Skip to main content

Raman properties

  • Chapter
Photonic Crystal Fibers

Part of the book series: Materials Science ((SSMATERIALS,volume 102))

  • 1915 Accesses

The importance of Raman amplification in optical communication systems has become more and more relevant in the last years. The gain mechanism in Raman amplification is the SRS, that is, a nonlinear scattering process by which energy is transferred from a pump wavelength to a signal one, which can be longer, in the Stokes process, or shorter, in the anti-Stokes one [5.1, 5.2]. The gain flexibility, that is, the possibility to obtain amplification at any wavelength in any fiber, is one of the key advantage of Raman fiber amplifiers. Broadband and low noise-figure Raman amplifiers can be obtained with multipumping schemes [5.3–5.5]. Moreover, distributed Raman amplification provides a significant improvement of the noise performances and an increase of the signal power budget in transmission fibers [5.6, 5.7].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. J. Bromage, “Raman amplification for fiber communication systems,” in Proc. Optical Fiber Communications Conference OFC 2003, Atlanta, Georgia, USA, Mar. 23-28, 2003, pp. TuC1-1-TuC1-25.

    Google Scholar 

  2. A. Evans, “Applications of Raman gain in optical transmission sys- tems,” in Proc. European Conference on Optical Communication ECOC 2003, Rimini, Italy, Sept. 21-25, 2003, paper Tutorial Mo3.3, pp. 156-183.

    Google Scholar 

  3. Y. Emori, K. Tanaka, and S. Namiki, “100 nm bandwidth flat-gain Raman amplifiers pumped and gain-equalized by 12-wavelength-channel WDM laser diode unit,” Electronics Letters, vol. 35, pp. 1355-1356, Aug. 1999.

    Article  Google Scholar 

  4. H. D. Kidorf, K. Rottwitt, M. Nissov, M. Ma, and E. Rabarijaona, “Pump interactions in a 100-nm bandwidth Raman amplifier,” IEEE Photonics Technology Letters, vol. 11, pp. 530-532, May 1999.

    Article  ADS  Google Scholar 

  5. S. Namiki and Y. Emori, “Ultrabroad-band raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 7, pp. 3-16, Jan./Feb. 2001.

    Article  Google Scholar 

  6. P. B. Hansen, L. Eskildsen, S. G. Grubb, A. J. Stentz, T. A. Strasser, J. Judkins, J. J. Demarco, R. Pedrazzani, and D. J. Digiovanni, “Capacity upgrades of transmission systems by Raman amplification,” IEEE Photonics Technology Letters, vol. 9, pp. 262-264, Feb. 1997.

    Article  ADS  Google Scholar 

  7. C. Fludger, A. Maroney, N. Jolley, and R. Mears, “An analysis of the im- provements in OSNR from distributed Raman amplifiers using modern transmission fibers,” in Proc. Optical Fiber Communications Conference OFC 2000, Mar. 7-10, 2000, paper FF2.

    Google Scholar 

  8. K. P. Hansen and R. E. Kristiansen, “Supercontinuum Generation in Photonic Crystal Fibers,” Crystal Fibre A/S, Tech. Rep., 2005.

    Google Scholar 

  9. R. E. Kristiansen, K. P. Hansen, J. Broeng, P. M. W. Skovgaard, M. D. Nielsen, A. Petersson, T. P. Hansen, B. Mangan, C. Jakobsen, and H. R. Simonsen, “Microstructured fibers and their applications,” in Proc. Reuniòn Española de Optoelectrònica OPTOEL 2005, Elche, Spain, July 13-15, 2005.

    Google Scholar 

  10. A. Ortigosa-Blanch, J. C. Knight, and P. St. J. Russell, “Pulse break- ing and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers,” Journal of Optical Society of America B, vol. 19, pp. 2567-2572, Nov. 2002.

