Lentil pp 47-93 | Cite as

Nutritional Value



The importance of lentils as important dietary sources of macro and micronutrients essential for human welfare has been recognized since ancient times. Lentils provide sufficient amounts of most essential amino acids to meet the nutrient requirements, although they are deficient in sulfur-containing amino acids like most legumes. Lentils also contain fair amounts of other essential nutrients like minerals, vitamins and complex carbohydrates. In contrast, lentils exhibit a considerable amount of non-nutritional compounds like trypsin inhibitors, tannins or phytic acid that are able to interfere with the availability of several nutrients. Different processing conditions that range from the traditional soaking/cooking to germination, fermentation, or several thermal treatments, are usually employed to improve the organoleptic properties of lentil seed and its nutritional value through reducing the negative effect of the above mentioned non-nutritional components. In addition, technological treatments may significantly enhance the functional and beneficial health properties of the processed lentil food products, making consumption of this legume an appealing alternative for today’s world


Dietary Fiber Phytic Acid Faba Bean Neutral Detergent Fibre Cooking Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adsule R, N.; Kadam, S. S.; Leung, H. K. Lentil in Handbook of World Food Legumes: Nutritional Chemistry, Processing Technology, and Utilization. Salunkhe, D. K., Kadam, S. S., eds. CRC Press, Inc, Boca Raton, Florida, VolII, 1989, pp131–152.Google Scholar
  2. Aparna, K.; Khatoon, N.; Prakash, J. Cooking quality and in vitro digestibility of legumes cooked in different media. J. Food. Sci. Technol. Mys. 2000, 37, 169–173.Google Scholar
  3. Arntfield, S. D.; Scanlon, M. G.; Malcolmson, L. J.; Watts, B. M.; Cenkowski, S.; Ryland, D.; Savoie, V. Reduction in lentil cooking time using micronization: Comparison of 2 micronization temperatures. J. Food. Sci. 2001, 66, 500–505.CrossRefGoogle Scholar
  4. Bamdad, F.; Goli, A. H.; Kadivar, M. Preparation and characterization of proteinous film from lentil Lens culinaris) edible film from lentil Lens culinaris). Food. Res. Int. 2006, 39, 106–111.CrossRefGoogle Scholar
  5. Banerjee, S.; Ghosh, A.; Chakraborty, P. Characteristics of effect of temperature and moisture on lentil based extruded expanded product and process optimization. J. Food Sci. Technol. Mys. 2003, 40, 597–605.Google Scholar
  6. Bartolomé, B.; Jiménez-Ramsey, L. M.; Butler, L. G. Nature of the condensed tannins present in the dietary fibre fractions in foods. Food Chem. 1995, 53, 357–362.CrossRefGoogle Scholar
  7. Bau, H. M.; Villaume, C. H.; Méjean, L. Effects of soybean Glycine max germination on biologically active components, nutritional values of seeds, and biological characteristics in rats. Nahrung-Food. 2000, 44, 2–6.CrossRefGoogle Scholar
  8. Bhattacharya, S.; Narasimb, H. V.; Bhattacharya, S. The moisture dependent physical and mechanical properties of whole lentil pulse and split cotyledon. Int. J. Food Sci. Technol.2005, 40, 213–221.CrossRefGoogle Scholar
  9. Bhatty, R. S. Albumin proteins of eight edible grain legume species: Electrophoretic patterns and amino acid composition. J. Agric. Food Chem. 1982, 30, 620–622.CrossRefPubMedGoogle Scholar
  10. Bhatty, R. S. Comparisons of good- and poor-cooking lentils. J. Sci. Food. Agric. 1995, 68, 489–496.CrossRefGoogle Scholar
  11. Bhatty, R. S. Cooking quality and losses of phytic acid, calcium, magnesium and potassium of lentils soaked in different solutions. Can. Inst. Food Sci. Technol. J. 1989, 22, 450–455.Google Scholar
  12. Bhatty, R. S. Cooking quality of lentils: The role of structure and composition of cell walls. J. Agric. Food Chem. 1990, 38, 376–383.CrossRefGoogle Scholar
  13. Bhatty, R. S. Protein subunits and amino acid composition of wild lentil. Phytochemistry. 1986, 25, 641–644.CrossRefGoogle Scholar
  14. Bhatty, R. S. Relationship between physical and chemical characters and cooking quality in lentil. J. Agric. Food Chem. 1984, 32, 1161–1166.CrossRefGoogle Scholar
  15. Bora, P. S. Functional properties of native and succinylated lentil (Lens culinaris) globulins. Food Chem. 2002, 77, 171–176.CrossRefGoogle Scholar
  16. Canadian Grain Commission. Lentil (Lens culinaris). In The Chemical Composition and Nutritive Value of Canadian Pulses. 2004, Canadian Grain Commission. pdf/crn/Reports/Table (CND pulses vs Aust).pdfGoogle Scholar
  17. Candela, M.; Astiasaran, I.; Bello, J. Cooking and warm-holding: Effect on general composition and amino acids of kidney beans (Phaseolus vulgaris), chickpeas (Cicer arietinum), and lentils (Lens culinaris). J. Agric. Food Chem. 1997, 45, 4763–4767.CrossRefGoogle Scholar
  18. Carbonaro, M.; Cappelloni, M.; Nicoli, S.; Lucarini, M.; Carnovale, E. Solubility-digestibility relationship of legume proteins. J. Agric. Food Chem. 1997, 45, 3387–3394.CrossRefGoogle Scholar
