Skip to main content

Nonlinear properties

  • Chapter
Photonic Crystal Fibers

Part of the book series: Materials Science ((SSMATERIALS,volume 102))

  • 1934 Accesses

In this chapter the nonlinear properties of PCFs are deeply analyzed. Firstly, supercontinuum generation, one of the most important applications of the fibers with enhanced nonlinear properties, is described, starting from the numerous results, both experimental and theoretical, which have been presented in literature so far.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. F. Poli, F. Adami, M. Foroni, L. Rosa, A. Cucinotta, and S. Selleri, “Optical parametric amplification in all-silica triangular-core photonic crystal fibers,” Applied Physics B, vol. 81, pp. 251-255, July 2005.

    Article  Google Scholar 

  2. S. Selleri, A. Cucinotta, F. Poli, M. Foroni, and L. Rosa, “Optical para-metric amplification in dispersion-flattened highly nonlinear photonic crystal fibers,” in Proc. International Congress on Optics and Optoelec-tronics SPIE-COO 2005, Warsaw, Poland, Aug. 28-Sept. 2, 2005.

    Google Scholar 

  3. L. Vincetti, M. Maini, F. Poli, A. Cucinotta, and S. Selleri, “Numerical analysis of hollow core photonic band gap fibers with modified honeycomb lattice,” Optical and Quantum Electronics, vol. 38, pp. 903-912, Dec. 2006.

    Article  Google Scholar 

  4. R. R. Alfano and S. L. Shapiro, “Observation of self-phase modulation and small-scale filaments in crytal and glasses,” Physical Review Letters, vol. 24, pp. 592-594, Mar. 1970.

    Article  ADS  Google Scholar 

  5. N. I. Nikolov, T. Sørensen, O. Bang, and A. Bjarklev, “Improving effi- ciency of supercontinuum generation in photonic crystal fibers by direct degenerate four-wave mixing,” Journal of Optical Society of America B, vol. 20, pp. 2329-2337, Nov. 2003.

    Article  ADS  Google Scholar 

  6. W. J. Wadsworth, A. Ortigosa-Blanch, J. C. Knight, T. A. Birks, T. P. M. Man, and P. St. J. Russell, “Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,” Journal of Optical Society of America B, vol. 19, pp. 2148-2155, Sept. 2002.

    Article  ADS  Google Scholar 

  7. K. P. Hansen and R. E. Kristiansen, “Supercontinuum Generation in Photonic Crystal Fibers,” Crystal Fibre A/S, Tech. Rep., 2005.

    Google Scholar 

  8. K. M. Hilligsøe, H. N. Paulsen, J. Thøgersen, S. R. Keiding, and J. J. Larsen, “Initial steps of supercontinuum generation in photonic crystal fibers,” Journal of Optical Society of America B, vol. 20, pp. 1887-1893, Sept. 2003.

    Article  ADS  Google Scholar 

  9. A. V. Husakou and J. Herrmann, “Supercontinuum generation, four- wave mixing, and fission of higher-order solitons in photonic-crystal fibers,” Journal of Optical Society of America B, vol. 19, pp. 2171-2182, Sept. 2002.

    Article  ADS  Google Scholar 

  10. A. Apolonski, B. Povazay, A. Unterhuber, W. Drexler, W. J. Wadsworth, J. C. Knight, and P. St. J. Russell, “Spectral shaping of supercontinuum in a cobweb photonic-crystal fiber with sub-20-fs pulses,” Journal of Optical Society of America B, vol. 19, pp. 2165-2170, Sept. 2002.

    Article  ADS  Google Scholar 

  11. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, and P. St. J. Russell,“Anomalous dispersion in photonic crystal fiber,” IEEE Photonics Technology Letters, vol. 12, pp. 807-809, July 2000.

    Article  ADS  Google Scholar 

  12. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, “Holey fiber analy- sis through the finite-element method,” IEEE Photonics Technology Letters, vol. 14, pp. 1530-1532, Nov. 2002.

    Article  ADS  Google Scholar 

  13. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Optics Letters, vol. 25, pp. 25-27, Jan. 2000.

    Article  ADS  Google Scholar 

  14. T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, and S. Yamaguchi, “Supercontinuum generation at 1.55 µm in a dispersion-flattened polarization-maintaining photonic crystal fiber,” Optics Express, vol. 11, pp. 1537-1540, June 2003. Available at: http://www.opticsexpress.org/abstract.cfm?URI=oe-11-13-1537

  15. M. Lehtonen, G. Genty, H. Ludvigsen, and M. Kaivola, “Supercontin- uum generation in a highly birefringent microstructured fiber,” Applied Physics Letters, vol. 82, pp. 2197-2199, Apr. 2003.

