Ab-initio Coarse-Graining of Entangled Polymer Systems

  • Johan T. Padding
  • Wim J. Briels
Part of the NanoScience and Technology book series (NANO)

Ever since Richard Kuhn’s description of a polymer as a coiling flexible thread [1], polymer systems have received continuous interest from both theo- rists and experimentalists. In semi-dilute and concentrated polymer solutions each polymer chain interacts with many other chains. The effect of these in- termolecular interactions is revealed by the peculiar flow behaviour of these materials: they are very viscous and have surprising elastic properties. In un- crosslinked polymers these elastic properties manifest themselves temporarily, but still sometimes on time scales as long as seconds or hours. This peculiar viscoelastic behaviour is often rationalized by viewing poly- mer systems as temporary rubbery networks. Such a network arises as a result of mutual uncrossability of the polymer chains - they are entangled. Many at- tempts have already been made to fundamentally explain the entanglement phenomenon. The usual procedure is to propose a microscopic model, calculate the consequences for various dynamic properties, and compare the outcome with experiment, if available. Theoretical treatments of this sort include coop- erative motion models, where the focus is on the increased friction experienced by a test chain because it drags other chains with it over finite distances [2]. A major difficulty in such an approach is the specification of the location and duration of entanglements, because the exact nature of an entanglement is not known.