    Article  ADS  Google Scholar 

  11. J. C. Knight, “Dispersion and nonlinearity in photonic crystal fibres,” in Proc. Summer-School on Advanced Glass-Based Nano-Photonics POWAG 2004, Bath, UK, July 12-16, 2004.

    Google Scholar 

  12. C. J. S. de Matos, K. P. Hansen, and J. R. Taylor, “Experimental char- acterisation of Raman gain efficiency of holey fibre,” Electronics Letters, vol. 39, pp. 424-425, Mar. 2003.

    Article  Google Scholar 

  13. J. Nilsson, R. Selvas, W. Belardi, J. H. Lee, Z. Yusoff, T. M. Monro, and D. J. Richardson, “Continous-wave pumped holey fiber Raman laser,” in Proc. Optical Fiber Communications Conference OFC 2002, Anaheim, California, USA, Mar. 17-22, 2002, paper WR6, pp. 315-317.

    Google Scholar 

  14. Z. Yusoff, J. H. Lee, W. Belardi, T. M. Monro, P. C. Teh, and D. J. Richardson, “Raman effects in a highly nonlinear holey fiber: amplifica-tion and modulation,” Optics Letters, vol. 27, pp. 424-426, Mar. 2002.

    Article  ADS  Google Scholar 

  15. J. Hewett, “Fibre cuts Raman threshold,” Opto and Laser Europe, vol. 100, p. 14, Nov. 2002.

    Google Scholar 

  16. M. Fuochi, F. Poli, S. Selleri, A. Cucinotta, and L. Vincetti, “Study of Raman amplification properties in triangular photonic crystal fibers,” IEEE/OSA Journal of Lightwave Technology, vol. 21, pp. 2247-2254, July 2003.

    Article  ADS  Google Scholar 

  17. M. Fuochi, F. Poli, S. Selleri, and A. Cucinotta, “Photonic crystal fibers for raman amplification,” in Proc. Progress in Electromagnetics Research Symposium PIERS 2003, Honolulu, Hawaii, USA, Oct. 13-16, 2003.

    Google Scholar 

  18. M. Fuochi, F. Poli, S. Selleri, A. Cucinotta, and L. Vincetti, “Raman amplification properties of silica and tellurite photonic crystal fibers,” in Proc. European Conference on Optical Communication ECOC 2003, Rimini, Italy, Sept. 21-25, 2003.

    Google Scholar 

  19. M. Bottacini, F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Effective area tailoring in triangular photonic crystal fibers,” in Proc. Progress in Electromagnetics Research Symposium PIERS 2004, Pisa, Italy, Mar. 28-31, 2004.

    Google Scholar 

  20. S. Selleri, F. Poli, and A. Cucinotta, “Raman gain coefficient of solid- core honeycomb photonic crystal fibers,” in Proc. Laser and Ectro-Optics Society Annual Meeting LEOS 2004, Puerto Rico, USA, Nov. 7-11, 2004.

    Google Scholar 

  21. M. Bottacini, F. Poli, A. Cucinotta, and S. Selleri, “Modeling of pho- tonic crystal fiber Raman amplifiers,” IEEE/OSA Journal of Lightwave Technology, vol. 22, pp. 1707-1713, July 2004.

    Article  ADS  Google Scholar 

  22. M. Bottacini, S. Selleri, F. Poli, A. Cucinotta, and M. Foroni, “Impact of background losses on photonic crystal fiber Raman amplifier,” in Proc. Laser and Ectro-Optics Society Annual Meeting LEOS 2004, Puerto Rico, USA, Nov. 7-11, 2004.

    Google Scholar 

  23. S. Selleri, A. Cucinotta, M. Bottacini, F. Poli, and M. Foroni, “Gain flat- ness in photonic crystal fiber Raman amplifier,” in Proc. International Congress on Optics and Optoelectronics SPIE-COO 2005, Warsaw, Poland, Aug. 28-Sept. 2, 2005.

