Skip to main content

Density Modification In Main

  • Conference paper

Part of the book series: NATO Science Series ((NAII,volume 245))

Electron density modification methods are an indispensable part of any de novo macromolecular crystal structure determination and can be of crucial importance for determining structures solved by the molecular replacement method. In MAIN, a number of density modification procedures have been implemented. They encompass tools like solvent flattening and electron density averaging. In addition, maps can be generated using maximum likelihood weighting as well as by the “kick map” approach. Kick maps have been shown to be a good alternative to maximum-likelihood maps, when model bias has to be revealed. These approaches are intergrated with the MAIN model building and refinement tools, which also allow multicrystal averaging and refinement with non-crystallographic constraints across a variety of crystal forms.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Turk, D. (1992) Weiterentwicklung eines Programms fuer Molekuelgraphik und Elektrondichte-Manipulation und seine Anwendung auf verschiedene Protein-Strukturaufklärungen. Ph.D. thesis, Technische Universität, München. (The only page of the thesis in German is its title page, all others are in English.).

    Google Scholar 

  2. Musil, D., Zuciˇc, D., Turk, D., Engh, R.A., Mayr, I., Huber, R., Popoviˇc, T., Turk, V., Towatari, T., Katunuma, N., and Bode, W. (1991) The refined 2.15-A X-ray crystal structure of human liver cathepsin B: the structural basis for its specificity, The EMBO Journal, 10: 2321–2330.

    Google Scholar 

  3. Lunin, V.Y., Afonine, P.V., Urzhumtsev, A.G. (2002) Likelihood-based refinement. I. Irremovable model errors. Acta Crystallographica, A58: 270–282.

    Google Scholar 

  4. Fokine, A. and Urzhumtsev, A. (2002) Flat bulk-solvent model: obtaining optimal parameters. Acta Crystallographica: Section D Biological Crystallography, 58, 1387–1392.

    Article  Google Scholar 

  5. Read, R.J. (1986) Improved Fouier coefficients for maps using phases from partial structures with errors. Acta Crystallographica, A42: 140–149.

    Google Scholar 

  6. Gunˇcar, G. Podobnik, M., Pungerˇcar, J., ˇStrukelj, B., Turk, V., and Turk, D. (1998) Crystal structure of porcine cathepsin H determined at 2.1Å resolution: location of the mini-chain—C-terminal carboxyl group defines cathepsin H aminopeptidase function. Structure, 6, 51–61.

    Article  Google Scholar 

  7. Wang, B.C. (1985) Resolution of phase ambiguity in macromolecular crystallography. In Diffraction methods in for Biological Macromolecules, Edited by Wyckof H., New York. Academic press, vol. 115. pp. 90–112.

    Chapter  Google Scholar 

  8. Abrahams, J.P. and Leslie, A.G.W. (1996) Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallographica, D52: 30–42.

    Google Scholar 

  9. Leslie, A.G.W. (1987) A reciprocal-space method for Calculating a molecular envelope using the algorithm of B.C. Wang. Acta Crystallographica, A43: 134–136.

    Google Scholar 

  10. Bhat, T.N. and Blow, D.M. (1983) A method for refinement of partially interpreted protein structures including a procedure for scaling between a model and an electron-density map. Acta Crystallographica, A39: 166–170.

    Google Scholar 

  11. Wilson, C. and Agard, D.A. (1993) PRISM: automated crystallographic phase refinement by iterative skeletonization. Acta Crystallographica, A49: 97–104.

    Google Scholar 

  12. Perrakis, A., Morris, R., and Lamzin, V.S. (1999) Automated protein model building combined with iterative structure refinement. Nature Structural Biology, 6: 458–463.

    Article  Google Scholar 

  13. Navaza, J. (1994) AMoRe: an automated package for molecular replacement. Acta Crystallographica, A50: 157–163.

    Google Scholar 

  14. Löwe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W., and Huber, R. (1995) Science 268: 533–539.

    Article  ADS  Google Scholar 

  15. Turk, D., Podobnik, M., Kuhelj, R., Dolinar, M., and Turk, V. (1996) Crystal structures of human pro-cathepsin B at 3.2 and 3.3 Å resolution reveal an interaction motif between a papain like cysteine protease and its propetide. FEBS Letters, 384: 211–214.

    Article  Google Scholar 

  16. Baumann, U., Wu, S., Flaherty, K.M., and McKay, D.B. (1993) Three-dimensional structure of the alkaline protease of Pseudomonas aeruginosa: a two-domain protein with a calcium binding parallel beta roll motif. The EMBO Journal, 12: 3357–3364.

    Google Scholar 

  17. Brandstetter, H., Kim J.S., Groll, M., and Huber, R. (2001) Crystal structure of the tricorn protease reveals a protein disassembly line. Nature 414 (6862): 466–470.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this paper

Cite this paper

Turk, D. (2007). Density Modification In Main. In: Read, R.J., Sussman, J.L. (eds) Evolving Methods for Macromolecular Crystallography. NATO Science Series, vol 245. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6316-9_10

Download citation

Publish with us

Policies and ethics