Skip to main content

Computer Simulations of Nano-Scale Phenomena Based on the Dynamic Density Functional Theories: Applications of SUSHI in the OCTA System

  • Chapter
Book cover Nanostructured Soft Matter

Part of the book series: NanoScience and Technology ((NANO))

Multicomponent polymeric materials such as polymer blends, polymer melts, block copolymers, and polymer solutions, often show macro and micro phase separations that generate domains of the length scales of 1-100 nm. These polymeric materials with phase-separated domains are promising candidates for functional materials in nano-technologies [1-3]. The characteristic length scales of these domain structures are much larger than atomic length scales but are still smaller than hydrodynamic length scales. For phenomena on the micro and macroscopic length scales, there are well-established simulation techniques. For example, microscopic phenomena on atomic length scales can be dealt with using particle simulation techniques such as molecular dynamics (MD) simulations. On the other hand, macroscopic hydrodynamic phenomena are simulated with the finite element method (FEM). Compared to these extreme length scales, there have been very few simulation techniques for the intermediate length scales (the so-called mesoscopic scales) where the phaseseparated domains locate. To study the phase separated domains on mesoscopic scales, very useful tools are the density functional theories (DFTs) [4-7], where the phaseseparated domains are described in terms of the density distributions of monomers and solvents. One of the important features of DFT is that it can take into account the conformational entropy of polymer chains with any molecular architectures, i.e. the monomer sequence and the branching structures. Using this DFT, one can predict the equilibrium state of polymeric systems with mesoscopic structures, which is not easily accessible by the particle simulations or the fluid dynamics simulations. Therefore the DFT plays an important role in bridging between microscopic particle simulations and macroscopic fluid dynamics simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. S. Bates, G. H. Fredrickson: Physics Today 52, 32 (1999).

    Article  Google Scholar 

  2. I. W. Hamley: Block Copolymers ; Oxford University Press: Oxford, 1999.

    Google Scholar 

  3. C. Park, J. Yoon, E. L. Thomas: Polymer 44, 6725 (2003).

    Article  Google Scholar 

  4. G. J. Fleer, M. A. Cohen Stuart, J. M. H. M. Scheutjens, T. Cosgrove, B. Vincent: Polymers at Interfaces ; Chapman & Hall: London, 1993.

    Google Scholar 

  5. M. W. Matsen, F. S. Bates: Macromolecules 29, 1091 (1996).

    Article  ADS  Google Scholar 

  6. M. W. Matsen: J. Phys. Cond. Matt. 14, R21 (2002).

    Article  ADS  Google Scholar 

  7. T. Kawakatsu: Statistical Physics of Polymers - An Introduction ; SpringerVerlag, Berlin, 2004.

    Google Scholar 

  8. L. Leibler: Macromolecules 13 1602 (1980).

    Article  ADS  Google Scholar 

  9. . E. Helfand, Z. R. Wasserman: Macromolecules 9, 879 (1976). E. Helfand, Z. R. Wasserman: Macromolecules 11, 960 (1978). E. Helfand, Z. R. Wasserman: Macromolecules 11, 994 (1980).

    Google Scholar 

  10. M. W. Matsen, M. Schick: Phys. Rev. Lett. 72, 2660 (1994).

    Article  ADS  Google Scholar 

  11. . A. V. Zvelindovsky, G. J. A. Sevink, B. A. C. van Vlimmeren, N. M. Maurits, J. G. E. M. Fraaije: Phys. Rev. E 57, R4879 (1998). A. V. Zvelindovsky, B. A. C. van Vlimmeren, G. J. A. Sevink, N. M. Maurits, J. G. E. M. Fraaije: J. Chem. Phys. 109, 8751 (1998). A. V. Zvelindovsky, G. J. A. Sevink, J. G. E. M. Fraaije: Phys. Rev. E 62, R3063 (2000). A.V. Zvelindovsky, G. J. A. Sevink: Europhys. Lett. 62, 370 (2003).

    Google Scholar 

  12. T. Honda, T. Kawakatsu: Macromolecules 39, 2340 (2006).

    Article  ADS  Google Scholar 

  13. M. Laradji, A.-C. Shi, J. Noolandi, C. R. Desai: Macromolecules 30, 3242 (1997).

    Article  ADS  Google Scholar 

  14. . M. W. Matsen: Phys. Rev. Lett. 80, 4470 (1998). M. W. Matsen: J. Chem. Phys. 114, 8165 (2001).

    Google Scholar 

  15. . S. Qi, Z. G. Wang: Phys. Rev. Lett. 76, 1679 (1996). S. Qi, Z. G. Wang: Pys. Rev. E 55, 1682 (1997). S. Qi, Z. G. Wang: Polymer 39, 4639 (1998).

