Advertisement

Lentil pp 315-329 | Cite as

Abiotic Stresses

Chapter

Abstract

There has been a large focus on biotic stresses in lentil as these cause obvious and serious reductions in yield and quality. However, increasingly abiotic stresses are being identified as major factors involved in the low and unreliable yield of lentils in many countries. Within each growing region, variations in climate, soils,and interactions between climate and soil affect lentil productivity and quality directly, or indirectly though their influence on foliar and soil borne diseases, pests and rhizobia. Furthermore, the impact of a specific stress can be influence by the relative tolerance of a cultivar and/or effect of particular cultural control methods

Keywords

Seed Yield Faba Bean Sowing Date Lens Culinaris Winter Hardiness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, S.C., Khare, M.N. and Kushwaha, L.S. (1976) Effect of sowing dates on the collar rot of lentil caused by Sclerotium Rolf’s Sac. JNKVV Research Journal 10: 172–173 CAB abstractsGoogle Scholar
  2. Ali, A., Johnson, D.L., Stushnoff, C. (1999) Screening lentil (Lens culinaris) for cold hardiness under controlled conditions. Journal of Agricultural Science 133: 3, 313–319CrossRefGoogle Scholar
  3. Ali, M., Saraf, C.S., Singh, P.P., Rewari, R.B. and Ahlawat, I. P. S., S. (1993) Agronomy of lentil in India. In: Lentils in South East Asia, Proceedings of the seminar on lentil in South Asia, 11–15 March 1991, New Delhi, India, pp 103–127 (Eds W. Erskine and M. C. Saxena)Google Scholar
  4. Ashraf, M. and Waheed, A. (1990) Screening of local/exotic accessions of lentil (Lens culinaris Medic.) for salt tolerance at two growth stages. Plant and Soil 128: 167–176CrossRefGoogle Scholar
  5. Ashraf, M. and Waheed, A. (1993) Responses of some local/exotic accessions of lentil (Lens culinaris Medic.) to salt stress. Journal of Agronomy and Crop Science 170: 103–112Google Scholar
  6. Ashraf, M. and Waheed, A. (1998) Genetic basis of salt (NaCl) tolerance in lentil. LENS Newsletter 25: 15–22Google Scholar
  7. Bagheri, A., Paull, J.G. and Rathjen A.J. (1994) The response of Pisum sativum L. germplasm to high concentrations of soil boron. Euphytica 75: 9–17CrossRefGoogle Scholar
  8. Bejiga, G. (1991) Effect of sowing date on the yield of lentil (Lens culinaris Medik.) Journal of Agronomy and Crop Science 167: 135–140Google Scholar
  9. Bejiga, G. and Anbessa, Y. (1995) Waterlogging tolerance in lentil. LENS Newsletter 22: 8–10Google Scholar
  10. Bhattarai, A.N., Bharati, M.P. and Gyawali, B.K. (1988) Factors which limit the productivity of cool season food legumes in Bangladesh. In: World Crops: Cool season food legumes, pp 230–234 (Ed R. J. Summerfield). Kluwer Academic PublishersGoogle Scholar
  11. Buddenhagen, I.W. and Richards, R. A. (1988) Breeding cool season food legumes for improved performance in stress environments. In: World Crops: Cool season food legumes pp 81–95. (Ed R. J. Summerfield) Kluwer Academic PublishersGoogle Scholar
  12. Cartwright B., B.A. Zarcinas & A.H. Mayfield (1984) Toxic concentrations of boron in a red-brown earth at Gladstone, South Australia. Australian Journal of Soil Research 22: 261–272CrossRefGoogle Scholar
  13. Chauhan R.P.S. and Asthana A.K. (1981) Tolerance of lentil, barley and oats to boron in irrigation water. Journal of Agricultural Science, Cambridge 97, 75–78.Google Scholar