  19. Carbonaro, M.; Virgili, F.; Carnovale, R. Evidence for protein–tannin interaction in legumes: Implications in the antioxidant properties of faba bean tannins. Lebens. Wiss. Technol. 1996, 29, 743–750.CrossRefGoogle Scholar
  20. Çelik, S.; Yalçin, E.; Basman, A.; Köksel, H. Effect of irradiation on protein electrophoretic properties, water absorption and cooking quality of lentils. Int. J. Food. Sci. Nutr. 2004, 55, 641–648.CrossRefPubMedGoogle Scholar
  21. Chang, R.; Schwinner, S.; Burr, H. Phytate removal from whole dry beans by enzymatic hydrolysis and diffusion. J. Food Sci. 1977, 42, 1098–1110.CrossRefGoogle Scholar
  22. Chen, L. H.; Thacker, R. R.; Pan, S. H. Effect of germination on hemagglutinating activity of pea and bean seeds. J. Food. Sci. 1977, 42, 1666.Google Scholar
  23. Cheryan M. Phytic acid interactions in food systems. CRC. Crit. Rev. Food Sci. Nutr. 1980, 13, 297–335.CrossRefGoogle Scholar
  24. Combe, E.; Achi, T.; Pion, R. Compared metabolic and digestive utilization of faba bean, lentil and chickpea. Reprod. Nutr. Dev. 1991, 31, 631–646.PubMedGoogle Scholar
  25. Combe, E.; Pirman, T.; Stekar, J.; Houlier, M. L.; Mirand, P. P. Differential effect of lentil feeding on proteosynthesis rates in the large intestine, liver and muscle of rats. J. Nutr. Biochem. 2004, 15, 12–17.CrossRefPubMedGoogle Scholar
  26. Cuadrado, C.; Ayet, G.; Robredo, L. M.; Tabera, J.; Villa, R.; Pedrosa, M. M.; Burbano, C.; Muzquiz, M. Effect of natural fermentation on the content of inositol phosphates in lentils. Zeitsch. Lebensm. Unters. Forsch. 1996, 203, 268–271.CrossRefGoogle Scholar
  27. Cuadrado, C.; Grant, G.; Rubio, L. A.; Muzquiz, M.; Bardocz, S.; Pusztai, A. Nutritional utilization by the rat of diets based on lentil (Lens culinaris) seed meal or its fractions. J. Agric. Food Chem. 2002a, 50, 4371–4376.CrossRefGoogle Scholar
  28. Cuadrado, C.; Hajos, G.; Burbano, C.; Pedrosa, M. M.; Ayet, G.; Muzquiz, M.; Pusztai, A.; Gelencser, E. Effect of natural fermentation on the lectin content of lentils measured by immunological methods. Food. Agric. Immunol. 2002b, 4>, 41–49.CrossRefGoogle Scholar
  29. Dahl, W. J.; Whiting, S. J.; Stephen, A. M. Dietary lentils and calcium balance in adult men. Nutr. Res. 1995, 15, 1587–1598.CrossRefGoogle Scholar
  30. Dalgetty, D. D.; Baik, B. K. Fortification of bread with hulls and cotyledon fibers isolated from peas, lentils, and chickpeas. Cereal. Chem. 2006, 83, 269–274.CrossRefGoogle Scholar
  31. Danisová, C.; Holotnáková, E.; Hozová, B.; Buchtová, V. Effect of germination on a range of nutrients of selected grain and legumes. Acta Alimentaria. 1994, 23, 287–298.Google Scholar
  32. Davila-Hicks, P.; Theil, E. C.; Lönnerdal, B. Iron in ferritin or in salts (ferrous sulfate) is equally bioavailable in nonanemic women. Am. J. Clin. Nutr. 2004, 80, 936–940.PubMedGoogle Scholar
  33. Davis, K. R.; Costello, M. J.; Mattern, V.; Schroeder, C. Effect of age of sample and of amino acid supplementation on the Tetrahymena-relative nutritive value of lentils, green and yellow split peas, and their processed forms. Cereal. Chem. 1984, 61, 311–315.Google Scholar
  34. De Almeida Costa, G. E.; da Silva Queiroz-Monici, K.; Pissini Machado Reis, S. M.; Costa de Oliveira, A. Chemical composition, dietary fibre and resistant starch contents of raw and cooked pea, common bean, chickpea and lentil legumes. Food. Chem. 2006, 94, 327–330.CrossRefGoogle Scholar
  35. Demirbas, A. β-glucan and mineral nutrient contents of cereals grown in Turkey. Food Chem. 2005, 90, 773–777.CrossRefGoogle Scholar
  36. Egli, I.; Davidsson, L.; Juillerat, M. A.; Barclay, D.; Hurrell, R. F. The influence of soaking and germination on the phytase activity and phytic acid content of grains and seeds potentially useful for complementary feeding. J. Food. Sci. 2002, 67, 3484–3488.CrossRefGoogle Scholar
  37. El-Adawy, T. A.; Rahma, E. H.; El-Bedawey, A. A.; El-Beltagy, A. E. Nutritional potential and functional properties of germinated mung bean, pea and lentil seeds. Plant. Food. Hum. Nutr. 2003, 58, 1–13.CrossRefGoogle Scholar
  38. El-Mahdy, A. R.; Moharram, Y. G.; Abou-Samaha, O. R. Influence of germination on the nutritional quality of lentil seeds. Z. Lebensm. Unters. Forsch. 1985, 181, 318–320.CrossRefPubMedGoogle Scholar
  39. El-Tinay, A. H.; Mahgoub, S. O.; Mohamed, B. E.; Hamad, M. A. Proximate composition of mineral and phytate contents of legumes grown in Sudan. J. Food. Comp. Anal. 1989, 2, 69–78.CrossRefGoogle Scholar
  40. Erdogan, S.; Erdemoglu, S. B.; Kaya, S. Optimization of microwave digestion for determination of Fe, Zn, Mn and Cu in various legumes by flame atomic absorption spectrometry. J. Sci. Food. Agric. 2006, 86, 226–232.CrossRefGoogle Scholar
