γ-Secretase Mediated Proteolysis: At the Cutting Edge of Notch Signaling

  • Ma. Xenia G. Ilagan
  • Dilip Chandu
  • Raphael Kopan
Part of the Proteases in Biology and Disease book series (PBAD, volume 6)

Abstract

Notch proteins are evolutionary conserved transmembrane receptors used by metazoans to direct cell fate decisions, proliferation, differentiation and cell death at all stages of development, including self-renewing adult tissues. Notch signaling is a well-established example of a pathway that is mediated by Regulated Intramembrane Proteolysis (RIP). Upon binding of ligand, the Notch receptor undergoes successive proteolytic cleavages – an ectodomain shedding cleavage followed by intramembrane proteolysis by γ-secretase. This process releases the Notch intracellular domain, which translocates to the nucleus to activate its target genes. Deciphering the proteolytic mechanism for Notch activation relied on the convergence of previously independent fields of research, revealing that the Notch receptor resembled another Type I membrane protein, the amyloid-γ precursor protein, in that both are proteolytically cleaved within their transmembrane domains (TMDs) by the same protease, γ-secretase, whose catalytic center resided in the protein Presenilin. Intramembrane proteolysis has continued to emerge as an exciting research area in cell biology. Recent studies on γ-secretase function have begun to reveal the molecular details involved in ectodomain shedding and intramembrane cleavage events as well as the importance of endocytosis and endosomal sorting as key regulators of γ-secretase cleavage of Notch

Keywords

Notch γ-secretase RIP ectodomain shedding endocytosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. Ahimou, F., Mok, L.P., Bardot, B. and Wesley, C., 2004, The adhesion force of Notch with Delta and the rate of Notch signaling. J Cell Biol, 167: 1217–1229.PubMedGoogle Scholar
  2. Ahmad, I., Zagouras, P. and Artavanistsakonas, S., 1995, Involvement Of Notch-1 In Mammalian Retinal Neurogenesis – Association Of Notch-1 Activity With Both Immature and Terminally Differentiated Cells. Mechanisms of Development, 53: 73–85.PubMedGoogle Scholar
  3. Aster, J., Pear, W., Hasserjian, R., Erba, H., Davi, F., Luo, B., Scott, M., Baltimore, D. and Sklar, J., 1994, Functional analysis of the TAN-1 gene, a human homologe of drosophila Notch. Cold Spring Harbor Symposia on Quantitative Biology, LIX: 125–136.Google Scholar
  4. Aster, J.C., Robertson, E.S., Hasserjian, R.P., Turner, J.R., Kieff, E. and Sklar, J., 1997, Oncogenic Forms Of Notch1 Lacking Either the Primary Binding Site For Rbp-J-Kappa or Nuclear Localization Sequences Retain the Ability to Associate With Rbp-J-Kappa and Activate Transcription. J Biol Chem, 272: 11336–11343.PubMedGoogle Scholar
  5. Barrick, D. and Kopan, R., 2006, The Notch transcription activation complex makes its move. Cell, 124: 883–885.PubMedGoogle Scholar
  6. Bland, C.E., Kimberly, P. and Rand, M.D., 2003, Notch-induced proteolysis and nuclear localization of the Delta ligand. J Biol Chem, 278: 13607–13610.PubMedGoogle Scholar
  7. Blat, Y., Meredith, J.E., Wang, Q., Bradley, J.D., Thompson, L.A., Olson, R.E., Stern, A.M. and Seiffert, D., 2002, Mutations at the P1(’) position of Notch1 decrease intracellular domain stability rather than cleavage by gamma-secretase. Biochem Biophys Res Commun, 299: 569–573.PubMedGoogle Scholar
  8. Borgne, R.L., Remaud, S., Hamel, S. and Schweisguth, F., 2005, Two Distinct E3 Ubiquitin Ligases Have Complementary Functions in the Regulation of Delta and Serrate Signaling in Drosophila. PLoS Biol, 3: e96.PubMedGoogle Scholar
  9. Brou, C., Logeat, F., Gupta, N., Bessia, C., LeBail, O., Doedens, J.R., Cumano, A., Roux, P., Black, R.A. and Israel, A., 2000, A Novel Proteolytic Cleavage Involved in Notch Signaling: The Role of the Disintegrin-Metalloprotease TACE. Molecular Cell, 5: 207–216.PubMedGoogle Scholar
  10. Brown, M.S., Ye, J., Rawson, R.B. and Goldstein, J.L., 2000, Regulated Intramembrane Proteolysis: A Control Mechanism Conserved from Bacteria to Humans. Cell, 100: 391–398.PubMedGoogle Scholar
  11. Callahan, R. and Egan, S.E., 2004, Notch signaling in mammary development and oncogenesis. J Mammary Gland Biol Neoplasia, 9: 145–163.PubMedGoogle Scholar
  12. Chandu, D., Huppert, S. and Kopan, R., 2006, Analysis Of Transmembrane Domain Mutants Is Consistent With Sequential Cleavage Of Notch By gamma-Secretase. J Neurochem, 96: 228–235.PubMedGoogle Scholar
  13. Chen, Y., Fischer, W.H. and Gill, G.N., 1997, Regulation of the ERBB-2 promoter by RBPJkappa and NOTCH. J Biol Chem, 272: 14110–14114.PubMedGoogle Scholar
  14. Cheng, H., Miner, J., Lin, M., Tansey, M.G., Roth, K.A. and Kopan, R., 2003, g-Secretase Activity is Dispensable for the Mesenchyme-to-Epithelium Transition but Required for Proximal Tubule Formation in Developing Mouse Kidney. Development, 130: 5031–5041.PubMedGoogle Scholar
  15. Cheng, P.Y., Zlobin, A., Volgina, V., Gottipati, S., Osborne, B., Simel, E.J., Miele, L. and Gabrilovich, D.I., 2001, Notch-1 regulates NF-kappa B activity in hemopoietic progenitor cells. J Immunol, 167: 4458–4467.PubMedGoogle Scholar
  16. Childress, J.L., Acar, M., Tao, C. and Halder, G., 2006, Lethal giant discs, a novel C2-domain protein, restricts notch activation during endocytosis. Curr Biol, 16: 2228–2233.PubMedGoogle Scholar
  17. Chung, H.M. and Struhl, G., 2001, Nicastrin is required for Presenilin-mediated transmembrane cleavage in Drosophila. Nature Cell Biology, 3: 1129–1132.PubMedGoogle Scholar
  18. Coffman, C.R., Skoglund, P., Harris, W.A. and Kintner, C.R., 1993, Expression of an extracellular deletion of Xotch diverts cell fate in Xenopus embryos. Cell, 73: 659–671.PubMedGoogle Scholar