  14. Chen CC. Miller P. Muehlbauer F. Neill K. Wichman D. McPhee K. 2006) Winter pea and lentil response to seeding date and micro- and macro-environments. Agronomy Journal 98(6) :1655–1663CrossRefGoogle Scholar
  15. Dannel, F., Pfeffer, H. and Romheld, V. (2002) Uptake on boron in higher plants – uptake, primary translocation and compartmentation. Plant Biology 4: 193–204CrossRefGoogle Scholar
  16. Erskine, W. (1985) Perspectives in lentil breeding. In: Faba Beans, Kabuli Chickpeas and Lentils in the 1980’s, pp 91–100 (Eds M. C. Saxena and S. Varma). Aleppo, Syria: ICARDAGoogle Scholar
  17. Erskine, W. (1996) Seed-size effects on lentil (Lens culinaris) yield potential and adaptation to temperature and rainfall in West Asia. Journal of Agricultural Science, Cambridge 126: 335–341Google Scholar
  18. Erskine, W. and Saxena, M. C. (1993) Problems and prospects of stress resistance breeding in lentil. In: Breeding for stress tolerance in cool-season food legumes. pp 51–62. (Eds K. B. Singh and M. C. Saxena) John Wiley and SonsGoogle Scholar
  19. Erskine, W., Adham, Y. and Holly, L. (1989) Geographic distribution of variation in quantitative traits in a world lentil collection. Euphytica 43: 97–103CrossRefGoogle Scholar
  20. Erskine, W., Myveci, K., and Izgin, N. (1981) Screening a world lentil collection for cold tolerance. LENS Newsletter 13: 19–27Google Scholar
  21. Eujayl, I.; Erskine, W.; Baum, M.; Pehu, E. (1999) Inheritance and linkage analysis of frost injury in lentil. Crop Science 39: 3, 639–642CrossRefGoogle Scholar
  22. Erskine, W., Tufail, M., Russell, A., Tyagi, M. C., Rahman, M. M. and Saxena, M. C. (1994a) Current and future strategies in breeding lentil for resistance to biotic and abiotic stresses. Euphytica 73: 127–135CrossRefGoogle Scholar
  23. Erskine, W., Hussain, A., Tahir, M., Bahksh, A., Ellis, R. H., Summerfield, R. J., and Roberts, E. H. (1994b) Field evaluation of a model of photothermal flowering responses in a world lentil collection. Theoretical and Applied Genetics 88: 423–428Google Scholar
  24. Gahoonia, T. S., Omar Ali, Sarker, A., Rahman, M.M. and Erskine, W. (2005) Root traits, nutrient uptake, multi-location grain yield and benefit-cost ratio of two lentil (Lens culinaris, Medikus.) varieties. Plant and Soil. 272: 153–161CrossRefGoogle Scholar
  25. Gupta S. K. and Sharma S. K. (1990) Response of crops to high exchangeable sodium percentage. Irrigation Science 11: 173–179.CrossRefGoogle Scholar
  26. Hamdi, A. and Erskine, W. (1996) Reaction of wild species of the genus Lens to drought. Euphytica. 1996. 91: 2, 173–179Google Scholar
  27. Hamdi, A., Kusmenoglu, I. and Erskine, W. (1996) Sources of winter hardiness in wild lentil. Genetic Resources and Crop Evolution. 1996. 43: 1, 63–67CrossRefGoogle Scholar
  28. Hezewijk, M. J. van, Pieterse, A. H., Saxena, M. C. and Borg, S. J. ter (1987) Relationship between sowing date and Orobanche (broomrape) development on faba bean (Vicia faba L.) and lentil (Lens culinaris Medikus) in Syria. Proceedings of the 4th international symposium on parasitic flowering plants. 1987, pp 377–390. CAB abstractsGoogle Scholar