  41. Ereifej, K. I.; Haddad, S. G. Chemical composition of selected Jordanian cereals and legumes as compared with the FAO, Moroccan, East Asian and Latin American tables for use in the Middle East. Trends. Food Sci. Technol. 2001, 11, 374–378.CrossRefGoogle Scholar
  42. Fernández, M.; Aranda, P.; López-Jurado, M.; García-Fuentes, M.; Urbano, G. Bioavailability of phytic acid phosphorus in processed Vicia faba L. var major. J. Agric. Food Chem. 1997, 45, 4367–4371.CrossRefGoogle Scholar
  43. Fernandez, M.; Lopez-Jurado, M.; Aranda, P.; Urbano, G. Nutritional assessment of raw and processed faba bean (Vicia faba L.) cultivar major in growing rats. J. Agric. Food Chem. 1996, 44, 2766–2772.CrossRefGoogle Scholar
  44. Fernandez-Orozco, R.; Zielinski, H.; Frias, J.; Vidal-Valverde, C.; Piscula, M. K. Superoxide dismutase-like activity of raw, cooked and germinated lentils. Pol. J. Food. Nutr. Sci. 2002, 11/52, 39–44.Google Scholar
  45. Fernandez-Orozco, R.; Zielinski, H.; Piskula, M. Contribution of low-molecular-weight antioxidants to the antioxidant capacity of raw and processed lentil seeds. Nahrung/Food. 2003, 47, 291–299.CrossRefGoogle Scholar
  46. Fleming, S. E. A study of relationships between flatus potential and carbohydrate distribution in legume seeds. J. Food Sci. 1981, 46, 794.CrossRefGoogle Scholar
  47. Frias, J.; Bakhsh, A.; Jones, D.; Arthur, A. E.; Vidal-Valverde, C.; Rhodes, M. J. C.; Hedley, C. L. Genetic analysis of the raffinose oligosaccharide pathway in lentil seeds. J. Exp. Bot. 1999, 50, 469–476.CrossRefGoogle Scholar
  48. Frias, J.; Diaz-Pollan, C.; Hedley, C. L.; Vidal-Valverde, C. Evolution and kinetics of monosaccharides, disaccharides and α-galactosides during germination of lentils. Z. Lebensm. Unters. Forsch. 1996a, 202, 35–39.CrossRefGoogle Scholar
  49. Frias, J.; Doblado, R.; Vidal-Valverde, C. Kinetics of soluble carbohydrates by action of endo/exo α-galactosidase enzyme in lentils and peas. Eur. Food Res. Technol. 2003a, 216, 199–203.Google Scholar
  50. Frias, J.; Doblado, R.; Antezana, J. R.; Vidal-Valverde, C. Inositol phosphate degradation by the action of phytase enzyme in legume seeds. Food Chem. 2003b, 81, 233–239.CrossRefGoogle Scholar
  51. Frias, J.; Fernandez-Orozco, R.; Zielinski, H.; Kozlowska, H.; Vidal-Valverde, C. Effect of germination on the content of vitamin C and E in lentils. Pol. J. Food Nutr. Sci. 2002, 11/52, 76–78.Google Scholar
  52. Frias, J.; Fornal, J.; Ring, S. G.; Vidal-Valverde, C. Effect of germination on physico-chemical properties of lentil starch and its components. Lebensm. Wiss. Technol. 1998, 31, 228–236.CrossRefGoogle Scholar
  53. Frias, J.; Prodanov, M.; Sierra, I.; Vidal-Valverde, C. Effect of light on carbohydrates and hydrosoluble vitamins of lentils during soaking. J. Food. Protec. 1995a, 58, 692–695.Google Scholar
  54. Frias, J.; Vidal-Valverde, C. Basks, A.; Arthur, A. E.; Hedley, C. An assessment of variation for nutritional and non-nutritional carbohydrates in lentil seeds (Lens culinaris). Plant Breeding. 1994, 113, 170–173.CrossRefGoogle Scholar
  55. Frias, J.; Vidal-Valverde, C.; Kozlowska, H.; Tabera, J.; Honke, J.; Hedley, C. L. Natural fermentation of lentils. Influence of time, flour concentration, and temperature on the kinetics of monosaccharides, disaccharides and alpha-galactosides. J. Agric. Food Chem. 1996b, 44, 579–584.CrossRefGoogle Scholar
  56. Gad, S. S.; Mohamed, M. S.; El-Zalaki, M. E.; Mohasseb, S. Z. Effect of processing on phosphorus and phytic acid contents of some egyption varieties of legumes. Food Chem. 1982, 8, 11–19.CrossRefGoogle Scholar
  57. Ghavidel, R. A.; Prakash, J. Effect of germination and dehulling on functional properties of legume flours. J. Sci. Food. Agric. 2006, 86, 1189–1195.CrossRefGoogle Scholar
  58. Gillooly, M.; Bothwell, T. H.; Torrance, J. D.; MacPhail, A. P.; Derman, D. P.; Bezwoda, W. R.; Mills, W.; Charlton, R. W.; Mayet, F. The effects of organic acids, phytates and polyphenols on the absorption of iron from vegetables. Br. J. Nutr. 1983, 49, 331–342.CrossRefPubMedGoogle Scholar
  59. Granito, M.; Torres, A.; Frías, J.; Guerra, M.; Vidal-Valverde, C. Influence of fermentation on the nutritional value of two varieties of Vigna sinensis. Eur. Food Res. Technol.2005, 220, 176–181.CrossRefGoogle Scholar
  60. Grant, G.; More, L. J.; McKenzie, N. H.; Stewart, J. C.; Pusztai, A. A survey of the nutritional and haemagglutination properties of legume seeds generally available in the UK. Br. J. Nutr. 1983, 50, 207–214.CrossRefPubMedGoogle Scholar
  61. Green, G. M.; Lyman, R. L. Feedback regulation of pancreatic enzyme secretion as a mechanism for trypsin inhibitor induced hypersecretion in rats. Proc. Soc. Exp. Biol. Med. 1972, 140, 6–12.PubMedGoogle Scholar
  62. Grela, E. R.; Günter, K. D. Fatty acid composition and tocopherol content of some legume seeds. Anim. Feed Sci. Technol. 1995, 52, 325–331.CrossRefGoogle Scholar