  19. Collins, B.J., Kleeberger, W. and Ball, D.W., 2004, Notch in lung development and lung cancer. Semin Cancer Biol, 14: 357–364.PubMedGoogle Scholar
  20. Conlon, R.A., Reaume, A.G. and Rossant, J., 1995, Notch1 is required for the coordinate segmentation of somites. Development, 121: 1533–1545.PubMedGoogle Scholar
  21. Crittenden, S.L., Troemel, E.R., Evans, T.C. and Kimble, J., 1994, GLP-1 is locelized to the mitotic region of the C. elegans germ line. Development, 120: 2901–2911.PubMedGoogle Scholar
  22. Crouthamel, M.-C., Gardell, S.J., Huang, Q., Lai, M.-T. and Li, Y. (2002) GAMMA THREE PROTEASE. MERCK & CO., INC., USA.Google Scholar
  23. de Celis, J.F., Barrio, R., del Arco, A. and Garcia-Bellido, A., 1993, Genetic and molecular characterization of a Notch mutation in its Delta- and Serrate-binding domain in Drosophila. Proc Natl Acad Sci U S A, 90: 4037–4041.PubMedGoogle Scholar
  24. de Celis, J.F. and Bray, S.J., 2000, The Abruptex domain of Notch regulates negative interactions between Notch, its ligands and Fringe. Development, 127: 1291–1302.PubMedGoogle Scholar
  25. De Strooper, B., Annaert, W., Cupers, P., Saftig, P., Craessaerts, K., Mumm, J.S., Schroeter, E.H., Schrijvers, V., Wolfe, M.S., Ray, W.J., Goate, A. and Kopan, R., 1999, A presenilin-1-dependent gamma-secretase-like protease mediates release of Notch intracellular domain. Nature, 398: 518–522.PubMedGoogle Scholar
  26. De strooper, B., Saftig, P., Craessaerts, K., Vanderstichele, H., Guhde, G., Annaert, W., Vonfigura, K. and Vanleuven, F., 1998, Deficiency of Presenilin-1 Inhibits the Normal Cleavage of Amyloid Precursor Protein. Nature, 391: 387–390.PubMedGoogle Scholar
  27. Doerfler, P., Shearman, M.S. and Perlmutter, R.M., 2001, Presenilin-dependent gamma-secretase activity modulates thymocyte development. Proc Natl Acad Sci U S A., 98: 9312–9317.PubMedGoogle Scholar
  28. Donoviel, D.B., Hadjantonakis, A.K., Ikeda, M., Zheng, H., Hyslop, P.S. and Bernstein, A., 1999, Mice lacking both presenilin genes exhibit early embryonic patterning defects. Genes & Development, 13: 2801–2810.Google Scholar
  29. Dontu, G., Jackson, K.W., McNicholas, E., Kawamura, M.J., Abdallah, W.M. and Wicha, M.S., 2004, Role of Notch signaling in cell-fate determination of human mammary stem/progenitor cells. Breast Cancer Res, 6: R605–615.PubMedGoogle Scholar
  30. Dyczynska, E., Sun, D., Yi, H., Sehara-Fujisawa, A., Blobel, C.P. and Zolkiewska, A., 2007, Proteolytic processing of delta-like 1 by ADAM proteases. J Biol Chem, in press.Google Scholar
  31. Eastman, D.S., Slee, R., Skoufos, E., Bangalore, L., Bray, S. and Delidakis, C., 1997, Synergy Between Suppressor of Hairless and Notch in Regulation of Enhancer of Split M-Gamma and M-Delta Expression. Mol Cell Biol, 17: 5620–5628.PubMedGoogle Scholar
  32. Ellisen, L.W., Bird, J., West, D.C., Soreng, A.L., Reynolds, T.C., Smith, S.D. and Sklar, J., 1991, TAN-1, the human homolog of the Drosophila notch gene, is broken by chromosomal translocations in T lymphoblastic neoplasms. Cell, 66: 649–661.PubMedGoogle Scholar
  33. Esler, W.P., Kimberly, T.W., Ostaszewski, B.L., Diehl, T.S., Moore, C.L., Tsai, J.-Y., Rahmati, T., Xia, W., Selkoe, D.J. and Wolfe, M.S., 2000, Transition-state analogue inhibitors of g-secretase bind directly to presenilin-1. Nature Cell Biology, 2: 428–434.PubMedGoogle Scholar
  34. Fagan, R., Swindells, M., Overington, J. and Weir, M., 2001, Nicastrin, a presenilin-interacting protein, contains an aminopeptidase/transferrin receptor superfamily domain. Trends Biochem Sci, 26: 213–214.PubMedGoogle Scholar
  35. Fan, X., Matsui, W., Khaki, L., Stearns, D., Chun, J., Li, Y.M. and Eberhart, C.G., 2006, Notch Pathway Inhibition Depletes Stem-like Cells and Blocks Engraftment in Embryonal Brain Tumors. Cancer Res, 66: 7445–7452.PubMedGoogle Scholar
  36. Fortini, M.E., 2002, gamma-secretase-mediated proteolysis in cell-surface-receptor signalling. Nat Rev Mol Cell Biol, 3: 673–684.PubMedGoogle Scholar
  37. Fortini, M.E., Rebay, I., Caron, L.A. and Artavanis, T.S., 1993, An activated Notch receptor blocks cell-fate commitment in the developing Drosophila eye. Nature, 365: 555–557.PubMedGoogle Scholar
  38. Fryer, C.J., White, J.B. and Jones, K.A., 2004, Mastermind Recruits CycC:CDK8 to Phosphorylate the Notch ICD and Coordinate Activation with Turnover. Mol Cell, 16: 509–520.PubMedGoogle Scholar
  39. Fukumori, A., Okochi, M., Tagami, S., Jiang, J., Itoh, N., Nakayama, T., Yanagida, K., Ishizuka-Katsura, Y., Morihara, T., Kamino, K., Tanaka, T., Kudo, T., Tanii, H., Ikuta, A., Haass, C. and Takeda, M., 2006, Presenilin-dependent gamma-secretase on plasma membrane and endosomes is functionally distinct. Biochemistry, 45: 4907–4914.PubMedGoogle Scholar
  40. Gallagher, C.M. and Knoblich, J.A., 2006, The conserved c2 domain protein lethal (2) giant discs regulates protein trafficking in Drosophila. Dev Cell, 11: 641–653.PubMedGoogle Scholar
  41. Geling, A., Steiner, H., Willem, M., Bally-Cuif, L. and Haass, C., 2002, A {gamma}-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Reports, 3: 688–694.PubMedGoogle Scholar
  42. Greenwald, I., 1994, Structure/function studies of lin-12/Notch proteins. Current Opinion in Genetics & Development, 4: 556–562.Google Scholar
  43. Greenwald, I., 1998, LIN-12/NOTCH SIGNALING – LESSONS FROM WORMS AND FLIES. Genes & Development, 12: 1751–1762.Google Scholar
  44. Greenwald, I. and Seydoux, G., 1990, Analysis of gain-of-function mutations of the lin-12 gene of Caenorhabditis elegans. Nature, 346: 197–199.PubMedGoogle Scholar
  45. Gridley, T., 2003, Notch signaling and inherited disease syndromes. Hum Mol Genet, 12 Spec No 1: R9–13.PubMedGoogle Scholar
  46. Group, A.s.D.C., 1995, The structure of the presenilin 1 (S182) gene and identification of six novel mutations in early onset AD families. Nature Genetics, 11: 219–222.Google Scholar
