Skip to main content

Dynamical Emergence of Instantaneous 3-Spaces in a Class of Models of General Relativity

  • Chapter
Relativity and the Dimensionality of the World

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 153))

The Hamiltonian structure of general relativity (GR), for both metric and tetrad gravity in a definite continuous family of space-times, is fully exploited in order to show that: (i) the Hole Argument can be bypassed by means of a specific physical individuation of point-events of the space-time manifold M 4in terms of the autonomous degrees of freedom of the vacuum gravitational field (Dirac observables), while the Leibniz equivalence is reduced to differences in the non-inertial appearances (connected to gauge variables) of the same phenomena. (ii) The chrono-geometric structure of a solution of Einstein equations for given, gauge- fixed, initial data (a 3-geometry satisfying the relevant constraints on the Cauchy surface), can be interpreted as an unfolding in mathematical global time of a sequence of achronal 3-spaces characterized by dynamically determined conventions about distant simultaneity. This result stands out as an important conceptual difference with respect to the standard chrono-geometrical view of special relativity (SR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Petit and P. Wolf, Relativistic Theory for Time Comparisons: a Review, METROLOGIA, 42, S138-S144, (2005).

    Article  ADS  Google Scholar 

  2. A. Einstein, Die formale Grundlage der allgemeinen Relativit ätstheorie, in Preuss. Akad. der Wiss. Sitz., pp. 1030-1085: (1914).

    Google Scholar 

  3. A. Einstein, Die Grundlage der allgemeinen Relativit ätstheorie, Annalen der Physik 49, 769-822,(1916); translation by W. Perrett and G. B. Jeffrey, The foundation of the general theory of relativity, in The Principle of Relativity, pp. 117-118 Dover, New York (1952).

    Google Scholar 

  4. C.J. Isham, Canonical Quantum Gravity and the Problem of Time, in Integrable Systems, Quantum Groups and Quantum Field Theories, (eds.) L.A. Ibort and M.A. Rodriguez (Salamanca, Kluwer, London, 1993).

    Google Scholar 

  5. K. Kuchar, Time and Interpretations of Quantum Gravity, in Proc. 4th Canadian Conf. on General Relativity and Relativistic Astrophysics, (eds.) G. Kunstatter, D. Vincent, and J. Williams (World Scientific, Singapore, 1992).

    Google Scholar 

  6. L. Lusanna and M. Pauri, Explaining Leibniz Equivalence as Difference of Non-Inertial Appearances: Dis-solution of the Hole Argument and Physical Individuation of Point-Events, Talk at the Oxford Conference on Spacetime Theory (2004), Studies in History and Philosophy of Modern Physics, 37(4), pp. 692-725 (2006) (gr-qc/0604087); The Physical Role of Gravitational and Gauge Degrees of Freedom in General Relativity. I: Dynamical Synchronization and Generalized Inertial Effects; II: Dirac versus Bergmann Observables and the Objectivity of Space-Time, Gen. Rel. Grav. 38, 187 and 229 (2006) (gr-qc/0403081 and 0407007).

    Google Scholar 

  7. V. Perlick, Characterization of Standard Clocks in General Relativity, in Semantical Aspects of Spacetime Theories, U. Mayer and H.-J. Schmidt (eds.) B.I. Wissenshaftverlag, pp. 169-179 (Mamheim, 1994).

    Google Scholar 

  8. Being and Becoming in Modern Physics, Stanford Encyclopedia of Philosophy, (http://plato.stanford.edu/entries/spacetime-bebecome/); Philosophy of Space and Time, Wikipedia, the free encyclopedia (http://en.wikipedia.org/wiki/Philosophyo fs paceandt ime).

  9. A. Gr ünbaum, The Meaning of Time, in Essays in Honor of Carl G. Hempel, A Tribute in Occasion of his Sixty-Fifth Birthday. pp. 147-177 (D. Reidel, Dordrecht, 1972).

    Google Scholar 

  10. Temporal Parts, Stanford Encyclopedia of Philosophy: (http://plato.stanford.edu/entries/te-mporal-parts/).

  11. D. Lynden-Bell, A Relative Newtonian Mechanics, Mach’s principle. From Newton’s bucket to quantum gravity, (eds.) J. Barbour and H. Pfister pp. 172-178 (Birkhauser, Boston, 1995).

    Google Scholar 

  12. D. Alba, L. Lusanna, and M. Pauri, Dynamical Body Frames, Orientation-Shape Variables and Canonical Spin Bases for the Nonrelativistic N-Body Problem, J. Math. Phys. 43, 373 (2002) (hep-th/0011014).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  13. R.G. Littlejohn and M. Reinsch, Gauge Fields in the Separation of Rotations and Internal Motions in the n-Body Problem, Rev. Mod. Phys. 69, 213 (1997).

