Density Modification In Main

  • Dušan Turk
Conference paper
Part of the NATO Science Series book series (NAII, volume 245)

Electron density modification methods are an indispensable part of any de novo macromolecular crystal structure determination and can be of crucial importance for determining structures solved by the molecular replacement method. In MAIN, a number of density modification procedures have been implemented. They encompass tools like solvent flattening and electron density averaging. In addition, maps can be generated using maximum likelihood weighting as well as by the “kick map” approach. Kick maps have been shown to be a good alternative to maximum-likelihood maps, when model bias has to be revealed. These approaches are intergrated with the MAIN model building and refinement tools, which also allow multicrystal averaging and refinement with non-crystallographic constraints across a variety of crystal forms.

Keywords

Cysteine Carboxyl Pseudomonas Macromolecule Editing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Turk, D. (1992) Weiterentwicklung eines Programms fuer Molekuelgraphik und Elektrondichte-Manipulation und seine Anwendung auf verschiedene Protein-Strukturaufklärungen. Ph.D. thesis, Technische Universität, München. (The only page of the thesis in German is its title page, all others are in English.).Google Scholar
  2. 2.
    Musil, D., Zuciˇc, D., Turk, D., Engh, R.A., Mayr, I., Huber, R., Popoviˇc, T., Turk, V., Towatari, T., Katunuma, N., and Bode, W. (1991) The refined 2.15-A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity, The EMBO Journal, 10: 2321–2330.Google Scholar
  3. 3.
    Lunin, V.Y., Afonine, P.V., Urzhumtsev, A.G. (2002) Likelihood-based refinement. I. Irremovable model errors. Acta Crystallographica, A58: 270–282.Google Scholar
  4. 4.
    Fokine, A. and Urzhumtsev, A. (2002) Flat bulk-solvent model: obtaining optimal parameters. Acta Crystallographica: Section D Biological Crystallography, 58, 1387–1392.CrossRefGoogle Scholar
  5. 5.
    Read, R.J. (1986) Improved Fouier coefficients for maps using phases from partial structures with errors. Acta Crystallographica, A42: 140–149.Google Scholar
  6. 6.
    Gunˇcar, G. Podobnik, M., Pungerˇcar, J., ˇStrukelj, B., Turk, V., and Turk, D. (1998) Crystal structure of porcine cathepsin H determined at 2.1Å resolution: location of the mini-chain—C-terminal carboxyl group defines cathepsin H aminopeptidase function. Structure, 6, 51–61.CrossRefGoogle Scholar
  7. 7.
    Wang, B.C. (1985) Resolution of phase ambiguity in macromolecular crystallography. In Diffraction methods in for Biological Macromolecules, Edited by Wyckof H., New York. Academic press, vol. 115. pp. 90–112.CrossRefGoogle Scholar
  8. 8.
    Abrahams, J.P. and Leslie, A.G.W. (1996) Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallographica, D52: 30–42.Google Scholar
  9. 9.
    Leslie, A.G.W. (1987) A reciprocal-space method for Calculating a molecular envelope using the algorithm of B.C. Wang. Acta Crystallographica, A43: 134–136.Google Scholar
  10. 10.
    Bhat, T.N. and Blow, D.M. (1983) A method for refinement of partially interpreted protein structures including a procedure for scaling between a model and an electron-density map. Acta Crystallographica, A39: 166–170.Google Scholar
  11. 11.
    Wilson, C. and Agard, D.A. (1993) PRISM: automated crystallographic phase refinement by iterative skeletonization. Acta Crystallographica, A49: 97–104.Google Scholar
  12. 12.
    Perrakis, A., Morris, R., and Lamzin, V.S. (1999) Automated protein model building combined with iterative structure refinement. Nature Structural Biology, 6: 458–463.CrossRefGoogle Scholar
  13. 13.
    Navaza, J. (1994) AMoRe: an automated package for molecular replacement. Acta Crystallographica, A50: 157–163.Google Scholar
  14. 14.
    Löwe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W., and Huber, R. (1995) Science 268: 533–539.CrossRefADSGoogle Scholar
  15. 15.
    Turk, D., Podobnik, M., Kuhelj, R., Dolinar, M., and Turk, V. (1996) Crystal structures of human pro-cathepsin B at 3.2 and 3.3 Å resolution reveal an interaction motif between a papain like cysteine protease and its propetide. FEBS Letters, 384: 211–214.CrossRefGoogle Scholar
  16. 16.
    Baumann, U., Wu, S., Flaherty, K.M., and McKay, D.B. (1993) Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. The EMBO Journal, 12: 3357–3364.Google Scholar
  17. 17.
    Brandstetter, H., Kim J.S., Groll, M., and Huber, R. (2001) Crystal structure of the tricorn protease reveals a protein disassembly line. Nature 414 (6862): 466–470.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Dušan Turk
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyJozef Stefan InstituteSlovenia

Personalised recommendations