    Google Scholar 

  24. F. Poli, L. Rosa, M. Bottacini, M. Foroni, A. Cucinotta, and S. Selleri,“Multi-pump flattened-gain Raman amplifiers based on photonic-crystal fibers,” IEEE Photonics Technology Letters, vol. 17, pp. 2556-2558, Dec. 2005.

    Article  ADS  Google Scholar 

  25. G. P. Agrawal, Nonlinear Fiber Optics. New York: Academic, 2001.

    Google Scholar 

  26. J. Bromage, K. Rottwitt, and M. E. Lines, “A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index pro- file,” IEEE Photonics Technology Letters, vol. 14, pp. 24-26, Jan. 2002.

    Article  ADS  Google Scholar 

  27. N. A. Mortensen,“Effective area of photonic crystal fiber,” Optics Express, vol.10, pp.341-348, Apr.2002. Available at: http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-341

  28. P. Petropoulos, T. M. Monro, W. Belardi, K. Furusawa, J. H. Lee, and D. J. Richardson, “2R-regenerative all-optical switch based on a highly nonlinear holey fiber,” Optics Letters, vol. 26, pp. 1233-1235, Aug. 2001.

    Article  ADS  Google Scholar 

  29. J. H. Lee, Z. Yusoff, W. Belardi, M. Ibsen, T. M. Monro, and D. J. Richardson, “Investigation of Brillouin effects in small-core holey optical fiber: lasing and scattering,” Optics Letters, vol. 27, pp. 927-929, June 2002.

    Article  ADS  Google Scholar 

  30. F. L. Galeener, J. C. Mikkelsen, R. H. Geils, and W. H. Mosby, “The relative Raman cross sections of vitreous SiO2 , GeO2 , B2 O3 and P2 O5 ,” Applied Physics Letters, vol. 32, pp. 34-36, Jan. 1978.

    Article  ADS  Google Scholar 

  31. B. J. Ainslie, S. T. Davey, W. J. M. Rothwell, B. Wakefield, and D. L. Williams, “Optical gain spectrum of GeO2 − SiO2 Raman fibre amplifiers,” IEE Proceedings Optoelectronics, vol. 136, pp. 301-306, Dec. 1989.

    Article  Google Scholar 

  32. Highly Non-Linear Fiber for Discrete Raman Amplifier, Sumitomo Elec- tric Lightwave Corp.

    Google Scholar 

  33. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell, “Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technology Letters, vol. 12, pp. 807-809, July 2000.

    Article  ADS  Google Scholar 

  34. K. Kato, H. Masuda, A. Mori, K. Oikawa, K. Shikano, and M. Shimizu, “Ultra-wideband tellurite-based Raman fibre amplifier,” Electronics Letters, vol. 37, pp. 1442-1443, Nov. 2001.

    Article  Google Scholar 

  35. A. Mori, M. Shimizu, and H. Masuda,“Ultra-wideband tellurite- based fiber Raman amplifiers,” in Proc. Optical Fiber Communica- tions Conference OFC 2003, Atlanta, Georgia, USA, Mar. 23-28, 2003, pp. 427-429.

    Google Scholar 

  36. E. S. Hu, Y.-L. Hsueh, M. E. Marhic, and L. G. Kazovsky, “Design of highly-nonlinear tellurite fibers with zero dispersion near 1550 nm,” in Proc. European Conference on Optical Communication ECOC 2002, Copenhagen, Denmark, Sept. 8-12, 2002, paper 3.2.3.

    Google Scholar 

  37. V. V. R. K. Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, “Tellurite photonic crystal fiber,” Optics Express, vol. 11, pp. 2641-2645, Oct. 2003. Available at: http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-20-2641

  38. D. Ferrarini, L. Vincetti, M. Zoboli, A. Cucinotta, and S. Selleri, “Leakage properties of photonic crystal fibers,” Optics Express, vol. 10, pp. 1314-1319, Nov. 2002. Available at: http://www.opticsexpress.org/ abstract.cfm?URI=OPEX-10-23-1314

  39. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science, vol. 282, pp. 1476-1478, Nov. 1998.

