossRefADSGoogle Scholar
  8. 8.
    F. Ould-Kaddour and D. Levesque, J. Chem. Phys. 118,7888 (2003)CrossRefADSGoogle Scholar
  9. 9.
    M. Allen and D. Tildesley, ”Computer simulation of liquids”, Oxford University Press, Oxford (2000).Google Scholar
  10. 10.
    P. Español and P.B. Warren, Europhys. Lett. 30, 191 (1995).CrossRefADSGoogle Scholar
  11. 11.
    C.P. Lowe, Europhys. Lett.47, 145 (1999).CrossRefADSGoogle Scholar
  12. 12.
    C.A. Marsh, G. Backx and M.H. Ernst, Phys. Rev. E 56, 1676 (1997).CrossRefADSGoogle Scholar
  13. 13.
    The effective potentials are introduced naively by regarding a particle in these models as representing a bunch of molecules. For an attempt to link the effective forces to microscopic one, see e.g. E.G. Flekkoy and P.V. Coveney, Phys. Rev. Lett. 83, 1775 (1999).CrossRefADSGoogle Scholar
  14. 14.
    D.H. Rothman and S. Zaleski, Lattice-gas cellular automata: simple models of complex hydrodynamics, Cambridge University Press (1997).Google Scholar
  15. 15.
    S. Succi, ”The Lattice Boltzmann equation for fluid dynamics ad beyond”, Ox- ford University press, Oxford (2001).Google Scholar
  16. 16.
    U. Frish, B. Hasslacher and Y. Pomeau, Phys. Rev. Lett. 56, 1505 (1986).CrossRefADSGoogle Scholar
  17. 17.
    S. Wolfram, J. Stat. Phys. 45, 471 (1986).MATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    F. Higuera, S. Succi and R. Benzi, Europhys. Lett. 9, 345 (1989).CrossRefADSGoogle Scholar
  19. 19.
    R. Verberg and A.J.C. Ladd, J. Stat. Phys. 104, 1191 (2001).MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    V.M. Kendon, M.E. Cates, I. Pagonabarraga, J.-C. Desplat and P. Bladon, J. Fluid. Mech. 440, 147 (2001).MATHCrossRefADSGoogle Scholar
  21. 21.
    O. Behrend R. Harris and P.B. Warren, Phys. Rev. E 50, 4586 (1994).CrossRefADSGoogle Scholar
  22. 22.
    A.J. Wagner, Prog. Comput. Fluid Dyn. 5, 20 (2005).CrossRefGoogle Scholar
  23. 23.
    X. Shan and H. Chen, Phys. Rev. E 49, 2941 (1994).CrossRefADSGoogle Scholar
  24. 24.
    L.-S. Luo, Phys. Rev. E 62, 4982 (2000).CrossRefMathSciNetADSGoogle Scholar
  25. 25.
    M.R. Swift, W.R. Osborn, and J.M. Yeomans, Phys. Rev. Lett. 75, 830 (1995); M. R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans, Phys. Rev. E 54, 5041 (1996).Google Scholar
  26. 26.
    R. Evans, Density functionals in the theory of nonuniform fluids”, p. 85, in “Fundamentals of Inhomogeneous Fluids”, D. Henderson ed., Marcel Dekker Inc., New York 1992.Google Scholar
  27. 27.
    A.J. Wagner, Int. J. Mod. Phys. B 17, 193 (2003).CrossRefADSGoogle Scholar
  28. 28.
    G. Tóth, C. Denniston, and J. M. Yeomans Phys. Rev. Lett. 88, 105504 (2002); C. Denniston, E. Orlandini, and J. M. Yeomans, Phys. Rev. E 64, 021701 (2001).Google Scholar
  29. 29.
    G. Gonnella, E. Orlandini and J.M. Yeomans, Phys. Rev. E 58, 480 (1998)CrossRefADSGoogle Scholar
  30. 30.
    O. Theissen, G. Gommper and D.M. Kroll, Europhys. Lett. 42, 419 (1998).CrossRefADSGoogle Scholar
  31. 31.
    F. Capuani, I. Pagonabarraga and D. Frenkel, J. Chem. Phys. 121, 973 (2004); ibid, 124, 124903 (2006).Google Scholar