  47. Guo, Y.Q., Livne-Bar, I., Zhou, L.L. and Boulianne, G.L., 1999, Drosophila presenilin is required for neuronal differentiation and affects notch subcellular localization and signaling. J Neurosci, 19: 8435–8442.PubMedGoogle Scholar
  48. Gupta-Rossi, N., Six, E., laBail, O., Lugaet, F., Chastagner, P., Olry, A., Israel, A. and Brou, C., 2004, Monoubiquitination and endocytosis direct secretase cleavage of activated Notch receptor. J Cell Biol, 166: 73–83.PubMedGoogle Scholar
  49. Gustafsson, M.V., Zheng, X., Pereira, T., Gradin, K., Jin, S., Lundkvist, J., Ruas, J.L., Poellinger, L., Lendahl, U. and Bondesson, M., 2005, Hypoxia requires notch signaling to maintain the undifferentiated cell state. Dev Cell, 9: 617–628.PubMedGoogle Scholar
  50. Haass, C. and Steiner, H., 2002, Alzheimer disease gamma-secretase: a complex story of GxGD-type presenilin proteases. Trends Cell Biol, 12: 556–562.PubMedGoogle Scholar
  51. Hadland, B.K., Manley, N.R., Su, D., Longmore, G.D., Moore, C.L., Wolfe, M.S., Schroeter, E.H. and Kopan, R., 2001, gamma-secretase inhibitors repress thymocyte development. Proc Natl Acad Sci U S A, 98: 7487–7491.PubMedGoogle Scholar
  52. Hambleton, S., Valeyev, N.V., Muranyi, A., Knott, V., Werner, J.M., McMichael, A.J., Handford, P.A. and Downing, A.K., 2004, Structural and functional properties of the human notch-1 ligand binding region. Structure (Camb), 12: 2173–2183.Google Scholar
  53. Hartmann, D., de Strooper, B., Serneels, L., Craessaerts, K., Herreman, A., Annaert, W., Umans, L., Lubke, T., Lena Illert, A., von Figura, K. and Saftig, P., 2002, The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for alpha-secretase activity in fibroblasts. Hum Mol Genet, 11: 2615–2624.PubMedGoogle Scholar
  54. Hass, M.R. and Yankner, B.A., 2005, A Gamma-secretase independent mechanism of signal transduction by the amyloid precursor protein. J Biol Chem, 280: 36895–36904.PubMedGoogle Scholar
  55. Hecimovic, S., Wang, J., Dolios, G., Martinez, M., Wang, R. and Goate, A.M., 2004, Mutations in APP have independent effects on Abeta and CTFgamma generation. Neurobiol Dis, 17: 205–218.PubMedGoogle Scholar
  56. Heitzler, P. and Simpson, P., 1993, Altered Epidermal Growth Factor-like sequences provide evidence for a role of Notch as a receptor in cell fate decisions. Development, 117: 1113–1123.PubMedGoogle Scholar
  57. Herranz, H., Stamataki, E., Feiguin, F. and Milan, M., 2006, Self-refinement of Notch activity through the transmembrane protein Crumbs: modulation of gamma-Secretase activity. EMBO Rep, 7: 297–302.PubMedGoogle Scholar
  58. Herreman, A., Hartmann, D., Annaert, W., Saftig, P., Craessaerts, K., Serneels, L., Umans, L., Schrijvers, V., Checler, F., Vanderstichele, H., Baekelandt, V., Dressel, R., Cupers, P., Huylebroeck, D., Zwijsen, A., Van Leuven, F. and De Strooper, B., 1999, Presenilin 2 deficiency causes a mild pulmonary phenotype and no changes in amyloid precursor protein processing but enhances the embryonic lethal phenotype of presenilin 1 deficiency. Proc Natl Acad Sci U S A, 96: 11872–11877.PubMedGoogle Scholar
  59. Herreman, A., Serneels, L., Annaert, W., Collen, D., Schoonjans, L. and De Strooper, B., 2000, Total inactivation of g–secretase activity in presenilin-deficient embryonic stem cells. Nature Cell Biology, 2: 461–462.PubMedGoogle Scholar
  60. Hukriede, N.A. and Fleming, R.J., 1997, Beaded Of Goldschmidt, an Antimorphic Allele Of Serrate, Encodes a Protein Lacking Transmembrane and Intracellular Domains. Genetics, 145: 359–374.PubMedGoogle Scholar
  61. Huppert, S., Ilagan, M.X.G., De Strooper, B. and Kopan, R., 2005, Analysis of Notch function in presomitic mesoderm suggests a g-secretase-independent role for presenilins in somite differentiation. Dev Cell, 8: 677–688.PubMedGoogle Scholar
  62. Huppert, S., Le, A., Schroeter, E.H., Mumm, J.S., Saxena, M.T., Milner, L.A. and Kopan, R., 2000, Embryonic Lethality in Mice Homozygous for a Processing Deficient Allele of Notch1. Nature, 405: 966–970.PubMedGoogle Scholar
  63. Ikeuchi, T. and Sisodia, S.S., 2003, The notch ligands, delta1 and jagged2, are substrates for presenilin-dependent “gamma-secretase” cleavage. J Biol Chem, 278: 7751–7754.PubMedGoogle Scholar
  64. Ingram, R.N., Orth, P., Strickland, C.L., Le, H.V., Madison, V. and Beyer, B.M., 2006, Stabilization of the autoproteolysis of TNF-alpha converting enzyme (TACE) results in a novel crystal form suitable for structure-based drug design studies. Protein Eng Des Sel, 19: 155–161.PubMedGoogle Scholar
  65. Jaekel, R. and Klein, T., 2006, The Drosophila Notch inhibitor and tumor suppressor gene lethal (2) giant discs encodes a conserved regulator of endosomal trafficking. Dev Cell, 11: 655–669.PubMedGoogle Scholar
  66. Jarriault, S., Brou, C., Logeat, F., Schroeter, E.H., Kopan, R. and Israel, A., 1995, Signalling downstream of activated mammalian Notch. Nature, 377: 355–358.PubMedGoogle Scholar
  67. Jhappan, C., Gallahan, D., Stahle, C., Chu, E., Smith, G.H., Merlino, G. and Callahan, R., 1992, Expression of an activated Notch-related int-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands. Genes & Development, 6: 345–355.Google Scholar
  68. Johansen, K.M., Fehon, R.G. and Artavanis, T.S., 1989, The notch gene product is a glycoprotein expressed on the cell surface of both epidermal and neuronal precursor cells during Drosophila development. J Cell Biol, 109: 2427–2440.PubMedGoogle Scholar
  69. Justice, N., Roegiers, F., Jan, L.Y. and Jan, Y.N., 2003, Lethal giant larvae acts together with numb in notch inhibition and cell fate specification in the Drosophila adult sensory organ precursor lineage. Curr Biol, 13: 778–783.PubMedGoogle Scholar