  29. Hobson, K., Armstrong, R., Connor, D., Nicolas, M. and Materne, M. (2003) Genetic variation in tolerance to high concentrations of soil boron exists in lentil germplasm. In: “Solutions for a better environment”. Proceedings of the 11th Australian Agronomy Conference. 2–6 February 2003, Geelong, Victoria. Australian Society of AgronomyGoogle Scholar
  30. Hobson, K.B., Armstrong, R.D, Nicolas, M.E, Connor, D.J. and Materne, M.A. (2004) Boron tolerance of lentil – highlights of a research program. In: “New directions for a diverse planet”. Proceedings of the 4th International Crop Science Congress 26 Sep–1 Oct 2004, Brisbane, Australia.Google Scholar
  31. Hobson, K., Armstrong, R., Nicolas, M., Connor, D. and Materne, M. (2006) Response of lentil (Lens culinaris) germplasm to high concentrations of soil boron. Euphytica 151, 371–382.Google Scholar
  32. Jana, M. K. and Slinkard, A. E. (1979) Screening for salt tolerance in lentils. LENS Newsletter 6: 25–27Google Scholar
  33. Jayasundara, H. P. S., Thomson, B. D. and Tang, C. (1998) Responses of cool season grain legumes to soil abiotic stresses. Advances in Agronomy 63: 77–153Google Scholar
  34. Kannaiyan, J. and Nene, Y. L. (1975) Note on the effect of sowing dates on the reaction of twelve lentil cultivars to wilt disease. Madras Agricultural Journal 62: 240–242. CAB abstractsGoogle Scholar
  35. Karaman A, Kusmenoglu I, Aydin N, Aydogan A, Erskine W, Muehlbauer FJ (2004) Genetics of winter hardiness in 10 lentil recombinant inbred line populations. Crop Science 44:5–12Google Scholar
  36. Knights, E. J. (1987) Lentil: A potential winter grain legume crop for temperate Australia. Journal of the Australian Institute of Agricultural Science 53: 271–280Google Scholar
  37. Knight, T. L., Martin, R. J. and Harvey, I. C. (1989) Management factors affecting lentil production in mid Canterbury. Proceedings Annual Conference – Agronomy Society of New Zealand. 1989, 19, pp 17–24. CAB abstractsGoogle Scholar
  38. Kusmenoglu, I. and Aydin, N. (1995) The current status of lentil germplasm exploitation for adaptation to winter sowing in the Anatolian highlands. In Autumn-sowing of lentil in the highlands of West Asia and North Africa, pp 63–71 (Eds J. D. H. Keatinge and I. Kusmenoglu) Ankara: CRIFCGoogle Scholar
  39. Lachaal, M., Grignon, C. and Hajji, M. (2002) Growth rate affects salt sensitivity in two lentil populations. Journal of Plant Nutrition 25: 2613–2625CrossRefGoogle Scholar
  40. Lawn, R. J., Summerfield, R. J., Ellis, R. H., Qi, A., Roberts, E. H., Chay, P. M., Brouwer, J. B., Rose, J. L. and Yeates, S. J. (1995) Towards the reliable prediction of time to flowering in six annual crops. IV. Applications in crop improvement. Experimental Agriculture 31: 89–108.CrossRefGoogle Scholar
  41. Leport, L., Turner, N. C., French, R. J., Tennant, D., Thomson, B. D. and Siddique, K. H. M. (1998) Water relations, gas exchange and growth of cool-season grain legumes in a Mediterranean-type environment. European Journal of Agronomy 9: 295–303CrossRefGoogle Scholar
  42. Maher, L., Armstrong, R. and Connor, D. (2003) Salt tolerant lentils – a possibility for the future? In: “Solutions for a better environment”. Proceedings of the 11th Australian Agronomy Conference. 2–6 February 2003, Geelong, Victoria. Australian Society of AgronomyGoogle Scholar