    Article  ADS  Google Scholar 

  16. A. Proulx, J. M. Ménard, N. Hô, J. Laniel, R. Vallée, and C. Paré, “Intensity and polarization dependences of the supercontinuum generation in birefringent and highly nonlinear microstructured fibers,” Optics Express, vol.11, pp.3338-3345, Dec.2003. Available at: http://www.opticsexpress.org/abstract.cfm?URI=oe-11-25-3338

  17. A. B. Fedotov, A. N. Naumov, A. M. Zheltikov, I. Bugar, D. Chorvat Jr., D. Chorvat, A. P. Tarasevitch, and D. von der Linde, “Frequencytunable supercontinuum generation in photonic-crystal fibers by femtosecond pulses of an optical parametric amplifier,” Journal of Optical Society of America B, vol. 19, pp. 2156-2164, Sept. 2002.

    Article  ADS  Google Scholar 

  18. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, “Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,” Optics Express, vol.10, pp.1083-1098, Oct. 2002. Available at: http://www.opticsexpress.org/abstract.cfm?URI=oe-10-20-1083

  19. K. M. Hilligsøe, T. Andersen, H. Paulsen, C. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. Hansen, and J. Larsen, “Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths,” Optics Express, vol.12, pp.1045-1054, Mar.2004. Available at: http://www.opticsexpress.org/abstract.cfm?URI=oe-12-6-1045

  20. A. Ortigosa-Blanch, J. C. Knight, and P. St. J. Russell, “Pulse breaking and supercontinuum generation with 200-fs pump pulses in photonic crystal fibers,” Journal of Optical Society of America B, vol. 19, pp. 2567-2572, Nov. 2002.

    Article  ADS  Google Scholar 

  21. G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, “Enhanced bandwidth of supercontinuum generated in microstructured fibers,” Optics Express, vol.12, pp.3471-3480, July2004. Available at: http://www.opticsexpress.org/abstract.cfm?URI=oe-12-15-3471

  22. K. P. Hansen, J. J. Larsen, J. R. Jensen, S. Keiding, J. Broeng, H. R. Simonsen, and A. Bjarklev, “Super continuum generation at 800 nm in highly nonlinear photonic crystal fibers with normal dispersion,” in Proc. Laser and Ectro-Optics Society Annual Meeting LEOS 2001, San Diego, California, USA, Nov. 12-13, 2001, pp. 703-704.

    Google Scholar 

  23. K. Hansen, J. R. Jensen, D. Birkedal, J. M. Hvam, and A. Bjarklev, “Pumping wavelength dependence of super continuum generation in photonic crystal fibers,” in Proc. Optical Fiber Communications Con-ference OFC 2002, Anaheim, California, USA, Mar. 17-22, 2002, paper ThGG8.

    Google Scholar 

  24. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, “Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,” Journal of Optical Society of America B, vol. 19, pp. 765-771, Apr. 2002.

    Article  ADS  Google Scholar 

  25. H. Hundertmark, D. Kracht, D. Wandt, C. Fallnich, V. V. R. K. Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, “Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm,” Optics Express, vol. 11, pp. 3196-3201, Dec. 2003. Available at: http://www.opticsexpress.org/abstract.cfm?URI=oe-11-24-3196

  26. S. Coen, A. H. L. Chau, R. Leonhardt, J. D. Harvey, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber,” Optics Letters, vol. 26, pp. 1356-1358, Sept. 2001.

    Article  ADS  Google Scholar 

  27. Nonlinear photonic crystal fibers- Selected datasheets-1550 nm fibers, Crystal Fibre A/S. Available at: http://www.crystal-fibre.com/datasheets/NL-1550-POS-1.pdf

  28. “Application note on supercontinuum in SC-5.0-1040,” Crystal Fibre A/S, Tech. Rep., 2005. Available at: http://www.crystal- fibre.com/support/Supercontinuum-SC-5.0-1040.pdf

  29. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Optics Letters, vol. 26, pp. 608-610, May 2001.

    Article  ADS  Google Scholar 

  30. J. Hansryd, P. A. Anderkson, M. Westlund, J. Li, and P. Hedekvist, “Fiber-based optical parametric amplifiers and their applications,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 506-520, May/June 2002.

    Article  Google Scholar 

  31. R. H. Stolen and J. E. Bjorkholm, “Parametric amplification and frequency conversion in optical fiber,” IEEE Journal of Quantum Electronics, vol. QE-18, pp. 1062-1072, July 1982.

    Article  ADS  Google Scholar 

  32. G. Cappellini and S. Trillo, “Third order three-wave mixing in single mode fibers: exact solutions and spatial instability effects,” Journal of Optical Society of America B, vol. 8, pp. 824-838, Apr. 1991.

    Article  ADS  Google Scholar 

  33. C. J. McKinstrie, S. Radic, and A. R. Chraplyvy, “Parametric ampli- fiers driven by two pump waves,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, pp. 538-547, May/June 2002.