  63. Hardwick, L. L.; Jones, M. R.; Brautbar, N.; Lee, D. B. N. Magnesium absorption: Mechanisms and the influence of vitamin D, calcium and phosphate. J. Nutr. 1991, 121, 13–23.PubMedGoogle Scholar
  64. Harper, A. E.; Benevenga, N. J.; Wohlueter, R. M. Effect of ingestion of disproportionate amounts of amino acids. Physiol. Rev. 1970, 50, 428–558.PubMedGoogle Scholar
  65. Harper, A. E.; Benton, D. A.; Elvbejhem, C. A. L-Leucine, an isoleucine antagonist in the rat. Arch. Biochem. Biophys. 1955, 57, 1–12.CrossRefGoogle Scholar
  66. Hazell, T.; Johnson, I. T. In vitro estimation of iron availability from a range of plant foods. Influence of phytate, ascorbate and citrate. Br. J. Nutr. 1987, 57, 223–233.CrossRefPubMedGoogle Scholar
  67. Hernández-Infante, M.; Sousa, V.; Montalvo, I.; Tena, E. Impact of microwave heating on hemagglutinins, trypsin inhibitors and protein quality of selected legume seeds. Plant. Food. Hum. Nutr. 1998, 52, 199–208.CrossRefGoogle Scholar
  68. Iliadis, C. Effect of harvesting procedure, storage time and climatic conditions on cooking time of lentils (Lens culinaris Medikus). J. Sci. Food. Agric. 2001, 81, 590–593.CrossRefGoogle Scholar
  69. Iliadis, C. Influence of genotype and soil type on cooking time in lentil (Lens culinaris Medikus). Int. J. Food Sci. Technol. 2003, 38, 89–93.CrossRefGoogle Scholar
  70. Iqbal, A.; Khalil, I. A.; Ateeq, N.; Khan, M. S. Nutritional quality of important food legumes. Food Chem, 2006, 97, 331–335.CrossRefGoogle Scholar
  71. Johnson, D. J.; Anderson, G. H. The prediction of plasma amino acid concentration from diet amino acid content. Physiol. Rev. 1982, 43, R99–R103.Google Scholar
  72. Kavas, A.; Nehir, S. Changes in nutritive value of lentils and mung beans during germination. Chem. Mikrobiol. Technol. Lebensm. 1992, 14, 3–9.Google Scholar
  73. Khan, M. A.; Rana, I. A.; Ullah, I.; Jaffery, S. Physicochemical characters and nutrient composition of some improved lines of lentils grown in Pakistan. J. Food. Comp. Anal. 1987, 1, 65–70.CrossRefGoogle Scholar
  74. Knuckles, B. E.; Kuzmicky, D. D.; Gumbmann, M. R.; Betschaart, A. A. Effect of myo-inositol phosphate esters on in vitro and in vivo digestion of protein. J. Food. Sci. 1989, 54, 1348–1350.CrossRefGoogle Scholar
  75. Konoshima, T.; Kokumai, M.; Kozuka, M. Antitumor promoting activities of afromosin and soyasaponin I isolated from Wistaria brachybotrys. J. Nat. Prod. 1992, 55, 1776–1778.CrossRefPubMedGoogle Scholar
  76. Koplík, R.; Borková, M.; Mestek, O.; Komínková, J.; Suchanek, M. Application of size-exclusion chromatography-inductively coupled mass spectrometry for fractionation of element species in seeds of legumes. J. Chromat. B. 2002, 775, 179–187.CrossRefGoogle Scholar
  77. Kozlowska, H.; Honke, J.; Sadowaska, J.; Frias, J.; Vidal-Valverde, C. Natural fermentation of lentils. Influence of time, concentration and temperature on the kinetics of hydrolysis of inositol phosphates. J. Sci. Food. Agric. 1996, 71, 367–375.CrossRefGoogle Scholar
  78. Kumar, V.; Rani, A.; Solanki, S.; Hussain, S. M. Influence of growing environment on the biochemical composition and physical characteristics of soybean seed. J. Food. Comp. Anal. 2006, 19, 188–195.CrossRefGoogle Scholar
  79. Kuo, Y. H.; Rozan, P.; Lambein, F.; Frías, J.; Vidal-Valverde, C. Effects of different germination conditions on the contents of free protein and non-protein amino acids of commercial legumes. Food Chem. 2004, 86, 537–545.CrossRefGoogle Scholar
  80. Kylen, A. M.; McReady, R. M. Nutrients in seeds and sprouts of alfalfa, lentils, mung beans and soybeans. J. Food Sci. 1975, 40, 1008–1009.CrossRefGoogle Scholar
  81. Layrisse, M.; Martínez-Torres, C.; Leets, I.; Taylor, P.; Ramírez, J. Effect of histidine, cysteine, glutathione or beef on iron absorption in humans. J. Nutr. 1984, 114, 217–223.PubMedGoogle Scholar
  82. Le Magnen, J. Body energy balance and food intake: A neuroendocrine regulatory mechanism. Physiol. Rev. 1983, 63, 314–386.PubMedGoogle Scholar
  83. Lombardi-Boccia, G.; Dilullo, G.; Carnovale, E. In vitro iron dialyzability from legumes: Influence of phytate and extrusion cooking. J. Sci. Food. Agric. 1991, 55, 599–605.CrossRefGoogle Scholar
  84. Lombardi-Boccia, G.; Ruggeri, S.; Aguzzi, A.; Cappelloni, M. Globulins enhance in vitro iron but not zinc dialyzability: a study of six legume species. J. Trace Elem. Med. Biol. 2003, 17, 1–5.CrossRefPubMedGoogle Scholar
  85. Luccia, B. H. D.; Kunkel, M. E. In vitro availability of calcium from sources of cellulose, methylcellulose, and psyllium. Food Chem. 2002, 77, 139–146.CrossRefGoogle Scholar
  86. Lynch, S. R.; Beard, J. L.; Dassenko, S. A.; Cook, J. D. Iron absorption from legumes in humans. Am. J. Clin. Nutr. 1984, 40, 42–47.PubMedGoogle Scholar
  87. Maccarrone, M.; Veldink, G. A.; Vliegenthart, J. F. G.; Agro, A, F. Ozone stress modulates amine oxidase and lipoxygenase expression in lentil (Lens culinaris) seedlings. FEBS. Lett. 1997, 408, 241–244.CrossRefPubMedGoogle Scholar