  70. Kaether, C., Lammich, S., Edbauer, D., Ertl, M., Rietdorf, J., Capell, A., Steiner, H. and Haass, C., 2002, Presenilin-1 affects trafficking and processing of {beta}APP and is targeted in a complex with nicastrin to the plasma membrane. J Cell Biol, 158: 551–561.PubMedGoogle Scholar
  71. Kao, H.Y., Ordentlich, P., Koyanonakagawa, N., Tang, Z., Downes, M., Kintner, C.R., Evans, R.M. and Kadesch, T., 1998, A Histone Deacetylase Corepressor Complex Regulates the Notch Signal Transduction Pathway. Genes & Development, 12: 2269–2277.Google Scholar
  72. Kidd, S. and Lieber, T., 2002, Furin cleavage is not a requirement for Drosophila Notch function. Mech Dev, 115: 41–51.PubMedGoogle Scholar
  73. Kidd, S., Lieber, T. and Young, M.W., 1998, Ligand-induced cleavage and regulation of nuclear entry of Notch in Drosophila melanogaster embryos. Genes & Development, 12: 3728–3740.Google Scholar
  74. Kimble, J., Henderson, S. and Crittenden, S., 1998, Notch/Lin-12 Signaling – Transduction By Regulated Protein Slicing. Trends in Biochemical Sciences, 23: 353–357.PubMedGoogle Scholar
  75. Kooh, P.J., Fehon, R.G. and Muskavitch, M.A.T., 1993, Implications of dynamic patterns of Delta and Notch expression for cellular interactions during Drosophila development. Development, 117: 493–507.PubMedGoogle Scholar
  76. Kopan, R. and Ilagan, M.X.G., 2004, g-Secretase: proteasome of the membrane? Nat Rev Mol Cell Biol, 5: 7–12.Google Scholar
  77. Kopan, R., Nye, J.S. and Weintraub, H., 1994, The intracellular domain of mouse Notch: a constitutively activated repressor of myogenesis directed at the basic helix-loop-helix region of MyoD. Development, 120: 2385–2396.PubMedGoogle Scholar
  78. Kopan, R., Schroeter, E.H., Weintraub, H. and Nye, J.S., 1996, Signal transduction by activated mNotch: Importance of proteolytic processing and its regulation by the extracellular domain. Proc Natl Acad Sci U S A, 93: 1683–1688.PubMedGoogle Scholar
  79. Kornilova, A.Y., Kim, J., Laudon, H. and Wolfe, M.S., 2006, Deducing the transmembrane domain organization of presenilin-1 in gamma-secretase by cysteine disulfide cross-linking. Biochemistry, 45: 7598–7604.PubMedGoogle Scholar
  80. Kuroda, K., Han, H., Tani, S., Tanigaki, K., Tun, T., Furukawa, T., Taniguchi, Y., Kurooka, H., Hamada, Y., Toyokuni, S. and Honjo, T., 2003, Regulation of marginal zone B cell development by MINT, a suppressor of Notch/RBP-J signaling pathway. Immunity, 18: 301–312.PubMedGoogle Scholar
  81. Lammich, S., Okochi, M., Takeda, M., Kaether, C., Capell, A., Zimmer, A.K., Edbauer, D., Walter, J., Steiner, H. and Haass, C., 2002, Presenilin-dependent intramembrane proteolysis of CD44 leads to the liberation of its intracellular domain and the secretion of an A beta-like peptide. J Biol Chem, 277: 44754–44759.PubMedGoogle Scholar
  82. LaVoie, M.J. and Selkoe, D.J., 2003, The Notch ligands, Jagged and Delta, are sequentially processed by alpha-secretase and presenilin/gamma-secretase and release signaling fragments. J Biol Chem, 278: 34427–34437.PubMedGoogle Scholar
  83. Lazarov, V.K., Fraering, P.C., Ye, W., Wolfe, M.S., Selkoe, D.J. and Li, H., 2006, Electron microscopic structure of purified, active {gamma}-secretase reveals an aqueous intramembrane chamber and two pores. Proc Natl Acad Sci U S A, 103: 6889–6894.PubMedGoogle Scholar
  84. Le Borgne, R. and Schweisguth, F., 2003, Notch signaling: endocytosis makes delta signal better. Curr Biol, 13: R273–275.PubMedGoogle Scholar
  85. Lecourtois, M. and Schweisguth, F., 1998, Indirect Evidence For Delta-Dependent Intracellular Processing Of Notch In Drosophila Embryos. Current Biology, 8: 771–774.PubMedGoogle Scholar
  86. Lee, M.S., Kao, S.C., Lemere, C.A., Xia, W., Tseng, H.C., Zhou, Y., Neve, R., Ahlijanian, M.K. and Tsai, L.H., 2003, APP processing is regulated by cytoplasmic phosphorylation. J Cell Biol, 163: 83–95.PubMedGoogle Scholar
  87. Lei, L., Xu, A., Panin, V.M. and Irvine, K.D., 2003, An O-fucose site in the ligand binding domain inhibits Notch activation. Development, 130: 6411–6421.PubMedGoogle Scholar
  88. Levitan, D. and Greenwald, I., 1995, Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature, 377: 351–354.PubMedGoogle Scholar
  89. Levitan, D. and Greenwald, I., 1998, Effects of SEL-12 presenilin on LIN-12 localization and function in Caenorhabditis elegans. Development, 125: 3599–3606.PubMedGoogle Scholar
  90. Levitan, D., Lee, J., Song, L.X., Manning, R., Wong, G., Parker, E. and Zhang, L.L., 2001, PS1N-and C-terminal fragments form a complex that functions in APP processing and Notch signaling. Proc Natl Acad Sci U S A, 98: 12186–12190.PubMedGoogle Scholar
  91. Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D.M., Oshima, J., Pettingell, W.H., Yu, C.E., Jondro, P.D., Schmidt, S.D., Wang, K. and et al., 1995, Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science, 269: 973–977.PubMedGoogle Scholar
  92. Lewis, H.D., Perez Revuelta, B.I., Nadin, A., Neduvelil, J.G., Harrison, T., Pollack, S.J. and Shearman, M.S., 2003, Catalytic site-directed gamma-secretase complex inhibitors do not discriminate pharmacologically between Notch S3 and beta-APP cleavages. Biochemistry, 42: 7580–7586.PubMedGoogle Scholar
  93. Li, X.J. and Greenwald, I., 1997, Hop-1, a Caenorhabditis Elegans Presenilin, Appears to Be Functionally Redundant With Sel-12 Presenilin and to Facilitate Lin-12 and Glp-1 Signaling. Proc Natl Acad Sci U S A, 94: 12204–12209.PubMedGoogle Scholar
  94. Li, Y.M., Lai, M.T., Xu, M., Huang, Q., DiMuzio-Mower, J., Sardana, M.K., Shi, X.P., Yin, K.C., Shafer, J.A. and Gardell, S.J., 2000a, presenilin 1 is linked with gamma -secretase activity in the detergent solubilized state. Proc Natl Acad Sci U S A, 97: 6138–6143.Google Scholar