    Article  MathSciNet  ADS  Google Scholar 

  14. D. Alba, L. Lusanna, and MPauri. Centers of Mass and Rotational Kinematics for the Relativistic N-Body Problem in the Rest-Frame Instant Form J. Math. Phys. 43, 1677-1727 (2002) (hep-th/0102087).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  15. D. Alba, L. Lusanna, and M. Pauri, New Directions in Non-Relativistic and Relativistic Rotational and Multipole Kinematics for N-Body and Continuous Systems (2005), in Atomic and Molecular Clusters: New Research (ed.) Y.L. Ping (Nova Science, New York, 2006) (hep-th/0505005).

    Google Scholar 

  16. D. Alba and L. Lusanna, Simultaneity, Radar 4-Coordinates and the 3+1 Point of View About Accelerated Observers in Special Relativity (2003) (gr-qc/0311058); Generalized Radar 4-Coordinates and Equal-Time Cauchy Surfaces for Arbitrary Accelerated Observers (2005), to appear in Int. J. Mod. Phys. D (gr-qc/0501090).

    Google Scholar 

  17. L. Lusanna, The Chrono-geometrical Structure of Special and General Relativity: a ReVisitation of Canonical Geometrodynamics, Lectures given at the 42nd Karpacz Winter School of Theoretical Physics, Current Mathematical Topics in Gravitation and Cosmology (Ladek, Poland, 6-11 February 2006) Int. J. Geom. Methods in Mod. Phys., 4, 79 (2007) (gr-qc/0604120).

    Google Scholar 

  18. L. Lusanna, The Chronogeometrical Structure of Special and General Relativity: Towards a Background-Independent Description of the Gravitational Field and Elementary Particles (2004), in General Relativity Research Trends, Horizon in World Physics vol. 249 (ed.) A. Reiner (Nova Science, New York, 2005) (gr-qc/0404122). L. Lusanna, Towards a Unified Description of the Four Interactions in Terms of DiracBergmann Observables, in Quantum Field Theory: A 20th Century Profile of the Indian National Science Academy, (ed.) A.N. Mitra, foreward F.J. Dyson (Hindustan Book Agency, New Delhi, 2000) (hep-th/9907081).

    Google Scholar 

  19. B. Mashhoon, The Hypothesis of Locality and its Limitations, (gr-qc/0303029); Limitations of Spacetime Measurements, Phys. Lett. A143, 176 (1990). The Hypothesis of Locality in Relativistic Physics, Phys. Lett. A145, 147 (1990). Measurement Theory and  General Relativity, in Black Holes: Theory and Observation, Lecture Notes in Physics 514 (ed.) F. W. Hehl, C. Kiefer, p. 269 and R.J.K. Metzler (Springer, Heidelberg, 1998), Acceleration-Induced Nonlocality, in Advances in General Relativity and Cosmology, (ed.) G. Ferrarese (Pitagora, Bologna, 2003) (gr-qc/0301065). B. Mashhoon and U. Muench, Length Measurement in Accelerated Systems, Ann. Phys. (Leipzig) 11, 532 (2002).

    Google Scholar 

  20. M. Pauri and M. Vallisneri, Maerzke-Wheeler Coordinates for Accelerated Observers in Special Relativity, Found. Phys. Lett. 13, 401 (2000).

    Article  MathSciNet  Google Scholar 

  21. L. Lusanna, The N- and 1-Time Classical Descriptions of N-Body Relativistic Kinematics and the Electro-Magnetic Interaction, Int. J. Mod. Phys. A12, 645 (1997).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. H. Crater and L. Lusanna, The Rest-Frame Darwin Potential from the Lienard-Wiechert Solution in the Radiation Gauge, Ann. Phys. (N.Y.) 289, 87-177 (2001) (hep-th/0001046).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. D. Alba, H. Crater, and LLusannaThe Semiclassical Relativistic Darwin Potential for Spinning Particles in the Rest-Frame Instant Form: Two-Body Bound States with Spin 1/2 Constituents, Int. J. Mod. Phys. A16, 3365-3477 (2001) (hep-th/0103109).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. D. Alba, H. Crater, and LLusannaHamiltonian Relativistic Two-Body Problem: Center of Mass and Orbit Reconstruction, J. Phys. A40, 9585 (2007) (hep-th/0610200).

    MATH  MathSciNet  ADS  Google Scholar 

  25. D. Alba and L. Lusanna, Quantum Mechanics in Non-Inertial Frames with a Multi-Temporal Quantization Scheme: I) Relativistic Particles, Int. J. Mod. Phys. A21, 2781 (2006) (hepth/0502060). D. Alba, Quantum Mechanics in Non-Inertial Frames with a Multi-Temporal Quantization Scheme: II) Non-Relativistic Particles, Int. J. Mod. Phys. A21, 3917 (2006) (hepth/0504060).