    Article  Google Scholar 

  34. J. Hansryd and P. A. Andrekson,“Broad-band continuous-wave- pumped fiber optical parametric amplifier with49dB gain and wavelength conversion efficiency,” IEEE Photonics Technology Letters, vol. 13, pp. 194-196, Mar. 2001.

    Article  ADS  Google Scholar 

  35. R. Tang, J. Lasri, P. Devgan, J. E. Sharping, and P. Kumar, “Microstructure-fibre-based optical parametric amplifier with gain slope of ≃200 dB/W/km in the telecom range,” Electronics Letters, vol. 39, pp. 195-196, Jan. 2003.

    Article  Google Scholar 

  36. W. Belardi, J. H. Lee, K. Furusawa, A. Yusoff, P. Petropoulos, M. Ibsen, T. M. Monro, and D. J. Richardson, “A 10 Gbit/s tunable wavelength converter based on four-wave-mixing in higly nonlinear holey fiber,” in Proc. European Conference on Optical Communication ECOC 2002, Copenhagen, Denmark, Sept. 8-12, 2002, paper postdeadline 1.2.

    Google Scholar 

  37. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Scalar modulation instability in the normal dispersion regime by use of a photonic crystal fiber,” Optics Letters, vol. 28, pp. 2225-2227, Nov. 2003.

    Article  ADS  Google Scholar 

  38. T. V. Andersen, K. M. Hilligsøe, C. K. Nielsen, J. Thøgersen, K. P. Hansen, S. R. Keiding, and J. J. Larsen, “Continuous-wave wavelength conversion in a photonic crystal fiber with two zero-dispersion wavelengths,” Optics Express, vol.12, pp.4113-4122, Aug.2004. Available at: http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-17-4113

  39. C. J. S. de Matos, J. R. Taylor, and K. P. Hansen, “Continuous-wave, totally fiber integrated optical parametric oscillator using holey fiber,” Optics Letters, vol. 29, pp. 983-985, May 2004.

    Article  ADS  Google Scholar 

  40. V. Finazzi, T. M. Monro, and D. J. Richardson, “Small-core silica holey fibers: nonlinearity and confinement loss trade-offs,” Journal of Optical Society of America B, vol. 20, pp. 1427-1436, July 2003.

    Article  ADS  Google Scholar 

  41. G. Renversez, B. Kuhlmey, and R. McPhedran, “Dispersion manage- ment with microstructured optical fibers: ultraflattened chromatic dis-persion with low losses,” Optics Letters, vol. 28, pp. 989-991, June 2003.

    Article  ADS  Google Scholar 

  42. F. Poli, A. Cucinotta, S. Selleri, and A. H. Bouk, “Tailoring of flattened dispersion in highly nonlinear photonic crystal fibers,” IEEE Photonics Technology Letters, vol. 16, pp. 1065-1067, Apr. 2004.

    Article  ADS  Google Scholar 

  43. D. J. Richardson, F. Poletti, J. Y. Y. Leong, X. Feng, H. Ebendorff- Heidepriem, V. Finazzi, K. E. Frampton, S. Asimakis, R. C. Moore, J. C. Baggett, J. R. Hayes, M. N. Petrovich, M. L. Tse, R. Amezcua, J. H. V. Price, N. G. R. Broderick, P. Petropoulos, and T. M. Monro, “Advances in microstructured fiber technology,” in Proc. IEEE/LEOS Workshop on Fibres and Optical Passive Components WFOPC 2005, Palermo, Italy, June 22-24, 2005.

    Google Scholar 

  44. L. Vincetti, F. Poli, and S. Selleri, “Confinement loss and nonlinearity analysis of air-guiding modified honeycomb photonic bandgap fibers,” IEEE Photonics Technology Letters, vol. 18, pp. 508-510, Feb. 2006.

    Article  ADS  Google Scholar 

  45. G. P. Agrawal, Nonlinear Fiber Optics. New York: Academic, 2001.

    Google Scholar 

  46. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic bandgap fibers,” Science, vol. 301, pp. 1702-1704, Sept. 2003.

    Article  ADS  Google Scholar 

  47. J. Lægsgaard, N. A. Mortensen, and A. Bjarklev, “Mode areas and field- energy distribution in honeycomb photonic bandgap fibers,” Journal of Optical Society of America B, vol. 20, pp. 2037-2045, Oct. 2003.

    Article  ADS  Google Scholar 

  48. A. W. Snyder and J. D. Love, Optical Waveguide Theory. New York: Chapman & Hall, 1996.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

(2007). Nonlinear properties. In: Photonic Crystal Fibers. Materials Science, vol 102. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6326-8_4

Download citation

Publish with us

Policies and ethics