  95. Li, Y.M., Xu, M., Lai, M.T., Huang, Q., Castro, J.L., DiMuzio-Mower, J., Harrison, T., Lellis, C., Nadin, A., Neduvelil, J.G., Register, R.B., Sardana, M.K., Shearman, M.S., Smith, A.L., Shi, X.P., Yin, K.C., Shafer, J.A. and Gardell, S.J., 2000b, Photoactivated gamma-secretase inhibitors directed to the active site covalently label presenilin 1. Nature, 405: 689–694.Google Scholar
  96. Lichtenthaler, S.F., Wang, R., Grimm, H., Uljon, S.N., Masters, C.L. and Beyreuther, K., 1999, Mechanism of the cleavage specificity of Alzheimer’s disease gamma-secretase identified by phenylalanine-scanning mutagenesis of the transmembrane domain of the amyloid precursor protein. Proc Natl Acad Sci U S A, 96: 3053–3058.PubMedGoogle Scholar
  97. Lieber, T., Kidd, S., Alcamo, E., Corbin, V. and Young, M.W., 1993, Antineurogenic phenotypes induced by truncated Notch proteins indicate a role in signal transduction and may point to a novel function for Notch in nuclei. Genes & Development, 7: 1949–1965.Google Scholar
  98. Lieber, T., Kidd, S. and Young, M.W., 2002, kuzbanian-mediated cleavage of Drosophila Notch. Genes Dev, 16: 209–221.PubMedGoogle Scholar
  99. Lopez-Schier, H. and Johnston, D.S., 2002, Drosophila nicastrin is essential for the intramembranous cleavage of notch. Dev Cell, 2: 79–89.PubMedGoogle Scholar
  100. Lubman, O.Y., Ilagan, M.X.G., Kopan, R. and Barrick, D., 2007, Quantitative Dissection of the Notch:CSL Interaction: Insights into the Notch Transcriptional Switch. J Mol Biol, 365: 577–589.PubMedGoogle Scholar
  101. Lubman, O.Y., Korolev, S.V. and Kopan, R., 2004, Anchoring notch genetics and biochemistry; structural analysis of the ankyrin domain sheds light on existing data. Mol Cell, 13: 619–626.PubMedGoogle Scholar
  102. Malecki, M.J., Sanchez-Irizarry, C., Mitchell, J.L., Histen, G., Xu, M.L., Aster, J.C. and Blacklow, S.C., 2006, Leukemia-associated mutations within the NOTCH1 heterodimerization domain fall into at least two distinct mechanistic classes. Mol Cell Biol, 26: 4642–4651.PubMedGoogle Scholar
  103. Maskos, K., Fernandez-Catalan, C., Huber, R., Bourenkov, G.P., Bartunik, H., Ellestad, G.A., Reddy, P., Wolfson, M.F., Rauch, C.T., Castner, B.J., Davis, R., Clarke, H.R., Petersen, M., Fitzner, J.N., Cerretti, D.P., March, C.J., Paxton, R.J., Black, R.A. and Bode, W., 1998, Crystal structure of the catalytic domain of human tumor necrosis factor-alpha-converting enzyme. Proc Natl Acad Sci U S A, 95: 3408–3412.PubMedGoogle Scholar
  104. Masters, C.L., Simms, G., Weinman, N.A., Multhaup, G., McDonald, B.L. and Beyreuther, K., 1985, Amyloid plaque core protein in Alzheimer disease and Down syndrome. Proc Natl Acad Sci U S A, 82: 4245–4249.PubMedGoogle Scholar
  105. Mastrangelo, P., Mathews, P.M., Chishti, M.A., Schmidt, S.D., Gu, Y., Yang, J., Mazzella, M.J., Coomaraswamy, J., Horne, P., Strome, B., Pelly, H., Levesque, G., Ebeling, C., Jiang, Y., Nixon, R.A., Rozmahel, R., Fraser, P.E., St George-Hyslop, P., Carlson, G.A. and Westaway, D., 2005, Dissociated phenotypes in presenilin transgenic mice define functionally distinct gamma-secretases. Proc Natl Acad Sci U S A, 102: 8972–8977.PubMedGoogle Scholar
  106. Micchelli, C.A., Esler, W.P., Kimberly, W.T., Jack, C., Berezovska, O., Kornilova, A., Hyman, B.T., Perrimon, N. and Wolfe, M.S., 2003, g-Secretase/presenilin inhibitors for Alzheimer’s disease phenocopy Notch mutations in Drosophila. Faseb J, 17: 79–81.PubMedGoogle Scholar
  107. Micchelli, C.A., Rulifson, E.J. and Blair, S.S., 1997, The function and regulation of cut expression on the wing margin of Drosophila: Notch, Wingless and a dominant negative role for Delta and Serrate. Development, 124: 1485–1495.PubMedGoogle Scholar
  108. Mishra-Gorur, K., Rand, M.D., Perez-Villamil, B. and Artavanis-Tsakonas, S., 2002, Down-regulation of Delta by proteolytic processing. J. Cell Biol., 159: 313–324.PubMedGoogle Scholar
  109. Miyamoto, A., Lau, R., Hein, P.W., Shipley, J.M. and Weinmaster, G., 2006, Microfibrillar proteins MAGP-1 and MAGP-2 induce notch1 extracellular domain dissociation and receptor activation. J Biol Chem, 281: 10089–10097.PubMedGoogle Scholar
  110. Mizutani, T., Taniguchi, Y., Aoki, T., Hashimoto, N. and Honjo, T., 2001, Conservation of the biochemical mechanisms of signal transduction among mammalian Notch family members. Proc Natl Acad Sci U S A, 98: 9026–9031.PubMedGoogle Scholar
  111. Moberg, K.H., Schelble, S., Burdick, S.K. and Hariharan, I.K., 2005, Mutations in erupted, the Drosophila Ortholog of Mammalian Tumor Susceptibility Gene 101, Elicit Non-Cell-Autonomous Overgrowth. Dev Cell, 9: 699–710.PubMedGoogle Scholar
  112. Morimoto, M., Takahashi, Y., Endo, M. and Saga, Y., 2005, The Mesp2 transcription factor establishes segmental borders by suppressing Notch activity. Nature, 435: 354–359.PubMedGoogle Scholar
  113. Mumm, J.S. and Kopan, R., 2000, Notch Signaling: From the Outside In. Dev Biol, 228: 151–165.PubMedGoogle Scholar
  114. Mumm, J.S., Schroeter, E.H., Saxena, M.T., Griesemer, A., Tian, X., Pan, D.J., Ray, W.J. and Kopan, R., 2000, A ligand-induced extracellular cleavage regulates γ-secretase-like proteolytic activation of Notch1. Mol. Cell, 5: 197–206.PubMedGoogle Scholar
  115. Murphy, M.P., Hickman, L.J., Eckman, C.B., Uljon, S.N., Wang, R. and Golde, T.E., 1999, gamma-Secretase, evidence for multiple proteolytic activities and influence of membrane positioning of substrate on generation of amyloid beta peptides of varying length. J Biol Chem, 274: 11914–11923.PubMedGoogle Scholar
  116. Nam, Y., Aster, J.C. and Blacklow, S.C., 2002, Notch signaling as a therapeutic target. Curr Op Chem Biol, 6: 501–509.Google Scholar
  117. Nam, Y., Sliz, P., Song, L., Aster, J.C. and Blacklow, S.C., 2006, Structural basis for cooperativity in recruitment of MAML coactivators to Notch transcription complexes. Cell, 124: 973–983.PubMedGoogle Scholar
