Advertisement

The Adventures of Space-Time

  • Orfeu Bertolami
Part of the Fundamental Theories of Physics book series (FTPH, volume 153)

Since the nineteenth century, it is known, through the work of Lobatchevski, Riemann, and Gauss, that spaces do not need to have a vanishing curvature. This was for sure a revolution on its own, however, from the point of view of these mathematicians, the space of our day to day experience, the physical space, was still an essentially a priori concept that preceded all experience and was independent of any physical phenomena. Actually, that was also the view of Newton and Kant with respect to time, even though, for these two space-time explorers, the world was Euclidean.

Keywords

Dark Energy Cosmological Constant Cosmic Microwave Background Radiation Wilkinson Microwave Anisotropy Probe Nontrivial Topology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Witten, Nucl. Phys. B 186, 412 (1981).CrossRefMathSciNetADSGoogle Scholar
  2. 2.
    E. Witten, Phys. Rev. Lett. 38, 121 (1977); P. Forgacs and N.S. Manton, Comm. Math. Phys. 72,15 (1980).CrossRefADSGoogle Scholar
  3. 3.
    Yu.A. Kubyshin, J.M. Mour ão, G. Rudolph and I.P. Volobujev, Dimensional Reduction of Gauge Theories, Spontaneous Compactification and Model Building, Lecture Notes in Physics 349 (Springer, Berlin, Heidelberg 1989).Google Scholar
  4. 4.
    O. Bertolami, J.M. Mour ão, R.F. Picken and I.P. Volobujev, Int. J. Mod. Phys. A 6, 4149 (1991).CrossRefADSGoogle Scholar
  5. 5.
    O. Bertolami, Yu.A. Kubyshin and J.M. Mour ão, Phys. Rev. D 45, 3405 (1992).CrossRefMathSciNetADSGoogle Scholar
  6. 6.
    P. Candelas, G. Horowitz, A. Strominger and E. Witten, Nucl. Phys. B 258, 46 (1985).CrossRefMathSciNetADSGoogle Scholar
  7. 7.
    E. Witten, Nucl. Phys. B 443, 85 (1995).MATHCrossRefMathSciNetADSGoogle Scholar
  8. 8.
    A. Ashtekar, C. Rovelli and L. Smolin, Phys. Rev. Lett. 69, 237 (1992).MATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    M. Tegmark, Class. Quantum Grav. 14, L69 (1997).MATHCrossRefMathSciNetADSGoogle Scholar
  10. 10.
    S. Deser, R. Jackiw and G. t’Hooft, Ann. Phys. 152, 220 (1984).CrossRefMathSciNetADSGoogle Scholar
  11. 11.
    P. Ehrenfest, Proc. Amsterdam Acad. 20, 200 (1917).Google Scholar
  12. 12.
    C. Will, The Confrontation between General Relativity and Experiment, gr-qc/0510072.Google Scholar
  13. 13.
    O. Bertolami, J. P áramos and S. Turyshev, General Theory of Relativity: Will it survive the next decade?, gr-qc/0602016.Google Scholar
  14. 14.
    J. Nat ário, Relativity and Singularities - A Short Introduction for Mathematicians, math.dg/ 0603190.Google Scholar
  15. 15.
    J.-P. Luminet, L’Univers chiffonn é (Gallimard 2005).Google Scholar
  16. 16.
    N.J. Cornish, D.N. Spergel and G.D. Starkman, Class. Quantum Grav. 15, 2657 (1998).MATHCrossRefMathSciNetADSGoogle Scholar
  17. 17.
    J.-P. Luminet, J. Weeks, A. Riazuelo, R. Lehoucq and J.-P. Uzan, Nature 425, 593 (2003).CrossRefADSGoogle Scholar
  18. 18.
    R. Aurich, S. Lustig and F. Steiner, Class. Quantum Grav. 22, 3443 (2005).MATHCrossRefMathSciNetADSGoogle Scholar
  19. 19.