    Google Scholar 

  26. J. Norton, General Covariance and the Foundations of General Relativity: Eight Decades of Dispute, Rep. Prog. Phys. 56, 791-858 (1993).

    Article  MathSciNet  ADS  Google Scholar 

  27. H. Nicolai, K. Peeters, and M. Zamaklar, Loop Quantum Gravity: an Outside View (hep-th/0501114).

    Google Scholar 

  28. L. Smolin, How Far are we from Quantum Gravity? (hep-th/0303185).

    Google Scholar 

  29. R. Arnowitt, S. Deser, and C.W. Misner, The Dynamics of General Relativity, in Gravitation: an Introduction to Current Research, (pp. 227-265) (ed.) (Wiley, New York, 1962).

    Google Scholar 

  30. L. Lusanna, The Rest-Frame Instant Form of Metric Gravity, Gen. Rel. Grav. 33, 1579-1696 (2001) (gr-qc/0101048).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  31. R.M. Wald, General Relativity (University of Chicago Press, Chicago, 1984).

    MATH  Google Scholar 

  32. T. Regge and C. Teitelboim, Role of Surface Integrals in the Hamiltonian Formulation of General Relativity, Ann. Phys. (N.Y.) 88, 286-318 (1974).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. R. Beig and N.O’Murchadha, The Poincar é Group as the Simmetry Group of Canonical General Relativity, Ann. Phys. (N.Y.) 174, 463-498 (1987).

    Article  MATH  ADS  Google Scholar 

  34. A. Lichnerowicz, Propagateurs, Commutateurs et Anticommutateurs en Relativite Generale, in Les Houches 1963, Relativity, Groups and Topology (eds.) C. DeWitt and B. DeWitt (Gordon & Breach, New York, 1964).

    Google Scholar 

  35. C. Moreno, On the Spaces of Positive and Negative Frequency Solutions of the Klein-Gordon Equation in Curved Space-Times, Rep. Math. Phys. 17, 333 (1980).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  36. L. Lusanna, Classical Yang-Mills Theory with Fermions. I. General Properties of a System with Constraints, Int. J. Mod. Phys. A10, 3531-3579 (1995); II. Dirac’s Observables, Int. J. Mod. Phys. A10, 3675-3757 (1995).

    Google Scholar 

  37. D. Christodoulou and S. Klainerman, The Global Nonlinear Stability of the Minkowski Space. (Princeton University Press, Princeton, 1993).

    MATH  Google Scholar 

  38. L. Lusanna and S. Russo, A New Parametrization for Tetrad Gravity, Gen. Rel. Grav. 34, 189-242 (2002) (gr-qc/0102074).R. De Pietri, L. Lusanna, L. Martucci, and S. Russo, Dirac’s Observables for the Rest-Frame Instant Form of Tetrad Gravity in a Completely Fixed 3-Orthogonal Gauge, Gen. Rel. Grav. 34,877-1033 (2002) (gr-qc/0105084).

    Google Scholar 

  39. S. Shanmugadhasan, Canonical Formalism for Degenerate Lagrangians, J. Math. Phys. 14, 677 (1973); L. Lusanna, Canonical Transformations, Function Groups and the Extended Second Noether Theorem, Int. J. Mod. Phys. A8, 4193 (1993).

    Google Scholar 

  40. D. Alba and L. Lusanna, The York Map as a Shanmugadhasan Canonical Transformation in Tetrad Gravity and the Role of Non-Inertial Frames in the Geometrical View of the Gravitational Field (gr-qc/0604086) submitted to Gen. Rel. Grav.

    Google Scholar 

  41. J. Isemberg and J.E. Marsden, The York map is a Canonical Transformation , J. Geom. Phys. 1,85 (1984).

    Article  ADS  Google Scholar 

  42. F.I. Cooperstock and S. Tieu, General Relativity resolves Galactic Rotation Curves without Exotic Dark Matter (astro-ph/0507619) and Perspectives on Galactic Dynamics via General Relativity Int. J. Mod. Phys. A13, 2293 (2007) (astro-ph/0512048).

    MathSciNet  Google Scholar 

  43. M. Korzynski, Singular Disk of Matter in the Cooperstock-Tieu Galaxy Model, (astro-ph/0508377). D. Vogt, Presence of Exotic Matter in the Cooperstock and Tieu Galaxy Model (astroph/0510750). D. Garfinkle, The Need for Dark Matter in Galaxies, (astro-ph/0511082). D.J. Cross, Comments on the Cooperstock-Tieu Galaxy Model, (astro-ph/0601191).