  88. Manan, F.; Hussain, T.; Alli, I.; Iqbal, P. Effect of cooking on phytic acid content and nutritive value of Pakistani peas and lentils. Food Chem. 1987, 23, 81–87.CrossRefGoogle Scholar
  89. Martin-Belloso, O.; Llanos-Barriobero, E. Proximate composition, minerals and vitamins in selected canned vegetables. Eur. Food. Res. Technol. 2001, 212, 182–187.CrossRefGoogle Scholar
  90. Martín-Cabrejas, M. A.; Ariza, N.; Esteban, R.; Mollá, E.; Waldron, K.; López-Andréu, F. J. Effect of germination on the carbohydrate composition of the dietary fibre of peas (Pisum sativum L.). J. Agric. Food Chem. 2003, 51, 1254–1259.CrossRefPubMedGoogle Scholar
  91. Martínez-Villaluenga, C.; Frias, J.; Vidal-Valverde, C. Alpha-galactosides: Antinutritional Factors or Functional Ingredients? Crit. Rev. Food Sci. Nutr. 2007, (in press).Google Scholar
  92. Massey, L.; Palmer, R. G.; Horner, H. T. Oxalate content of soybean seeds (Glycine max: Leguminosae), soyfoods, and other edible legumes. J. Agric. Food Chem. 2001, 49, 432–466.CrossRefGoogle Scholar
  93. Mercer, L. P.; Dodds, S. J.; Schweisthall, M. R.; Dunn, J. D. Brain histidine and food intake in rats fed diets deficient in single amino acids. J. Nutr. 1989, 119, 66–74.PubMedGoogle Scholar
  94. Miller McCurdy, S.; Scheier, G. E.; Jacobson, M. Evaluation of protein quality of five varieties of lentils using Tetrahymena pyriformis W. J. Food Sci. 1978, 43, 694–697.CrossRefGoogle Scholar
  95. Monsoor, M. A.; Yusuf, H. K. M. In vitro protein digestibility of lathyrus pea (Lathyrus sativus), lentil (Lens culinaris), and chickpea (Cicer arietinum). Int. J. Food Sci. Technol. 2002, 37, 97–99.CrossRefGoogle Scholar
  96. National Research Council. Nutrient Requirements of Laboratory Animals. Fourth Revised Edition.; National Academy Press, Washington, D.C. 1995.Google Scholar
  97. Nestares, T. Barrionuevo, M.; Urbano, G.; López-Frías, M. Nutritional assessment of protein from beans (Phaseolus vulgaris L) processed at different pH values, in growing rats. J. Sci. Food. Agric. 2001, 81, 1522–1529.CrossRefGoogle Scholar
  98. Nestares, T.; Barrionuevo, M.; López-Frías, M.; Vidal, C.; Urbano, G. Effect of different soaking solutions on nutritive utilization of minerals (Calcium, Phosphorus, and Magnesium) from cooked beans (Phaseolus vulgaris, L) in growing rats. J. Agric. Food Chem. 2003, 51, 515–520CrossRefPubMedGoogle Scholar
  99. Nestares, T.; Barrionuevo, M.; Urbano, G.; López-Frías, M. Effect of processing methods on the calcium, phosphorus, and phytic acid contents and nutritive utilization of chickpea (Cicer arietinum L.). J. Agric. Food Chem. 1999, 47, 2807–2812.CrossRefPubMedGoogle Scholar
  100. Nestares, T.; López-Frías, M.; Barrionuevo, M.; Urbano, G. Nutritional assessment of raw and processed chickpea (Cicer arietinum L.) protein in growing rats. J. Agric. Food Chem. 1996, 44, 2760–2765.CrossRefGoogle Scholar
  101. Nestares, T.; Urbano, G.; López-Frías, M.; Barrionuevo, M. Nutritional assessment of magnesium from raw and processed chickpea (Cicer arietinum L.) in growing rats. J. Agric. Food Chem. 1997, 45, 3138–3142.CrossRefGoogle Scholar
  102. O’Dell, B. L.; Reeves, P. G. Zinc status and food intake. In Zinc in Human Biology. Mills, C. F. Ed. London, International Life Sciences Institute, 1989, pp.183–220.Google Scholar
  103. Petterson, D.; Sipsas, S.; McIntosh, J. B. The chemical composition and nutritive value of Australian pulses. Canberra: Grains Research and Development Corporation. 1997.Google Scholar
  104. Pirman, T.; Stibilj, V. An influence of cooking on fatty acid composition in three varieties of common beans and in lentil. Eur. Food Res. Technol. 2003, 217, 498–503.CrossRefGoogle Scholar
  105. Pirman, T.; Stibilj, V.; Stekar, J. M. A.; Combe, E. Amino acid composition of beans and lentil. Zb. Bioteh. Fak. Univ. Ljubl., Kmet. Zooteh. 2001, 78, 57–68.Google Scholar
  106. Porres, J. M.; Aranda, P.; López-Jurado, M.; Urbano, G. Effect of Natural and Controlled Fermentation on Chemical Composition and Nutrient Dialyzability from Beans (Phaseolus vulgaris, L.). J. Agric. Food Chem. 2003, 51, 5144–5149.CrossRefPubMedGoogle Scholar
  107. Porres, J. M.; Aranda, P.; López-Jurado, M.; Urbano, G. Nutritional potential of raw and free α-galactosides lupin (Lupinus albus var. multolupa) seed flours. Effect of phytase treatment on nitrogen and mineral dialyzability. J. Agric. Food Chem. 2005, 53, 3088–3094.CrossRefPubMedGoogle Scholar
  108. Porres, J. M.; Aranda, P.; López-Jurado, M.; Urbano, G. Nutritional evaluation of protein, phosphorus, calcium and magnesium bioavailability from lupin (Lupinus albus var. multolupa)-based diets in growing rats: effect of α-galactoside oligosaccharide extraction and phytase supplementation. Brit. J. Nutr. 2006, 95, 1102–1111.CrossRefPubMedGoogle Scholar