  43. Malhotra, R. S. and Saxena, M. C. (1993) Screening for cold and heat tolerance in cool-season food legumes. In Breeding for stress tolerance in cool-season food legumes. Ed Singh, K. B.; Saxena, M. C. John Wiley & Sons Ltd, Chichester, UK: 1993. 227–244.Google Scholar
  44. Materne, M. A. (2003) Importance of phenology and other key factors in improving the adaptation of lentil (Lens culinaris Medikus) in Australia. Thesis presented for the degree of Doctor of Philosophy at The University of Western Australia, School of Plant Biology and Centre for Legumes in Mediterranean Agriculture (CLIMA), Faculty of Natural and Agricultural SciencesGoogle Scholar
  45. Materne, M., McMurray, L., Nitschke, S., Regan, K., Heuke, L., Dean, G. and Carpenter, D. (2002) The future of Australian lentil production. In: Proceedings of Lentil Focus 2002, 14–18 (Ed JB Brouwer) Horsham, Victoria, AustraliaGoogle Scholar
  46. Materne, M., Regan, K., McMurray, L., Nitschke, S., Dean, G., Heuke, L., and Matthews, P. (2006) Breeding for NaCl tolerance and improved adaptation in lentil. In: ‘Breeding for success: Diversity in action’ (Ed C.F. Mercer) Proceedings of 13th Australiasian Plant Breeding Conference, Christchurch, new Zealand 18–21 April 2006. pp 1198–1203Google Scholar
  47. McWilliam, J. R. (1986) The national and international importance of drought and salinity effects on agricultural production. Australian Journal of Plant Physiology 13: 1–13CrossRefGoogle Scholar
  48. Mishra, J. S., Singh, V. P. and Bhan, V. M. (1996) Response of lentil to date of sowing and weed control in Jabalpur, India. LENS Newsletter 23: 18–23Google Scholar
  49. Mittal, R. K. (1997) Effect of sowing dates and disease development in lentil as sole and mixed crop with wheat. Journal of Mycology and Plant Pathology 27: 203–209. CAB abstracts.Google Scholar
  50. Moody, D. B., Rathjen, A. J., Cartwright, B., Paull, J. G. and Lewis, J. (1988) Genetic diversity and geographic distribution of tolerance to high levels of soil boron. In: Proceedings of the 7th International Wheat Genetics Symposium, Cambridge, UK, p 859–865Google Scholar
  51. Muehlbauer, F. J. and McPhee, K. E. (2002) Future of North American lentil production. In: Proceedings of Lentil Focus 2002, pp 8–13 (Ed JB Brouwer) Horsham, Victoria, AustraliaGoogle Scholar
  52. Muehlbauer, F. J. and Slinkard, A. E. (1983) Lentil improvement in the Americas. In: Proceedings of the international workshop on Faba beans, Kabuli chickpeas and lentils in the 1980’s. pp 351–366. (Eds M. C. Saxena and S. Varma) ICARDA, 16–20 May 1983, Aleppo, Syria.Google Scholar
  53. Muehlbauer, F. J., Cubero, J. I. and Summerfield, R. J. (1985) Lentil (Lens culinaris Medic.) In: Grain Legume Crops. pp 266–311. (Ed R. J. Summerfield and E. H. Roberts) Collins, LondonGoogle Scholar
  54. Muehlbauer, F. J., Kaiser, W. J., Clement, S. L. and Summerfield, R. J. (1995) Production and breeding of lentil. Advances in Agronomy 54: 283–332Google Scholar
  55. Murinda, M. V. and Saxena, M. C. (1983) Agronomy of faba beans, lentils, and chickpeas. In: Proceedings of the international workshop on Faba beans, Kabuli chickpeas and lentils in the 1980’s. pp 229–244. (Eds M. C. Saxena and S. Varma) ICARDA, 16–20 May 1983, Aleppo, Syria.Google Scholar
  56. Nuttall, J. G., Armstrong, R. D., and Connor, D. J. (2001) Understanding subsoil water-use on southern Mallee soils: I. Spatial characteristics of subsoil constraints. In: Proceedings of the 10th Australian Agronomy Conference pp 51. Hobart. Tasmania (28 January–1 February 2001)Google Scholar