  118. Nickoloff, B.J., Osborne, B.A. and Miele, L., 2003, Notch signaling as a therapeutic target in cancer: a new approach to the development of cell fate modifying agents. Oncogene, 22: 6598–6608.PubMedGoogle Scholar
  119. Nye, J.S. and Kopan, R., 1995, Developmental signaling – Vertebrate ligands for Notch. Current Biology, 5: 966–969.PubMedGoogle Scholar
  120. Nye, J.S., Kopan, R. and Axel, R., 1994, An activated Notch suppresses neurogenesis and myogenesis but not gliogenesis in mammalian cells. Development, 120: 2421–2430.PubMedGoogle Scholar
  121. Ogura, T., Mio, K., Hayashi, I., Miyashita, H., Fukuda, R., Kopan, R., Kodama, T., Hamakubo, T., Iwastubo, T., Tomita, T. and Sato, C., 2006, Three-dimensional structure of the gamma-secretase complex. Biochem Biophys Res Commun, 343: 525–534.PubMedGoogle Scholar
  122. Okochi, M., Fukumori, A., Jiang, J., Itoh, N., Kimura, R., Steiner, H., Haass, C., Tagami, S. and Takeda, M., 2006, Secretion of the Notch-1 Abeta-like peptide during Notch signaling. J Biol Chem, 281: 7890–7898.PubMedGoogle Scholar
  123. Okochi, M., Steiner, H., Fukumori, A., Tanii, H., Tomita, T., Tanaka, T., Iwatsubo, T., Kudo, T., Takeda, M. and Haass, C., 2002, Presenilins mediate a dual intramembranous {gamma}-secretase cleavage of Notch-1. EMBO J., 21: 5408–5416.PubMedGoogle Scholar
  124. Parks, A.L., Klueg, K.M., Stout, J.R. and Muskavitch, M.A., 2000, Ligand endocytosis drives receptor dissociation and activation in the Notch pathway. Development, 127: 1373–1385.PubMedGoogle Scholar
  125. Pear, W.S., Aster, J.C., Scott, M.L., Hasserjian, R.P., Soffer, B., Sklar, J. and Baltimore, D., 1996, Exclusive Development Of T Cell Neoplasms In Mice Transplanted With Bone Marrow Expressing Activated Notch Alleles. Journal of Experimental Medicine, 183: 2283–2291.PubMedGoogle Scholar
  126. Peschon, J.J., Slack, J.L., Reddy, P., Stocking, K.L., Sunnarborg, S.W., Lee, D.C., Russell, W.E., Castner, B.J., Johnson, R.S., Fitzner, J.N., Boyce, R.W., Nelson, N., Kozlosky, C.J., Wolfson, M.F., Rauch, C.T., Cerretti, D.P., Paxton, R.J., March, C.J. and Black, R.A., 1998, An Essential Role For Ectodomain Shedding in Mammalian Development. Science, 282: 1281–1284.PubMedGoogle Scholar
  127. Petcherski, A.G. and Kimble, J., 2000, LAG-3 a putative transcriptional activator in the C. elegans Notch pathway. Nature, 405: 364–368.PubMedGoogle Scholar
  128. Portin, P., 1975, Allelic negative complementation at the Abruptex locus of Drosophila melanogaster. Genetics, 81: 121–133.PubMedGoogle Scholar
  129. Portin, P. and Rantanen, M., 1990, Further studies on the interchromosomal effect on crossing over in Drosophila melanogaster affecting the preconditions of exchange. Genetica, 82: 203–207.PubMedGoogle Scholar
  130. Qi-Takahara, y., Morishima-Kawashima, M., Tanimura, Y., Dolios, G., Hirotani, N., Horikoshi, Y., Kametani, F., Maeda, M., C., T., Rong, W. and Ihara, Y., 2005, Longer Forms of Amyloid {beta} Protein: Implications for the Mechanism of Intramembrane Cleavage by {gamma}-Secretase. J. Neurosci., 25: 436–445.PubMedGoogle Scholar
  131. Qian, S., Jiang, P., Guan, X.M., Singh, G., Trumbauer, M.E., Yu, H., Chen, H.Y., Van de Ploeg, L.H. and Zheng, H., 1998, Mutant human presenilin 1 protects presenilin 1 null mouse against embryonic lethality and elevates Abeta1-42/43 expression. Neuron, 20: 611–617.PubMedGoogle Scholar
  132. Radtke, F., Clevers, H. and Riccio, O., 2006, From gut homeostasis to cancer. Curr Mol Med, 6: 275–289.PubMedGoogle Scholar
  133. Rand, D.M., Grimm, M.L.M., Artavanis-Tsakonas, S., Patriub, V., Blacklow, C.S., Sklar, C.J. and Aster, C.J., 2000, Calcium depletion dissociates and activates heterodimeric Notch receptors. Mol Cell Biol, 20: 1825–1835.PubMedGoogle Scholar
  134. Ray, W.J., Yao, M., Mumm, J., Schroeter, E.H., Saftig, P., Wolfe, M., Selkoe, D.J., Kopan, R. and Goate, A.M., 1999a, Cell surface presenilin-1 participates in the gamma secretase-like proteolysis of notch. J Biol Chem, 274: 36801–36807.Google Scholar
  135. Ray, W.J., Yao, M., Nowotny, P., Mumm, J., Zhang, W.J., Wu, J.Y., Kopan, R. and Goate, A.M., 1999b, Evidence for a physical interaction between presenilin and Notch. Proc Natl Acad Sci U S A, 96: 3263–3268.Google Scholar
  136. Rebay, I., Fehon, R.G. and Artavanis, T.S., 1993, Specific truncations of Drosophila Notch define dominant activated and dominant negative forms of the receptor. Cell, 74: 319–329.PubMedGoogle Scholar
  137. Robbins, J., Blondel, B.J., Gallahan, D. and Callahan, R., 1992, Mouse mammary tumor gene int-3: a member of the notch gene family transforms mammary epithelial cells. J Virol, 66: 2594–2599.PubMedGoogle Scholar
  138. Roehl, H. and Kimble, J., 1993, Control of cell fate in C. elegans by a GLP-1 peptide consisting primarily of ankyrin repeats. Nature, 364: 632–635.PubMedGoogle Scholar
  139. Rogaev, E.I., Sherrington, R., Rogaeva, E.A., Levesque, G., Ikeda, M., Liang, Y., Chi, H., Lin, C., Holman, K., Tsuda, T. and et al., 1995, Familial Alzheimer’s disease in kindreds with missense mutations in a gene on chromosome 1 related to the Alzheimer’s disease type 3 gene. Nature, 376: 775–778.PubMedGoogle Scholar
  140. Rooke, J.E. and Xu, T., 1998, Positive And Negative Signals Between Interacting Cells For Establishing Neural Fate. Bioessays, 20: 209–214.PubMedGoogle Scholar
  141. Rozmahel, R., Huang, J., Chen, F., Liang, Y., Nguyen, V., Ikeda, M., Levesque, G., Yu, G., Nishimura, M., Mathews, P., Schmidt, S.D., Mercken, M., Bergeron, C., Westaway, D. and St George-Hyslop, P., 2002a, Normal brain development in PS1 hypomorphic mice with markedly reduced gamma-secretase cleavage of beta APP. Neurobiology of Aging, 23: 187–194.Google Scholar