    Article  Google Scholar 

  40. A. Cucinotta, F. Poli, S. Selleri, L. Vincetti, and M. Zoboli, “Ampli- fication properties of Er3+ -doped photonic crystal fibers,” IEEE/OSA Journal of Lightwave Technology, vol. 21, pp. 782-788, Mar. 2003.

    Article  ADS  Google Scholar 

  41. J. Lægsgaard, N. A. Mortensen, and A. Bjarklev, “Mode areas and field- energy distribution in honeycomb photonic bandgap fibers,” Journal of Optical Society of America B, vol. 20, pp. 2037-2045, Oct. 2003.

    Article  ADS  Google Scholar 

  42. J. Lægsgaard and A. Bjarklev,“Doped photonic bandgap fibers for short-wavelength nonlinear devices,” Optics Letters, vol.28, pp. 783-785, May 2003.

    Article  ADS  Google Scholar 

  43. T. P. Hansen, J. Broeng, and A. Bjarklev, “Solid-core photonic bandgap fiber with large anomalous dispersion,” in Proc. Optical Fiber Communications Conference OFC 2003, Atlanta, Georgia, USA, Mar. 23-28, 2003, pp. 700-701.

    Google Scholar 

  44. N. A. Mortensen, M. D. Nielsen, J. R. Folkenberg, C. Jakobsen, and H. R. Simonsen, “Photonic crystal fiber with a hybrid honeycomb cladding,” Optics Express, vol. 12, pp. 468-472, Feb. 2004. Available at: http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-468

  45. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency- domain methods for Maxwell’s equations in a planewave basis,” Optics Express, vol.8, pp.173-179, Jan.2001. Available at: http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173

  46. K. Rottwitt, J. Bromage, A. J. Stentz, L. Leng, M. E. Lines, and H. Smith, “Scaling of the Raman gain coefficient: applications to germanosilicate fibers,” IEEE/OSA Journal of Lightwave Technology, vol. 21, pp. 1652-1662, July 2003.

    Article  ADS  Google Scholar 

  47. A. H. Hartog and M. P. Gold, “On the theory of backscattering in single-mode optical fibers,” IEEE/OSA Journal of Lightwave Technology, vol. 2, pp. 76-82, Apr. 1984.

    Article  ADS  Google Scholar 

  48. K. Tajima, J. Zhou, K. Kurokawa, and K. Nakajima, “Low water peak photonic crystal fibres,” in Proc. European Conference on Optical Communication ECOC 2003, Rimini, Italy, Sept. 21-25, 2003, paper Th4.1.6.

    Google Scholar 

  49. W. Zhi, R. Guobin, L. Shuqin, and J. Shuisheng, “Loss properties due to Rayleigh scattering in different types of fiber,” Optics Express, vol. 11, pp.39-47, Jan.2003. Available at: http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-1-39

  50. L. Farr, J. C. Knight, B. J. Mangan, and P. J. Roberts, “Low loss pho- tonic crystal fibre,” in Proc. European Conference on Optical Commu-nication ECOC 2002, Copenhagen, Denmark, Sept. 8-12, 2002, paper PD1.3.

    Google Scholar 

  51. Nonlinear photonic crystal fibers - Crystal Fibre A/S. Available at: http://www.crystal-fibre.com/products/nonlinear.shtm

  52. K. Tajima, J. Zhou, K. Nakajima, and K. Sato, “Ultralow loss and long length photonic crystal fiber,” IEEE/OSA Journal of Lightwave Technology, vol. 22, pp. 7-10, Jan. 2004.

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

(2007). Raman properties. In: Photonic Crystal Fibers. Materials Science, vol 102. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6326-8_5

Download citation

Publish with us

Policies and ethics