  57. Nuttall, J., Armstrong, R. and Connor, D. (2003a) The effects of salinity, sodicity and soluble boron on wheat yields in the Victorian southern Mallee. In: "Solutions for a better environment". Proceedings of the 11th Australian Agronomy Conference. 2–6 February 2003, Geelong, Victoria. Australian Society of AgronomyGoogle Scholar
  58. Nuttall J.G., R.D. Armstrong, D.J. Connor & V.J. Matassa (2003b) Interrelationships between edaphic factors potentially limiting cereal growth on alkaline soils in north-western Victoria. Australian Journal of Soil Research 41: 277–292.CrossRefGoogle Scholar
  59. Rahman, M. M. and Mallick, R. N. (1988) Factors which limit cool season food legume productivity in Bangladesh. In: World Crops: Cool season food legumes, pp 230–234 (Ed R. J. Summerfield). Kluwer Academic PublishersGoogle Scholar
  60. Rai, R., Nasar, S. K. T., Singh, S. J. and Prasad, V. (1985) Interactions between Rhizobium strains and lentil (Lens culinaris Linn.) genotypes under salt stress. Journal of Agricultural Science 104: 199–205Google Scholar
  61. Ralph W. (1991) Boron problems in the southern wheat belt. Rural Research 153: 4–8.Google Scholar
  62. Rathjen A.J., J.D. Brand, C.-Y. Liu, J.G. Paull & D. Cooper (1999) Breeding for tolerance to soil toxicities. In 11th Australian Plant Breeders Conference, Adelaide, 19–23 April 1999, 1999. Eds P. Longridge, A. Barr, A. Auricht, G. Collins, A. Granger, D. Handford & J. Paull. pp 34–40. CRC for Molecular Plant Breeding.Google Scholar
  63. Ryan J, Singh M, Yau SK (1998) Spatial variability of soluble boron in Syrian soils. Soil & Tillage Research 45, 407–417.CrossRefGoogle Scholar
  64. Sakal, R., Singh, A. P. and Sinha, R. B. (1988) Differential reaction of lentil cultivars to boron application in calcareous soil. LENS Newsletter 15: 27–29Google Scholar
  65. Sakar, D., Durutan, N. and Meyveci, K. (1988) Factors which limit the productivity of cool season food legumes in Turkey. In: World Crops: Cool season food legumes, pp 137–145 (Ed R. J. Summerfield). Kluwer Academic PublishersGoogle Scholar
  66. Saxena, M. C. (1983) Food legume improvement program at ICARDA – An overview. In: Proceedings of the international workshop on Faba beans, Kabuli chickpeas and lentils in the 1980’s. pp 1–13. (Eds M. C. Saxena and S. Varma) ICARDA, 16–20 May 1983, Aleppo, SyriaGoogle Scholar
  67. Saxena, M. C. and Hawtin, G. C. (1981) Morphology and growth patterns. In: Lentils. pp 39–52 (Eds C. Webb and G. Hawtin) Commonwealth Agricultural Bureaux, ICARDAGoogle Scholar
  68. Saxena, N. P., Johansen, C., Saxena, M. C. and Silim, S. N. (1993) The challenge of developing biotic and abiotic stress resistance in cool-season food legumes. In: Breeding for stress tolerance in cool-season food legumes. pp 245–270. (Eds K. B. Singh and M. C. Saxena) John Wiley and SonsGoogle Scholar
  69. Shah, M. and Muhammad, Y. N. (1976) Effect of salinity on the chemical composition of three cultivars of lentil (Lens esculenta). Journal of Agricultural Research, Pakistan 14: 65–74. CAB abstractsGoogle Scholar
  70. Siddique, K. H. M., Loss, S. P., Regan, K. L. and Jettner, R. L (1999) Adaptation and seed yield of cool season grain legumes in Mediterranean environments of southwestern Australia. Australian Journal of Agricultural Research 50: 375–387CrossRefGoogle Scholar