    Google Scholar 

  16. . M. Nonomura, T. Ohta: J. Phys. Soc. Jpn. 70, 927 (2001). M. Nonomura, T. Ohta: Physica A 304, 77 (2002). M. Nonomura, T. Ohta: J. Phys.: Condens. Matt. 15, L423 (2003).

    Google Scholar 

  17. K. Yamada, M. Nonomura, T. Ohta: Macromolecules 37, 5762 (2004).

    Article  ADS  Google Scholar 

  18. . (http://octa.jp) T. Honda,H. Kodama, J.-R. Roan, H. Morita, S. Urashita, R. Hasegawa, K. Yokomizo, T. Kawakatsu, M. Doi: SUSHI Users Manual ; OCTA: Nagoya, Japan, 2004.

  19. T. Honda and T. Kawahatsu Macromolecules 40, 1227 (2007).

    Article  ADS  Google Scholar 

  20. M. Doi, S. F. Edwards: The Theory of Polymer Dynamics ; Oxford Science: Oxford, 1986.

    Google Scholar 

  21. K. M. Hong, J. Noolandi: Macromolecules 14, 727 (1981).

    Article  ADS  Google Scholar 

  22. J. G. E. M. Fraaije: J. Chem. Phys. 99, 9202 (1993).

    Article  ADS  Google Scholar 

  23. R. Hasegawa, M. Doi: Macromolecules 30, 5490 (1997).

    Article  ADS  Google Scholar 

  24. . P.G. de Gennes: Scaling Concepts in Polymer Physics Cornell University Press, Ithaca, 1979.

    Google Scholar 

  25. A. Hotta, S. M. Clarke, E. M. Terentjev: Macromolecules 35, 271 (2002).

    Article  ADS  Google Scholar 

  26. T. Aoyagi, T. Honda, M. Doi: J. Chem. Phys. 117, 8153 (2002).

    Article  ADS  Google Scholar 

  27. R. Stadler, C. Auschra, J. Beckmann, U. Krappe, I. Voigt-Martin, L. Leibler: Macromolecules 28, 3080 (1995).

    Article  ADS  Google Scholar 

  28. W. Zheng, Z.-G. Wang: Macromolecules 28, 7215 (1995).

    Article  MathSciNet  ADS  Google Scholar 

  29. T. Gemma, A. Hatano, T. Dotera: Macromolecules 35, 3225 (2002).

    Article  ADS  Google Scholar 

  30. I. W. Hamley, K. A. Koppi, J. H. Rosedale, F. S. Bates, K. Almdal, K. Mortensen: Macromolecules 26 5959 (1993).

    Article  ADS  Google Scholar 

  31. S. Foerster, A. K. Khandpur, J. Zhao, F. S. Bates, I. W. Hamley, A. J. Ryan, W. Bras: Macromolecules 27, 6922 (1994).

    Article  ADS  Google Scholar 

  32. . M. E. Vigild, K. Almdal, K., Mortensen,I. W. Hamley, J. P. A Fairclough, A. J. Ryan: Macromolecules 31, 5702 (1998).

    Google Scholar 

  33. D. A. Hajduk, P. E. Harper, S. M. Gruner, C. C. Honeker, G. Kim, E. L. Thomas, L. J. Fetters: Macromolecules 27, 4063 (1994).

    Article  ADS  Google Scholar 

  34. Y. Bohbot-Raviv, Z.-G. Wang: Phys. Rev. Lett. 85, 3428 (2000).

    Article  ADS  Google Scholar 

  35. P. G. de Gennes: J. Phys. (Paris) 31, 235 (1970).

    Google Scholar 

  36. T. Ohta, K. Kawasaki: Macromolecules 19, 2621 (1986).

    Article  ADS  Google Scholar 

  37. C-Y. Wang, T. P. Lodge: Macromol. Rapid. Commun. 23, 49 (2002).

    Article  Google Scholar 

  38. R. D. Groot, T. J. Madden: J. Chem. Phys. 108, 8713 (1998).

    Article  ADS  Google Scholar 

  39. T. Shima, H. Kuni, Y. Okabe, M. Doi, X.-F. Yuan, T. Kawakatsu: Macro- molecules 36, 9199 (2003).

    ADS  Google Scholar 

  40. . M. Mihajlovic, T. S. Lo, Y. Shnidman: Phys. Rev. E 72, 041801-1-26 (2005).

    Google Scholar 

  41. B. Narayanan, V. A. Pryamitsyn, V. Ganesan: Macromolecules 37, 10180 (2004).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Canopus Publishing Limited

About this chapter

Cite this chapter

Honda, T., Kawakatsu, T. (2007). Computer Simulations of Nano-Scale Phenomena Based on the Dynamic Density Functional Theories: Applications of SUSHI in the OCTA System. In: Zvelindovsky, A.V. (eds) Nanostructured Soft Matter. NanoScience and Technology. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6330-5_15

Download citation

Publish with us

Policies and ethics