  109. Porres, J. M.; Etcheverry, P.; Miller, D. D.; Lei, X. G. Phytase and citric acid supplementation in whole-wheat bread improves phytate-phosphorus release and iron dialyzability. J. Food Sci. 2001, 66, 614–619.CrossRefGoogle Scholar
  110. Porres, J. M.; López-Jurado, M.; Aranda, P.; Urbano, G. Bioavailability of phytic acid-phosphorus and magnesium from lentils (Lens culinaris M.) in growing rats: Influence of thermal treatment and vitamin-mineral supplementation. Nutrition. 2004, 20, 794–799.CrossRefPubMedGoogle Scholar
  111. Porres, J. M.; López-Jurado, M.; Aranda, P.; Urbano, G. Effect of heat treatment and mineral vitamin supplementation on the nutritive use of protein and calcium from lentils (Lens culinaris M.) in growing rats. Nutrition. 2003, 19, 451–456.CrossRefPubMedGoogle Scholar
  112. Porres, J. M.; López-Jurado, M.; Aranda, P.; Urbano, G. Effect of processing on the bioavailability of phytic acid and zinc in lentils. In COST 98 Effect of Antinutrients on the Nutritional Value of Legume Diets, Bardocz, S., Muzquiz, M., Pusztai, A, Eds. European Commission, Directorate General XII, Science, Research and Development, 1996, Volume 4, pp.28–31.Google Scholar
  113. Porres, J. M.; Urbano, G.; Fernández-Fígares, I.; Prieto, C.; Pérez, L.; Aguilera, J. F. Digestive utilisation of protein and amino acids from raw and heated lentils by growing rats. J. Sci. Food. Agric. 2002, 82, 1740–1747.CrossRefGoogle Scholar
  114. Prodanov, M.; Sierra, I.; Vidal-Valverde, C. Effect of germination on the thiamine, riboflavin and niacin contents in legumes. Z. Lebensm. Unters. Forsch. 1997, 205, 48–52.CrossRefGoogle Scholar
  115. Prodanov, M.; Sierra, I.; Vidal-Valverde, C. Influence of soaking and cooking on the thiamin, riboflavin and niacin contents of legumes. Food Chem. 2004, 84, 271–277.CrossRefGoogle Scholar
  116. Quinteros, A.; Farré, R.; Lagarda, M. J. Optimization of iron speciation (soluble, ferrous and ferric) in beans, chickpeas and lentils. Food. Chem. 2001, 75, 365–370.CrossRefGoogle Scholar
  117. Rackis, J. J. Oligosaccharides of food legumes: α-galactoside activity and flatus problems. In Physiological Effects of Food Carbohydrates. Allen J., Heilge, J. Eds. American Chemical Society, Washington, DC, 1975, p.207.Google Scholar
  118. Ramulu, P.; Udayasekhara Rao, P. Effects of processing on dietary fiber content of cereals and pulses. Plant. Food. Hum. Nutr. 1997, 50, 249–257.CrossRefGoogle Scholar
  119. Reddy, N. R.; Pierson, M. D.; Sathe, S. K.; Salunkhe, D. K. Chemical, nutritional and physiological aspects of dry bean carbohydrates: A review. Food Chem. 1984, 13, 25–68.CrossRefGoogle Scholar
  120. Reddy, N. R.; Sathe, S. K.; Salunkhe, D. K. Phytates in legumes and cereals. Adv. Food. Res. 1982, 28, 1–92.PubMedGoogle Scholar
  121. Rehman, Z.; Shah, W. H. Thermal heat processing effects on antinutrients, protein and starch digestibility of food legumes. Food. Chem. 2005, 91, 327–331.CrossRefGoogle Scholar
  122. Roberfroid, M. Functional food concept and its application to prebiotics. Dig. Liver Dis. 2002, 34, S105.Google Scholar
  123. Rozan, P.; Kuo, Y. H.; Lambein F. Amino acids in seed and seedling of the genus Lens. Phytochemistry. 2001, 58, 281–289.CrossRefPubMedGoogle Scholar
  124. Rozan, P.; Kuo, Y.; Lambein, F. Free amino acids present in commercially available seedlings sold for human consumption. A potential hazard for consumers. J. Agric. Food Chem. 2000, 48, 716–723.CrossRefPubMedGoogle Scholar
  125. Rubio, L. A.; Grant, G.; Scislowski, P. W. O.; Brown, D.; Bardocz, S.; Pusztai, A. The utilization of lupin (Lupinus angustifolius) and faba bean (Vicia faba) globulins by rats is poorer than of soybean globulins and lactalbumin but the nutritional value of lupin seed meal is lower only than that of lactalbumin. J. Nutr. 1995, 125, 2145–2155.PubMedGoogle Scholar
  126. Ruiz, R. G.; Price, K. R.; Rose, M. E.; Fenwick, G. R. Effect of seed size and testa color on saponin content of Spanish lentil seed. Food Chem. 1997, 3, 223–226.CrossRefGoogle Scholar
  127. Sadowska, J.; Fornal, J.; Vidal-Valverde, C.; Frias, J. Natural fermentation of lentils. Functional properties and potential in breadmaking of fermented lentil flour. Nahrung, 1999, 43, 396–401.CrossRefGoogle Scholar
  128. Sahuquillo, A.; Barberá, R.; Farré, R. Bioaccesibility of calcium, iron, and zinc from three legume samples. Nahrung/Food. 2003, 47, 438–441.CrossRefGoogle Scholar
  129. Sandberg, A. S.; Svanberg, U. Phytate hydrolysis by phytase in cereals. Effects on in vitro estimation of iron availability. J. Food Sci. 1991, 56, 1330–1333.CrossRefGoogle Scholar
  130. Sandström, B.; Sandberg, A. S. Inhibitory effects isolated inositol phosphates on zinc absorption in humans. J. Trace. Elem. Electrolytes. Health. Dis. 1992, 6, 99–103.PubMedGoogle Scholar
  131. Sanz, M. A.; Blázquez, I.; Sierra, I.; Medrano, M. A.; Frias, J.; Vidal-Valverde, C.; Hernández, A. Nutritional evaluation of ethanol-extracted lentil flours. J. Agric. Food Chem. 2001, 49, 1854–1860.CrossRefPubMedGoogle Scholar