    D.N. Spergel et al., Astrophys. J. Suppl. 148, 175 (2003).CrossRefADSGoogle Scholar
  20. 20.
    J. Shapiro Key, N.J. Cornish, D.N. Spergel and G.D. Starkman, Astro-ph/0604616.Google Scholar
  21. 21.
    M.J. Rebouças, J.S. Alcaniz, B. Mota and M. Makler, Astron. Astrophys. 452, 803 (2006).CrossRefADSGoogle Scholar
  22. 22.
    M.C. Bento, O. Bertolami, M.J. Rebouças and P.T. Silva, Phys. Rev. D 73, 043504 (2006).CrossRefADSGoogle Scholar
  23. 23.
    M.C. Bento, O. Bertolami and A.A. Sen, Phys. Rev. D 66, 043507 (2002).CrossRefADSGoogle Scholar
  24. 24.
    M.C. Bento, O. Bertolami, M.J. Rebouças and N.M.C. Santos, Phys. Rev. D 73, 103521 (2006).CrossRefADSGoogle Scholar
  25. 25.
    R.E. Stong, Notes on Cobordism, Mathematical Notes (Princeton University Press, Princeton 1968).Google Scholar
  26. 26.
    J. Hartle and S.W. Hawking, Phys. Rev. D 28, 2960 (1983).CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    O. Bertolami and J.M. Mour ão, Class. Quant. Grav. 8, 1271 (1991).CrossRefADSGoogle Scholar
  28. 28.
    J.J. Halliwell, Nucl. Phys. B 266, 228 (1986).CrossRefMathSciNetADSGoogle Scholar
  29. 29.
    O. Bertolami, P.D. Fonseca and P.V. Moniz, Phys. Rev. D 56, 4530 (1997).CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    D.N. Spergel et al., Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology, astro-ph/0603449.Google Scholar
  31. 31.
    S. Hellerman, N. Kaloper and L. Susskind, JHEP 0106, 003 (2001).CrossRefMathSciNetADSGoogle Scholar
  32. 32.
    W. Fischler, A. Kashani-Poor, R. McNess and S. Paban, JHEP 0107, 003 (2001).CrossRefADSGoogle Scholar
  33. 33.
    E. Witten, The Cosmological Constant From The Viewpoint Of String Theory, hep-ph/ 0002297.Google Scholar
  34. 34.
    M.C. Bento, O. Bertolami and N.M.C. Santos, Phys. Rev. D 65, 067301 (2002).CrossRefADSGoogle Scholar
  35. 35.
    A. Guth, Phys. Rev. D 23, 347 (1981).CrossRefADSGoogle Scholar
  36. 36.
    A.D. Linde, Phys. Lett. B 108, 389 (1982).CrossRefMathSciNetADSGoogle Scholar
  37. 37.
    A. Albrecht and P. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982). CrossRefADSGoogle Scholar
  38. 1.
    R.M. Wald, Phys. Rev. D 28, 2118 (1983); L.G. Jensen and J.A. Stein-Schabes, Phys. Rev. D 34,931 (1986); T. Rothman and G.F.R. Ellis, Phys. Lett. B 180, 19 (1986).CrossRefMathSciNetADSGoogle Scholar
  39. 39.
    M.S. Turner and L.M. Widrow, Phys. Rev. Lett. 57, 2237 (1986); J.D. Barrow, Nucl. Phys. B 296,697 (1988).CrossRefADSGoogle Scholar
  40. 40.
    T. Piran and R.M. Williams, Phys. Lett. B 163, 331 (1985); D.S. Goldwirth and T. Piran, Phys. Rev. Lett. 64, 2852 (1990).CrossRefMathSciNetADSGoogle Scholar
  41. 41.
    K. Olive, Phys. Rep. 190, 302 (1990).CrossRefADSGoogle Scholar
  42. 42.
    L. Susskind, The Anthropic Landscape of String Theory, hep-th/0302219.Google Scholar
  43. 43.
    R. Bousso and J. Polchinski, JHEP 0006, 006 (2000).CrossRefMathSciNetADSGoogle Scholar
  44. 44.
    L. Susskind, The Cosmic Landscape: String Theory and the Illusion of Intelligent Design (Little, Brown, New York 2005).Google Scholar
  45. 45.
    G.F.R. Ellis, On horizons and the cosmic landscape, Astro-ph/0603266.Google Scholar