  32. 32.
    A.J. Bray, Adv. Phys. 43, 357 (1994).CrossRefMathSciNetADSGoogle Scholar
  33. 33.
    V.M. Kendon, J-C. Desplat, P. Bladon, and M.E. Cates Phys. Rev. Lett. 83, 576 (1999).CrossRefADSGoogle Scholar
  34. 34.
    I. Pagonabarraga, A.J. Wagner and M.E. Cates, J. Stat. Phys. 107, 39 (2002).MATHCrossRefGoogle Scholar
  35. 35.
    I. Pagonabarraga, J.-C. Desplat, A.J. Wagner and M.E. Cates, New Journ. of Phys. 3, 91 (2001).Google Scholar
  36. 36.
    A.J.C. Ladd, J. Fluid Mech. 271, 285 (1994); J. Fluid Mech. 271, 311 (1994).Google Scholar
  37. 37.
    M.W. Heemels, M.H.J. Hagen and C.P. Lowe, J. Comput. Phys. 164, 48 (2000).MATHCrossRefADSGoogle Scholar
  38. 38.
    C.P. Lowe, D. Frenkel and A.J. Masters, J. Chem. Phys. 76, 1582 (1995).CrossRefADSGoogle Scholar
  39. 39.
    J.A. Kaandorp and C.P. Lowe, Phys. Rev. Lett. 77, 2328 (1996).CrossRefADSGoogle Scholar
  40. 40.
    C.P. Lowe and D. Frenkel, Phys. Rev. E 54, 2704 (1996).CrossRefADSGoogle Scholar
  41. 41.
    M.H. Hagen, D. Frenkel and C.P. Lowe, Physica A 272, 376 (1996).CrossRefGoogle Scholar
  42. 42.
    P. Ahlrichs and B. Dünweg, J. Chem. Phys. 111, 4453 (1999).CrossRefGoogle Scholar
  43. 43.
    V. Lobaskin, B. Dünweg, New J. Physics 6, 54 (2004).Google Scholar
  44. 44.
    A. Chatterji and J. Horbach, J. Chem. Pys. 122, 184903 (2005)Google Scholar
  45. 45.
    R. Adhikari, K. Stratford, A.J. Wagner and M.E. Cates, Europhys. Lett. 71, 473 (2005).CrossRefADSGoogle Scholar
  46. 46.
    N.Q. Nguyen and A.J.C. Ladd, Phy. Rev. E 66, 046708 (2002).Google Scholar
  47. 47.
    K. Stratford, R. Adhikari, I. Pagonabarraga and J.-C. Desplat, J. Stat. Phys. 121,163 (2005).MATHCrossRefMathSciNetADSGoogle Scholar
  48. 48.
    J.-C. Desplat, I. Pagonabarraga and P. Bladon, Comp. Phys. Comm. 134, 273 (2001).MATHCrossRefADSGoogle Scholar
  49. 49.
    J.F. Brady and G. Bossis, Ann. Rev. Fluid Mech. 20, 111 (1988).CrossRefADSGoogle Scholar
  50. 50.
    M.E. Cates, K. Stratford, R. Adhikari, P. Stansell, J.-C. Desplat, I. Pagonabar- raga and A.J. Wagner, J. Phys. Cond. Matt. 16 S3903 (2004).CrossRefADSGoogle Scholar
  51. 51.
    A.J.C. Ladd, J. Chem. Phys. 88, 5051 (1988).CrossRefADSGoogle Scholar
  52. 52.
    J.X. Zhu, D.J. Durian, D.A. Weitz and D.J. Pine, Phys. Rev. Lett. 68, 2559 (1992); A.J.C. Ladd, H. Gang, J.X. Zhu and .A. Weitz, Phys. Rev. E 52, 6550 (1995).Google Scholar
  53. 53.
    A. F. Bakker and C. P. Lowe: J. Chem. Phys. 116, 5817 (2002)ADSGoogle Scholar
  54. 54.
    P.N. Segré, O.P. Behrend and P.N. Pusey, Phys. Rev. E 52, 5070 (1995).CrossRefADSGoogle Scholar
  55. 55.
    T.M. Squires and S.R. Quake, Rev. Mod. Phys. 77, 977 (2005).CrossRefADSGoogle Scholar
  56. 56.
    M.A. van der Hoef, D. Frenkel and A.J.C. Ladd, Phys. Rev. Lett. 67, 3459 (1991).CrossRefADSGoogle Scholar
  57. 57.
    M.H.J. Hagen, I. Pagonabarraga, C.P. Lowe and D. Frenkel, Phys. Rev. Lett. 78,3785 (1997)CrossRefADSGoogle Scholar
  58. 58.
    I. Pagonabarraga, M.H.J. Hagen, C.P. Lowe and D. Frenkel, Phys. Rev. E 58, 7288 (1998).CrossRefADSGoogle Scholar
  59. 59.