  142. Rozmahel, R., Mount, H.T.J., Chen, F.S., Nguyen, V., Huang, J., Erdebil, S., Liauw, J., Yu, G., Hasegawa, H., Gu, Y.J., Song, Y.Q., Schmidt, S.D., Nixon, R.A., Mathews, P.M., Bergeron, C., Fraser, P., Westaway, D. and George-Hyslop, P.S., 2002b, Alleles at the Nicastrin locus modify presenilin 1-deficiency phenotype. Proc Natl Acad Sci U S A, 99: 14452–14457.Google Scholar
  143. Sanchez-Irizarry, C., Carpenter, A.C., Weng, A.P., Pear, W.S., Aster, J.C. and Blacklow, S.C., 2004, Notch Subunit Heterodimerization and Prevention of Ligand-Independent Proteolytic Activation Depend, Respectively, on a Novel Domain and the LNR Repeats. Mol Cell Biol, 24: 9265–9273.PubMedGoogle Scholar
  144. Sapir, A., Assa-Kunik, E., Tsruya, R., Schejter, E. and Shilo, B.Z., 2005, Unidirectional Notch signaling depends on continuous cleavage of Delta. Development, 132: 123–132.PubMedGoogle Scholar
  145. Sardi, S.P., Murtie, J., Koirala, S., Patten, B.A. and Corfas, G., 2006, Presenilin-dependent ErbB4 nuclear signaling regulates the timing of astrogenesis in the developing brain. Cell, 127: 185–197.PubMedGoogle Scholar
  146. Sato, C., Morohashi, Y., Tomita, T. and Iwatsubo, T., 2006, Structure of the catalytic pore of gamma-secretase probed by the accessibility of substituted cysteines. J Neurosci, 26: 12081–12088.PubMedGoogle Scholar
  147. Saxena, M.T., Schroeter, E.H., Mumm, J.S. and Kopan, R., 2001, Murine Notch homologs (N 1-4) undergo Presenilin dependent proteolysis. J Biol Chem, 276: 40268–40273.PubMedGoogle Scholar
  148. Schroeter, E.H., Ilagan, M.X.G., Brunkan, A.L., Hecimovic, S., Li, Y.-m., Xu, M., Lewis, H.D., Saxena, M.T., De Strooper, B., Coonrod, A., Tomita, T., Iwatsubo, T., Moore, C.L., Goate, A., Wolfe, M.S., Shearman, M. and Kopan, R., 2003, A presenilin dimer at the core of the {gamma}-secretase enzyme: Insights from parallel analysis of Notch 1 and APP proteolysis. Proc Natl Acad Sci U S A, 100: 13075–13080.PubMedGoogle Scholar
  149. Schroeter, E.H., Kisslinger, J.A. and Kopan, R., 1998, Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature, 393: 382–386.PubMedGoogle Scholar
  150. Seiffert, D., Bradley, J.D., Rominger, C.M., Rominger, D.H., Yang, F., Meredith, J., Wang, Q., Roach, A.H., Thompson, L.A., Spitz, S.M., Higaki, J.N., Prakash, S.R., Combs, A.P., Copeland, R.A., Arneric, S.P., Hartig, P.R., Robertson, D.W., Cordell, B., Stern, A.M., Olson, R.E. and Zaczek, R., 2000, Presenilin-1 and 2 are molecular targets for gamma secretase inhibitors. J Biol Chem, 275: 34086–34091.PubMedGoogle Scholar
  151. Selkoe, D. and Kopan, R., 2003, Notch and Presenilin: Regulated Intramembrane Proteolysis Links Development and Degeneration. Annu Rev Neurosci, 26: 565–597.PubMedGoogle Scholar
  152. Seugnet, L., Simpson, P. and Haenlin, M., 1997, Requirement For Dynamin During Notch Signaling In Drosophila Neurogenesis. Developmental Biology, 192: 585–598.PubMedGoogle Scholar
  153. Shah, S., Lee, S.F., Tabuchi, K., Hao, Y.H., Yu, C., Laplant, Q., Ball, H., Dann, C.E., 3rd, Sudhof, T. and Yu, G., 2005, Nicastrin Functions as a gamma-Secretase-Substrate Receptor. Cell, 122: 435–447.PubMedGoogle Scholar
  154. Shawber, C., Nofziger, D., Hsieh, J.J.D., Lindsell, C., Bogler, O., Hayward, D. and Weinmaster, G., 1996, Notch signaling inhibits muscle cell differentiation through a CBF1-independent pathway. Development, 122: 3765–3773.PubMedGoogle Scholar
  155. Shearman, M.S., Beher, D., Clarke, E.E., Lewis, H.D., Harrison, T., Hunt, P., Nadin, A., Smith, A.L., Stevenson, G. and Castro, J.L., 2000, L-685,458, an aspartyl protease transition state mimic, is a potent inhibitor of amyloid beta-protein precursor gamma-secretase activity. Biochemistry, 39: 8698–8704.PubMedGoogle Scholar
  156. Sherrington, R., Rogaev, E.I., Liang, Y., Rogaeva, E.A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K. and et al., 1995, Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature, 375: 754–760.PubMedGoogle Scholar
  157. Shin, H.M., Minter, L.M., Cho, O.H., Gottipati, S., Fauq, A.H., Golde, T.E., Sonenshein, G.E. and Osborne, B.A., 2006, Notch1 augments NF-kappaB activity by facilitating its nuclear retention. Embo J, 25: 129–138.PubMedGoogle Scholar
  158. Six, E., Ndiaye, D., Laabi, Y., Brou, C., Gupta-Rossi, N., Israel, A. and Logeat, F., 2003, The Notch ligand Delta1 is sequentially cleaved by an ADAM protease and gamma-secretase. Proc Natl Acad Sci U S A, 100: 7638–7643.PubMedGoogle Scholar
  159. Six, E.M., Ndiaye, D., Sauer, G., Laabi, Y., Athman, R., Cumano, A., Brou, C., Israel, A. and Logeat, F., 2004, The notch ligand delta1 recruits Dlg1 at cell-cell contacts and regulates cell migration. J Biol Chem, 279: 55818–55826.PubMedGoogle Scholar
  160. Song, W.H., Nadeau, P., Yuan, M.L., Yang, X.D., Shen, J. and Yankner, B.A., 1999, Proteolytic release and nuclear translocation of Notch-1 are induced by presenilin-1 and impaired by pathogenic presenilin-1 mutations. Proc Natl Acad Sci U S A, 96: 6959–6963.PubMedGoogle Scholar
  161. Sotillos, S., Roch, F. and Campuzano, S., 1997, The metalloprotease-disintegrin Kuzbanian participates in Notch activation during growth and patterning of Drosophila imaginal discs. Development, 124: 4769–4779.PubMedGoogle Scholar
  162. Spasic, D., Tolia, A., Dillen, K., Baert, V., De Strooper, B., Vrijens, S. and Annaert, W., 2006, Presenilin-1 maintains a nine transmembrane topology throughout the secretory pathway. J Biol Chem, 281: 26569–26577.PubMedGoogle Scholar
  163. Stifani, S., Blaumueller, C.M., Redhead, N.J., Hill, R.E. and Artavanis, T.S., 1992, Human homologs of a Drosophila Enhancer of split gene product define a novel family of nuclear proteins [published erratum appears in Nat Genet 1992 Dec;2(4):343]. Nat Gen, 2: 119–127.Google Scholar
  164. Struhl, G. and Adachi, A., 1998, Nuclear Access and Action Of Notch In Vivo. Cell, 93: 649–660.PubMedGoogle Scholar