    Google Scholar 

  44. M. Milgrom, A Modification of the Newtonian Dynamics as a Possible Alternative to the Hidden Mass Hypothesis, Astrophys. J. 270, 365 (1983); MOND as Modified Inertia (astroph/0510117).

    Article  ADS  Google Scholar 

  45. C. Teitelboim, The Hamiltonian Structure of Spacetime, in General Relativity and Gravitation, (ed.) A. Held, vol. I (Plenum, New York, 1980).

    Google Scholar 

  46. K. Kuchar, Canonical Quantum Gravity, in G. Kunstatter, D.E. Vincent, and J.G. Williams (eds.), Cordoba 1992, General Relativity and Gravitation pp.119-150 (gr-qc/9304012) (IOP, Bristol, 1993).

    Google Scholar 

  47. B. DeWitt, Quantum Theory of Gravity, I) The Canonical Theory, Phys. Rev. 160, 1113-1148 (1967); II) The Manifestly Covariant Theory, 162, 1195-1239 (1967).

    Article  MATH  ADS  Google Scholar 

  48. A. Rendall, Local and Global Existence Theorems for the Einstein Equations, Online. Living Rev. Relativity 1, n. 4; ibid. (2000) 3, n. 1; (gr-qc/0001008). H. Friedrich and A. Rendall, The Cauchy Problem for Einstein Equations, in Einstein’s Field Equations and their Physical Interpretation (ed.) B.G. Schmidt, (Berlin, Springer, 2000) (grqc/0002074). M. Sa-nchez, Cauchy Hypersurfaces and Global Lorentzian Geometry, (math.DG/0604265).

    Google Scholar 

  49. J. Agresti, R. De Pietri, L. Lusanna, and L. Martucci, Hamiltonian Linearization of the Rest-Frame Instant Form of Tetrad Gravity in a Completely Fixed 3-Orthogonal Gauge: a Radiation Gauge for Background-Independent Gravitational Waves in a Post-Minkowskian Einstein Space-Time, Gen. Rel. Grav. 36, 1055-1134 (2004) (gr-qc/0302084).

    Google Scholar 

  50. J. Stachel, Einstein’s Search for General Covariance, 1912-1915. Ninth International Conference on General Relativity and Gravitation, Jena (1980), (ed.) E. Schmutzer (Cambridge University Press, Cambridge, 1983).

    Google Scholar 

  51. J. Earman and J. Norton, What Price Spacetime Substantivalism? The Hole Story, Br. J. Philos. 38, 515-525 (1987).

    Article  MathSciNet  Google Scholar 

  52. H. Weyl, Groups, Klein’s Erlangen Program. Quantities, ch.I, sec.4 of The Classical Groups, their Invariants and Representations, 2nd edn. pp. 16 (Princeton University Press, Princeton, 1946).

    Google Scholar 

  53. P.G. Bergmann and A. Komar, The Coordinate Group Symmetries of General Relativity, Int. Theor. Phys., 5, 15-28 (1972).

    Article  MathSciNet  Google Scholar 

  54. P.G. Bergmann and A. Komar, Poisson Brackets Between Locally Defined Observables in General Relativity, Phys. Rev. Lett. 4, 432-433 (1960).

    Article  ADS  Google Scholar 

  55. P.G. Bergmann, The General Theory of Relativity, in Handbuch derPhysik, Vol. IV, Principles of Electrodynamics and Relativity, pp. 247-272 (ed.) S. Flugge, (Springer, Berlin, 1962).

    Google Scholar 

  56. M. Dorato and M. Pauri, Holism and Structuralism in Classical and Quantum General Relativity, Pittsburgh-Archive, ID code 1606, The Structural Foundations of Quantum Gravity,D. Rickles, S. French, and J. Saatsi, Ch.V, pp. 121-151, Clarendon Press, Oxford (2006).

    Google Scholar 

  57. P.G. Bergmann, Observables in General Relativity, Rev. Mod. Phys. 33, 510-514 (1961).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  58. M. Soffel et al, The IAU 2000 Resolutions for Astrometry, Celestial Mechanics and Metrology in the Relativistic Framework: Explanatory Supplement, Astron. J. 126, 2687-2706 (2003); (Astroph/0303376).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Lusanna, L., Pauri, M. (2007). Dynamical Emergence of Instantaneous 3-Spaces in a Class of Models of General Relativity. In: Petkov, V. (eds) Relativity and the Dimensionality of the World. Fundamental Theories of Physics, vol 153. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6318-3_13

Download citation

Publish with us

Policies and ethics