    P.N. Segré, E. Herbolzheimer and P.M. Chaikin, Phys. Rev. Lett. 79, 2574 (1997).CrossRefADSGoogle Scholar
  60. 60.
    R.E. Caflisch and J.H.C. Luke, Phys. Fluids 28, 259 (1985).CrossRefGoogle Scholar
  61. 61.
    N.-Q. Nguyenm A.J.C. Ladd, J. Fluid. Mech. 525, 73 (2005).CrossRefADSGoogle Scholar
  62. 62.
    A. Levine, S. Ramaswamy, E. Frey and R. Bruinsma, Phys. Rev. Lett. 81, 5944 (1998).CrossRefADSGoogle Scholar
  63. 63.
    J.T. Padding and A.A. Louis, Phys. Rev. Lett. 93, 220601 (2004).CrossRefADSGoogle Scholar
  64. 64.
    A.D. Dinsmore, M.F. Hsu, M.G. Nikolaides, M. Marquez, A.R. Bausch and D.A. Weitz, Science 298, 1006 (2002).CrossRefADSGoogle Scholar
  65. 65.
    A.B. Subramaniam, M. Abkarian, L. Mahadevan and H.A. Stone, Nature 438, 930 (2005).CrossRefADSGoogle Scholar
  66. 66.
    R. Adhikari, K. Sratford and M.E. Cates, J. Phys. Cond. Matt. 17, S2771 (2005).CrossRefGoogle Scholar
  67. 67.
    K. Stratford, R. Adhikari, I. Pagonabarraga, J.-C. Desplat y M.E. Cates, Science 309,2174 (2005).Google Scholar
  68. 68.
    J. Horbach and S. Succi, Pys. Rev. Lett. 96, 224503 (2006).Google Scholar
  69. 69.
    P.B. Warren, Curr. Opin. Coll. Int. Sci. 3, 620 (1998).CrossRefGoogle Scholar
  70. 70.
    A. Malevanets and R. Kapral, J. Chem. Phys. 112, 7260 (2000).CrossRefADSGoogle Scholar
  71. 71.
    R.D. Groot and P.B. Warren, J. Chem. Phys. 107, 4423 (1997).CrossRefADSGoogle Scholar
  72. 72.
    A.A. Louis, J. Phys. Cond. Matt. 14, 9187 (2002).CrossRefADSGoogle Scholar
  73. 73.
    I. Pagonabarraga and D. Frenkel, J. Chem. Phys. 115, 5015 (2001).CrossRefADSGoogle Scholar
  74. 74.
    S. Merabia and I. Pagonabarraga, Eur. J. Phys. E 20, 209 (2006).CrossRefGoogle Scholar
  75. 75.
    P. Español and M. Revenga, Phys. Rev. E 67, 026705 (2003).Google Scholar
  76. 76.
    E.S. Boek, P.V. Coveney, H.N.W. Lekkerkerker and P. van der Schoot, Phys. Rev. E 55, 3124 (1997).CrossRefADSGoogle Scholar
  77. 77.
    M.P. Allen, J. Phys. Chem. B 110, 3823 (2006).CrossRefGoogle Scholar
  78. 78.
    G. Bird, ”Molecular gas dynamics and the direct simulation of gas flows”, Clarendon Press, Oxford (1994).Google Scholar
  79. 79.
    N. Kikuchi, C.M. Pooley, J.F. Ryder and J.M. Yeomans, J. Chem. Phys. 119, 6388 (2003).CrossRefADSGoogle Scholar
  80. 80.
    S.H. Lee and R. Kapral, Physica A 298, 56 (2001).CrossRefADSGoogle Scholar
  81. 81.
    M. Hecht, J. Harting, T. Ihle and H.J. Hermann, Phys. Rev. E 72, 011408 (2005).Google Scholar
  82. 82.
    J.T. Padding and A.A. Louis, Phys. Rev. E 74, 031402 (2006)Google Scholar
  83. 83.
    Y.N. Kikuchi, J.F. Ryder, C.M. Pooley and J.M. Yeomans, Phys. Rev. E 71, 061804 (2005).Google Scholar
  84. 84.
    M. Ripoll, R.G. Winkler and G. Gompper, Phys. Rev. Lett. 96, 188302 (2006).Google Scholar
  85. 85.
    H. Noguchi and G. Gompper, Proc. Nat. Acad. Sci. 102, 14159 (2005).CrossRefADSGoogle Scholar

Copyright information

© Canopus Publishing Limited 2007

Authors and Affiliations

  • Ignacio Pagonabarraga
    • 1
  1. 1.Departament de Física FonamentalUniversitat de BarcelonaSpain

Personalised recommendations