  71. Silim, S. N., Saxena, M. C. and Erskine, W. (1991) Effect of sowing date on the growth and yield of lentil in a rainfed Mediterranean environment. Experimental Agriculture 27: 145–154Google Scholar
  72. Silim, S.N., Saxena, M.C. and Erskine, W. (1993) Adaptation of lentil to the Mediterranean environment. I. Factors affecting yield under drought conditions. Experimental Agriculture 29: 9–19Google Scholar
  73. Singh, B. B., Tewari, T. N. and Singh, A. K. (1993) Stress studies in lentil (Lens esculenta Moench). III. Leaf growth, nitrate reductase activity, nitrogenase activity and nodulation of two lentil genotypes exposed to sodicity. Journal of Agronomy and Crop Science 171: 196–205 CAB abstractsGoogle Scholar
  74. Singh, G. and Dhingra, K. K. (1980) Effect of sowing dates and varietal reaction on the incidence of lentil rust. Journal of Research, Punjab Agricultural University 17: 233–235Google Scholar
  75. Smartt, J. (1984) Evolution of grain legumes. I. Mediterranean pulses. Experimental Agriculture 20: 275–296Google Scholar
  76. Srivastava, S. P., Joshi, M., Johansen, C. and Rego, T. J. (1999) Boron deficiency of lentil in Nepal. LENS Newsletter 26: 22–24Google Scholar
  77. Srivastava, S. P., Bhandari, T. M. S., Yadav, C. R., Joshi, M. and Erskine, W (2000) Boron deficiency in lentil: yield loss and geographic distribution in a germplasm collection. Plant and Soil 219: 147–151CrossRefGoogle Scholar
  78. Stoilova, T. (2000) Evaluation of lentil germplasm accessions for winter hardness in Bulgaria. Bulgarian Journal of Agricultural Science. 6: 61–164Google Scholar
  79. Summerfield, R. J., Muehlbauer, F. J. and Short, R. W. (1989) Controlled environments as an adjunct to field research on lentils (Lens culinaris). V. Cultivar responses to above- and below-average temperatures during the reproductive period. Experimental Agriculture 25: 327–341Google Scholar
  80. Turner, N. C., Wright, G. C. and Siddique, K. H. M. (2001) Adaptation of grain legumes (Pulses) to water-limited environments. Advances in Agronomy 71: 193–231CrossRefGoogle Scholar
  81. Weigand, S., Pala, M. and Saxena, M. C. (1992) Effect of sowing date, fertilizer and insecticide on nodule damage by Sitona crinitus Herbst (Coleoptera: Curculionidae) and yield of lentil (Lens culinaris Medik.) in northern Syria. Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz. 99: 174–181. CAB abstracts.Google Scholar
  82. Yau, S. K. (1999) Boron toxicity in lentil: yield loss and variation between contrasting lines. LENS Newsletter 26: 14–17Google Scholar
  83. Yau, S. K. (2002) Comparison of European with West Asian and North African winter barleys in tolerance to boron toxicity. Euphytica 123: 307–314CrossRefGoogle Scholar
  84. Yau, S. K. and Erskine, W. (2000) Diversity of boron-toxicity tolerance in lentil growth and yield. Genetic Resources and Crop Evolution 47: 55–61CrossRefGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  1. 1.Grains Innovation ParkThe Department of Primary IndustriesVictoria 3401Australia
  2. 2.School of Agricultural ScienceUniversity of TasmaniaHobartAustralia
  3. 3.BioMarka, Faculty of Land and Food ResourcesThe University of MelbourneVictoria 3010Australia

Personalised recommendations