  46. 46.
    F. Wilczek, Enlightenment, Knowledge, Ignorance, Temptation, hep-ph/0512187.Google Scholar
  47. 47.
    S. Weinberg, Living in the Multiverse, hep-th/0511037.Google Scholar
  48. 48.
    J. Polchinski, The Cosmological Constant and the String Landscape, hep-th/0603249.Google Scholar
  49. 49.
    R. Holman and L. Mersini-Houghton, Why the Universe Started from a Low Entropy State, hep-th/0511102; Why did the Universe Start from a Low Entropy State?, hep-th/0512070.Google Scholar
  50. 50.
    O. Bertolami and P.V. Moniz, Nucl. Phys. B 439, 259 (1995).MATHCrossRefMathSciNetADSGoogle Scholar
  51. 51.
    L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999); 4690 (1999).MATHCrossRefMathSciNetADSGoogle Scholar
  52. 52.
    V.A. Rubakov and M.E. Shaposhnikov, Phys. Lett. B 125, 139 (1983).CrossRefADSGoogle Scholar
  53. 53.
    O. Bertolami and C. Carvalho, Lorentz symmetry derived from Lorentz violation in the bulk, gr-qc/0607043 to appear in Phys. Rev. D.Google Scholar
  54. 54.
    P. Horava and E. Witten, Nucl. Phys. B 460, 506 (1996).CrossRefMathSciNetADSGoogle Scholar
  55. 55.
    A. Lukas, B.A. Ovrut and D. Waldram, Phys. Rev. D 60, 086001 (1999).CrossRefMathSciNetADSGoogle Scholar
  56. 56.
    O. Aharony, S.S. Gubner, J. Maldacena, H. Ooguri and Y. Oz, Phys. Rep. 323, 183 (2000).CrossRefMathSciNetADSGoogle Scholar
  57. 57.
    A. Connes, M.R. Douglas and C. Hull, JHEP 9802, 008 (1998).Google Scholar
  58. 58.
    N. Seiberg and E. Witten, JHEP 9909, 032 (1999).CrossRefMathSciNetADSGoogle Scholar
  59. 59.
    V. Schomerus, JHEP 9906, 030 (1999).CrossRefMathSciNetADSGoogle Scholar
  60. 60.
    S.M. Carroll, J.A. Harvey, V.A. Kosteleck ýC.D. Lane and T. Okamoto, Phys. Rev. Lett. 87, 141601 (2001).CrossRefMathSciNetADSGoogle Scholar
  61. 61.
    O. Bertolami, L. Guisado, Phys. Rev. D 67 (2003); O. Bertolami, Mod. Phys. Lett. A 20, 1359025001, (2005).CrossRefMathSciNetADSGoogle Scholar
  62. 62.
    R. J. Szabo, Quantum Field Theory on Noncommutative Spaces, hep-th/0109162.Google Scholar
  63. 63.
    M.R. Douglas and N.A. Nekrasov, Rev. Mod. Phys. 73, 977 (2001).CrossRefMathSciNetADSGoogle Scholar
  64. 64.
    O. Bertolami and L. Guisado, JHEP 0312, 013 (2003).CrossRefMathSciNetADSGoogle Scholar
  65. 65.
    Jian-zu Zhang, Phys. Rev. Lett. 93, 043002 (2004).CrossRefGoogle Scholar
  66. 66.
    O. Bertolami, J.G. Rosa, C.M.L. Arag ão, P. Castorina and D. Zappal à , Phys. Rev. D 72, 025010 (2005).CrossRefMathSciNetADSGoogle Scholar
  67. 67.
    A.E.F. Djemai and H. Smail, Commun. Theor. Phys. 41, 837 (2004).MATHMathSciNetGoogle Scholar
  68. 68.
    V.V. Nesvizhevsky et al., Nature 415, 297(2002) 297; Eur. Phys. J.C 40, 479 (2005).CrossRefADSGoogle Scholar
  69. 69.
    O. Bertolami, J. G. Rosa, C.M.L. Arag ão, P. Castorina and D. Zappal à , Mod. Phys. Lett. A 21,795 (2006).CrossRefADSGoogle Scholar
  70. 70.
    E. Witten, Mod. Phys. A 10, 2153 (1995).MATHCrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Orfeu Bertolami
    • 1
  1. 1.Departamento FísicaInstituto Superior TécnicoPortugal

Personalised recommendations