  132. Sarriá, B.; López-Fandi{no, R.; Vaquero, P. Does processing of a powder or in-bottle-sterilized liquid infant formula affect calcium bioavailability? Nutrition, 2001, 17, 326–331.CrossRefPubMedGoogle Scholar
  133. Sarwar, G.; Peace, R. W. Comparisons between true digestibility of total nitrogen and limiting amino acids in vegetable proteins fed to rats. J. Nutr. 1986, 116, 1172–1184.PubMedGoogle Scholar
  134. Sathe, S. K.; Deshpande, S. S.; Reddy, N. R.; Goll, D. E.; Salunkhe, D. K. Effect of germination on proteins, raffinose oligosaccharides and antinutritional factors in the Great Northern beans (Phaseolus vulgaris L.). J. Food Sci. 1983, 48, 1796–1800.CrossRefGoogle Scholar
  135. Savage, G. P.; Scott, S. K. Effect of cooking and amino acid supplementation on the nutritive value of lentils (Lens culinaris M.). In Recent Advances of Research in Antinutritional Factors in Legume Seeds. Proceedings of the 1st International Workshop on Antinutritional Factors in Legume Seeds. Huisman, J., Van der Poel, F. B., Liener, I. E., Eds. Pudoc Public, Wageningen, The Netherlands, 1989, pp.243–248.Google Scholar
  136. Sebastiá, V.; Barberá, R.; Farré, R.; Lagarda, M. J. Effects of legume processing on calcium, iron and zinc contents and dialysabilities. J. Sci. Food. Agric. 2001, 81, 1180–1185.CrossRefGoogle Scholar
  137. Shekib, L. A. E.; Zouil, M. E.; Youssef, M. M.; Mohammed, M. S. Effect of cooking on the chemical composition of lentils, rice and their blend (Koshary). Food Chem. 1985, 18, 163–168.CrossRefGoogle Scholar
  138. Shekib, L. A. H.; Zoueil, M. E.; Youssef, M. M.; Mohamed, M. S. Amino acid composition and in vitro digestibility of lentil and rice proteins and their mixture (Koshary). Food. Chem. 1986, 20, 61–67.CrossRefGoogle Scholar
  139. Shekib, L. A. Nutritional improvement of lentils, chickpea, rice and wheat by natural fermentation. Plant. Food. Hum. Nutr. 1994, 46, 201–205.CrossRefGoogle Scholar
  140. Sidhu, G. S.; Oakenfull, D. G. A mechanism for the hypocholesterolaemic activity of saponins. Br. J. Nutr. 1986, 55, 643–649.CrossRefPubMedGoogle Scholar
  141. Sika, M.; Terrab, A.; Swan, P. B.; Hegarty, P. V. J. Composition of selected Moroccan cereals and legumes: Comparison with the FAO table for use in Africa. J. Food. Comp. Anal. 1995, 8, 62–70.CrossRefGoogle Scholar
  142. Singh, M.; Krikorian, A. D. Inhibition of trypsin activity by phytate. J. Agric. Food Chem. 1982, 30, 799–800.CrossRefGoogle Scholar
  143. Slavin, J. L. Dietary fiber and body weight. Nutrition. 2005, 21, 411–418.CrossRefPubMedGoogle Scholar
  144. Solanki, I. S.; Kapoor, A. C.; Singh, U. Nutritional parameters and yield evaluation of newly developed genotypes of lentils (Lens culinaris Medik.). Plant. Food. Hum. Nutr. 1999, 54, 79–87.CrossRefGoogle Scholar
  145. Sotomayor C.; Frias, J.; Fornal, J.; Sadowska, J.; Urbano, G.; Vidal-Valverde, C. Lentil starch content and its microscopical structure as influenced by natural fermentation. Starch/Stärke. 1999, 51, 152–156.CrossRefGoogle Scholar
  146. Sripriya, G.; Antony, U.; Chandra, T. S. Change in carbohydrate, free amino acids, organic acids, phytate, and HCl extractability of minerals during germination and fermentation of finger millet (Eleusine coracana). Food Chem. 1997, 58, 345–350.CrossRefGoogle Scholar
  147. Svanberg, U.; Lorri, W. Fermentation and nutrient availability. Food Control. 1997, 8, 319–327.CrossRefGoogle Scholar
  148. Tabera, J.; Frías, J.; Estrella, I.; Villa, R.; Vidal-Valverde, C. Natural fermentation of lentils. Influence of time, concentration and temperature on protein content, Trypsin inhibitor activity and phenolic compound content. Z. Lebensm. Unters. Forsch. 1995, 201, 587–591.CrossRefPubMedGoogle Scholar
  149. Teucher, B.; Olivares, M.; Cori, H. Enhancers of iron absorption: ascorbic acid and other organic acids. Int. J. Vitam. Nutr. Res. 2004, 74, 403–419.CrossRefPubMedGoogle Scholar
  150. Urbano, G.; Aranda, P.; Gómez-Villalva, E.; Frejnagel, S.; Porres, J. M.; Frías, J.; Vidal-Valverde, C.; López-Jurado, M. Nutritional evaluation of pea (Pisum sativum L.) protein diets alter mild hydrothermal treatment and with and without added phytase. J. Agric. Food Chem. 2003, 51, 2415–2420.CrossRefPubMedGoogle Scholar
  151. Urbano, G.; Aranda, P.; Vílchez, A.; Aranda, C.; Cabrera, L.; Porres, J. M.; López-Jurado, M. Effects of germination on the composition and nutritive value of proteins in Pisum sativum L. Food Chem. 2005a, 93, 671–679.Google Scholar
  152. Urbano, G.; López-Jurado, M.; Aranda, C.; Vilchez, A.; Cabrera, L.; Porres, J. M.; Aranda, P. Evaluation of zinc and magnesium bioavailability from pea (Pisum sativum, L.) sprouts. Effect of illumination and different germination periods. Int. J. Food Sci. Technol. 2006, 41, 618–626.CrossRefGoogle Scholar