Shear Rate Elastic Band Persistence Length Dissipative Particle Dynamic Random Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    . W. Kuhn: Kolloid Z. 87, 3 (1939); Z. Physik. Chem. B42, 1 (1939)Google Scholar
  2. 2.
    T.P. Lodge, N.A. Rotstein, and S. Prager: Adv. Chem. Phys. 79, 1 (1990)CrossRefGoogle Scholar
  3. 3.
    M. Doi and S.F. Edwards: The Theory of Polymer Dynamics (Clarendon, Ox- ford 1986)Google Scholar
  4. 4.
    R. Kimmich and N. Fatkullin: Adv. Polym. Sci. 170, 1 (2004)Google Scholar
  5. 5.
    R. Everaers et al.: Science 303, 823 (2004)CrossRefADSGoogle Scholar
  6. 6.
    K. Kremer and G.S. Grest: J. Chem. Phys. 92, 5057 (1990)CrossRefADSGoogle Scholar
  7. 7.
    M. Pütz, K. Kremer, and G.S. Grest: Europhys. Lett. 49, 735 (2000)CrossRefADSGoogle Scholar
  8. 8.
    W. Tschöp, K. Kremer, J. Batoulis, T. Bürger, and O. Hahn: Acta Polymer. 49,61 (1998)CrossRefGoogle Scholar
  9. 9.
    J. Baschnagel et al.: Adv. Polym. Sci. 152, 41 (2000)CrossRefGoogle Scholar
  10. 10.
    R.L.C. Akkermans and W.J. Briels: J. Chem. Phys. 113, 6409 (2000)CrossRefADSGoogle Scholar
  11. 11.
    F. Muller-Plathe: Soft Materials 1, 1 (2003)CrossRefGoogle Scholar
  12. 12.
    . J.M. Deutch and I. Oppenheim: J. Chem. Phys. 54, 3547 (1971); J. Albers, J.M. Deutch, and I. Oppenheim: J. Chem. Phys. 54, 3541 (1971)Google Scholar
  13. 13.
    D.L. Ermak and J.A. McCammon: J. Chem. Phys. 69, 1352 (1978)CrossRefADSGoogle Scholar
  14. 14.
    T.J. Murphy and J.L. Aguirre: J. Chem. Phys. 57, 2098 (1972)CrossRefADSGoogle Scholar
  15. 15.
    M. Dijkstra, R. van Roij, and R. Evans: Phys. Rev. E 59, 5744 (1999)CrossRefADSGoogle Scholar
  16. 16.
    R.L.C. Akkermans and W.J. Briels: J. Chem. Phys. 114, 1020 (2001)CrossRefADSGoogle Scholar
  17. 17.
    J.T. Padding and W.J. Briels: J. Chem. Phys. 114, 8685 (2001)CrossRefADSGoogle Scholar
  18. 18.
    J.T. Padding and W.J. Briels: J. Chem. Phys. 115, 2846 (2001)CrossRefADSGoogle Scholar
  19. 19.
    J.M. Carella, W.W. Graessley, and L.J. Fetters: Macromolecules 17, 2775 (1984)CrossRefADSGoogle Scholar
  20. 20.
    R.L.C. Akkermans and W.J. Briels: J. Chem. Phys. 115, 6210 (2001)CrossRefADSGoogle Scholar
  21. 21.
    W.J. Briels and R.L.C. Akkermans: Mol. Sim. 28, 145 (2002)CrossRefGoogle Scholar
  22. 22.
    C.N. Likos: Phys. Rep. 348, 267 (2001)CrossRefADSGoogle Scholar
  23. 23.
    A.A. Louis: J. Phys.: Condens. Matter 14, 9187 (2002)CrossRefADSGoogle Scholar
  24. 24.
    P.J. Hoogerbrugge and J.M.V.A. Koelman: Europhys. Lett. 19, 155 (1992)CrossRefADSGoogle Scholar
  25. 25.
    D.S. Pearson, G. Ver Strate, E. von Meerwall, and F.C. Schilling: Macro- molecules 20, 1133 (1987)ADSGoogle Scholar
  26. 26.
    J.T. Padding and W.J. Briels: J. Chem. Phys. 117, 925 (2002)CrossRefADSGoogle Scholar
  27. 27.
    M. Mondello, G.S. Grest, E.B. Webb III, and P. Peczak: J. Chem. Phys. 109, 798 (1998)CrossRefADSGoogle Scholar
  28. 28.
    W. Paul, G.D. Smith, and D.Y. Yoon: Macromolecules 30, 7772 (1997)CrossRefADSGoogle Scholar
  29. 29.
    J.D. Moore, S.T. Cui, H.D. Cochran, and P.T. Cummings: J. Non-Newtonian Fluid Mech. 93, 83 (2000)CrossRefGoogle Scholar
  30. 30.
    L.M. Walker: Curr. Opin. Coll. Int. Sci. 6, 451 (2001)CrossRefGoogle Scholar
  31. 31.
    M.E. Cates and S.J. Candau: J. Phys.: Condens. Matter 2, 6869 (1990)CrossRefADSGoogle Scholar
  32. 32.
    G.C. Maitland: Curr. Opin. Coll. Int. Sci. 5, 301 (2000)CrossRefGoogle Scholar
  33. 33.
    J.T. Padding, E.S. Boek, and W.J. Briels: J. Phys.: Condens. Matter 17, S3347 (2005)CrossRefADSGoogle Scholar
  34. 34.
    M. Kröger and R. Makhloufi: Phys. Rev. E 53, 2531 (1996)CrossRefADSGoogle Scholar
  35. 35.
    J.T. Padding and E.S. Boek: Phys. Rev. E 70, 031502 (2004)Google Scholar
  36. 36.
    B. O’Shaughnessy and J. Yu: Phys. Rev. Lett. 74, 4329 (1995)CrossRefADSGoogle Scholar
  37. 37.
    J.T. Padding and E.S. Boek: Europhys. Lett. 66, 756 (2004)CrossRefADSGoogle Scholar
  38. 38.
    S.R. Raghavan and E.W. Kaler: Langmuir 17, 300 (2001)CrossRefGoogle Scholar
  39. 39.
    . E.S. Boek, J.T. Padding, V.J. Andersson, W.J. Briels, and J.P. Crawshaw: to be published in J. Non-Newtonian Fluid Mech.Google Scholar

Copyright information

© Canopus Publishing Limited 2007

Authors and Affiliations

  • Johan T. Padding
    • 1
  • Wim J. Briels
    • 1
  1. 1.Computational Biophysics, Faculty of Science and TechnologyUniversity of TwenteThe Netherlands

Personalised recommendations