  153. Urbano, G.; López-Jurado, M.; Fernández, M.; Moreu, M. C.; Porres-Foulquie, J.; Frias, J.; Vidal-Valverde, C. Ca and P bioavailability of processed lentils as affected by dietary fiber and phytic acid content. Nutr. Res. 1999, 19, 49–64.CrossRefGoogle Scholar
  154. Urbano, G.; López-Jurado, M.; Frejnagel, S.; Gómez-Villalva, E.; Porres, J. M.; Frías, J. Vidal-Valverde, C.; Aranda, P. Nutritional assessment of raw and germinated pea (Pisum sativum L.) protein and carbohydrate by in vitro and in vivo techniques. Nutrition. 2005b, 21, 230–239.Google Scholar
  155. Urbano, G.; Lopez-Jurado, M.; Hernandez, J.; Fernández, M.; Moreu, M. C.; Frias, J.; Diaz-Pollan, C.; Prodanov, M.; Vidal-Valverde, C. Nutritional assessment of raw, heated, and germinated lentils. J. Agric. Food Chem. 1995, 43, 1871–1877.CrossRefGoogle Scholar
  156. Urbano, G.; Porres, J. M.; Frejnagel, S.; López-Jurado, M.; Gómez-Villalva, E.; Vidal-Valverde, C.; Aranda, P. Improvement of iron availability from phytase-treated Pisum sativum, L flour. Food Chem. 2006, 103, 389–395.CrossRefGoogle Scholar
  157. Viadel, B.; Barberá, R.; Farré, R. Effect of cooking and legume species upon calcium, iron and zinc uptake by Caco-2 cells. J. Trace. Elem. Medic. Biol. 2006, 20, 115–120.CrossRefGoogle Scholar
  158. Vidal-Valverde, C.; Frias, J. Changes in carbohydrates during germination of lentils. Z. Lebensm. Unters. Forsch. 1992, 194, 461–464.CrossRefGoogle Scholar
  159. Vidal-Valverde, C.; Frias, J. Legume processing effects on dietary fiber components. J. Food. Sci. 1991, 56, 1350–1352.CrossRefGoogle Scholar
  160. Vidal-Valverde, C.; Frias, J.; Esteban, R. Dietary fiber in processed lentils. J. Food. Sci. 1992a, 57, 1161–1163.CrossRefGoogle Scholar
  161. Vidal-Valverde, C.; Frias, J.; Estrella, I.; Gorospe, M. J.; Ruiz, R.; Bacon, J. Effect of processing on some antinutritional factors of lentils. J. Agric. Food Chem. 1994, 42, 2291–2295.CrossRefGoogle Scholar
  162. Vidal-Valverde, C.; Frias, J.; Prodanov, M.; Tabera, J.; Ruiz, R.; Bacon, J. Effect of natural fermentation on carbohydrates, riboflavin and trypsin inhibitor activity of lentils. Z. Lebensm. Unters. Forsch. 1993b, 197, 449–452.CrossRefGoogle Scholar
  163. Vidal-Valverde, C.; Frias, J.; Sierra, I.; Blazquez, I.; Lambein, F.; Kuo, Y. New functional legume foods by germination: effect on the nutritive value of beans, lentils and peas. Eur. Food Res. Technol. 2002a, 215, 472–477.Google Scholar
  164. Vidal-Valverde, C.; Frias, J.; Valverde, S. Changes in the carbohydrate composition of legumes after soaking and cooking. J. Am. Diet. Assoc. 1993a, 93, 547–550.Google Scholar
  165. Vidal-Valverde, C.; Frias, J.; Valverde, S. Effect of processing on the soluble carbohydrate content of lentils. J. Food. Protect. 1992b, 55, 301–304.Google Scholar
  166. Vidal-Valverde, C.; Prodanov, M.; Sierra, I. Natural fermentation of lentils. Influence of time, temperature and flour concentration on the kinetics of thiamin, riboflavin and niacin. Z. Lebensm. Unters. Forsch. 1997, 205, 464–469.CrossRefGoogle Scholar
  167. Vidal-Valverde, C.; Sierra, I.; Frias, J.; Prodanov, M.; Sotomayor, C.; Hedley, C.; Urbano, G. Nutritional evaluation of lentil flours obtained after short-time soaking process. Eur. Food Res. Technol. 2002b, 215, 138–144.Google Scholar
  168. Villaume, C.; Chandrasiri, V.; Bau, H. M.; Nicolas, J. P.; Méjean, L. Effet du traitement technologique de préparation des protéines de soja sur la prise alimentaire du rat en croissance. Sci. Alim. 1993, 13, 377–383.Google Scholar
  169. Wang, N.; Daun, J. K. Effects of variety and crude protein content on nutrients and anti-nutrients in lentils (Lens culinaris). Food Chem. 2006, 95, 493–502.CrossRefGoogle Scholar
  170. Wu, W.; Williams, W.; Kunkel, M.; Acton, J.; Huang, Y.; Wardlaw, F.; Grimes, L. Amino acid availability and availability-corrected amino acid score of red kidney beans (Phaseolus vulgaris, L.). J. Agric. Food Chem. 1996, 44, 1296–1301.CrossRefGoogle Scholar
  171. Yeung, A. C.; Glahn, R. P.; Miller, D. D. Comparison of the availability of various iron fortificants in bread and milk using an in vitro digestion Caco-2 cell culture method. J. Food Sci. 2002, 67, 2357–2361.CrossRefGoogle Scholar
  172. Yoneda, S.; Nakatsubo, F. Effects of the hydroxylation patterns and degrees of polymerization of condensed tannins on their metal-chelating capacity. J. Wood Chem. Technol. 1998, 18, 193–205.CrossRefGoogle Scholar
  173. Zhao, Y. H.; Manthey, F. A.; Chang, S. K. C.; Hou, H. J.; Yuan, S. H. Quality characteristics of spaghetti as affected by green and yellow pea, lentil, and chickpea flours. J. Food Sci. 2005, 70, S371–S376.CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Departamento de FisiologíaInstituto de Nutrición Universidad de Granada Campus Universitario de Cartuja s/nSpain
  2. 2.Consejo Superior de Investigaciones CientíficasInstituto de Fermentaciones IndustrialesJuan dela Cierva 3Spain

Personalised recommendations