  165. Struhl, G. and Adachi, A., 2000, Requirements for Presenilin-Dependent Cleavage of Notch and Other Transmembrane Proteins. Molecular Cell, 6: 625–663.PubMedGoogle Scholar
  166. Struhl, G., Fitzgerald, K. and Greenwald, I., 1993, Intrinsic activity of the Lin-12 and Notch intracellular domains in vivo. Cell, 74: 331–345.PubMedGoogle Scholar
  167. Struhl, G. and Greenwald, I., 1999, Presenilin is required for activity and nuclear access of Notch in Drosophila. Nature, 398: 522–525.PubMedGoogle Scholar
  168. Swiatek, P.J., Lindsell, C.E., Del-Amo, F.F., Weinmaster, G. and Gridley, T., 1994, Notch1 is essential for postimplantation development in mice. Genes & Development, 8: 707–719.Google Scholar
  169. Tamura, K., Taniguchi, Y., Minoguchi, S., Sakai, T., Tun, T., Furukawa, T. and Honjo, T., 1995, Physical Interaction Between a Novel Domain Of the Receptor Notch and the Transcription Factor Rbp-J-Kappa/Su(H). Current Biology, 5: 1416–1423.PubMedGoogle Scholar
  170. Tani, S., Kurooka, H., Aoki, T., Hashimoto, N. and Honjo, T., 2001, The N- and C-terminal regions of RBP-J interact with the ankyrin repeats of Notch1 RAMIC to activate transcription. Nucleic Acids Research, 29: 1373–1380.PubMedGoogle Scholar
  171. Tanii, H., Jiang, J., Fukumori, A., Tagami, S., Okazaki, Y., Okochi, M. and Takeda, M., 2006, Effect of valine on the efficiency and precision at S4 cleavage of the Notch-1 transmembrane domain. J Neurosci Res, 84: 918–925.PubMedGoogle Scholar
  172. Tesco, G., Ginestroni, A., Hiltunen, M., Kim, M., Dolios, G., Hyman, B.T., Wang, R., Berezovska, O. and Tanzi, R.E., 2005, APP substitutions V715F and L720P alter PS1 conformation and differentially affect Abeta and AICD generation. J Neurochem, 95: 446–456.PubMedGoogle Scholar
  173. Thompson, B.J., Mathieu, J., Sung, H.H., Loeser, E., Rorth, P. and Cohen, S.M., 2005, Tumor Suppressor Properties of the ESCRT-II Complex Component Vps25 in Drosophila. Dev Cell, 9: 711–720.PubMedGoogle Scholar
  174. Tokunaga, A., Kohyama, J., Yoshida, T., Nakao, K., Sawamoto, K. and Okano, H., 2004, Mapping spatio-temporal activation of Notch signaling during neurogenesis and gliogenesis in the developing mouse brain. J Neurochem, 90: 142–154.PubMedGoogle Scholar
  175. Tsunematsu, R., Nakayama, K., Oike, Y., Nishiyama, M., Ishida, N., Hatakeyama, S., Bessho, Y., Kageyama, R., Suda, T. and Nakayama, K.I., 2004, Mouse Fbw7/Sel-10/Cdc4 is required for notch degradation during vascular development. J Biol Chem, 279: 9417–9423.PubMedGoogle Scholar
  176. Urban, S., 2006, Rhomboid proteins: conserved membrane proteases with divergent biological functions. Genes Dev, 20: 3054–3068.PubMedGoogle Scholar
  177. Vaccari, T. and Bilder, D., 2005, The Drosophila Tumor Suppressor vps25 Prevents Nonautonomous Overproliferation by Regulating Notch Trafficking. Dev Cell, 9: 687–698.PubMedGoogle Scholar
  178. Vardar, D., North, C.L., Sanchez-Irizarry, C., Aster, J.C. and Blacklow, S.C., 2003, Nuclear magnetic resonance structure of a prototype lin12-notch repeat module from human notch1. Biochemistry, 42: 7061–7067.PubMedGoogle Scholar
  179. Varnum-Finney, B., Wu, L., Yu, M., Brashem-Stein, C., Staats, S., Flowers, D., Griffin, J.D. and Bernstein, I.D., 2000, Immobilization of Notch ligand, Delta-1, is required for induction of Notch signaling. J Cell Sci, 113: 4313–4318.PubMedGoogle Scholar
  180. Varshavsky, A., 1996, The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci U S A, 93: 12142–12149.PubMedGoogle Scholar
  181. Vidal, G.A., Naresh, A., Marrero, L. and Jones, F.E., 2005, Presenilin-dependent gamma -secretase processing regulates multiple ERBB4/HER4 activities. J Biol Chem, 280: 19777–19783.PubMedGoogle Scholar
  182. Vooijs, M., Schroeter, E.H., Pan, Y., Blandford, M. and Kopan, R., 2004, Ectodomain shedding and intramembrane cleavage of mammalian notch proteins is not regulated through oligomerization. J Biol Chem, 279: 50864–50873.PubMedGoogle Scholar
  183. Wang, Y., Zhang, Y. and Ha, Y., 2006, Crystal structure of a rhomboid family intramembrane protease. Nature, 444: 179–180.PubMedGoogle Scholar
  184. Wasserman, Z.R., Duan, J.J., Voss, M.E., Xue, C.B., Cherney, R.J., Nelson, D.J., Hardman, K.D. and Decicco, C.P., 2003, Identification of a selectivity determinant for inhibition of tumor necrosis factor-alpha converting enzyme by comparative modeling. Chem Biol, 10: 215–223.PubMedGoogle Scholar
  185. Weihofen, A. and Martoglio, B., 2003, Intramembrane-cleaving proteases: controlled liberation of proteins and bioactive peptides. Trends Cell Biol, 13: 71–78.PubMedGoogle Scholar
  186. Wen, C., Metzstein, M.M. and Greenwald, I., 1997, SUP-17, a Caenorhabditis elegans ADAM protein related to Drosophila KUZBANIAN, and its role in LIN-12/NOTCH signalling. Development, 124: 4759–4767.PubMedGoogle Scholar
  187. Weng, A.P., Ferrando, A.A., Lee, W., Morris, J.P., IV, Silverman, L.B., Sanchez-Irizarry, C., Blacklow, S.C., Look, A.T. and Aster, J.C., 2004, Activating Mutations of NOTCH1 in Human T Cell Acute Lymphoblastic Leukemia. Science, 306: 269–271.PubMedGoogle Scholar
  188. Westlund, B., Parry, D., Clover, R., Basson, M. and Johnson, C.D., 1999, Reverse genetic analysis of Caenorhabditis elegans presenilins reveals redundant but unequal roles for sel-12 and hop-1 in Notch-pathway signaling. Proc Natl Acad Sci U S A, 96: 2497–2502.PubMedGoogle Scholar
  189. Wilson, J.J. and Kovall, R.A., 2006, Crystal structure of the CSL-Notch-Mastermind ternary complex bound to DNA. Cell, 124: 985–996.PubMedGoogle Scholar
  190. Wolfe, M.S., Xia, W., Moore, C.L., Leatherwood, D.D., Ostaszewski, B., Rahmati, T., Donkor, I.O. and Selkoe, D.J., 1999a, Peptidomimetic probes and molecular modeling suggest that Alzheimer’s gamma-secretase is an intramembrane-cleaving aspartyl protease. Biochemistry, 38: 4720–4727.Google Scholar
  191. Wolfe, M.S., Xia, W.M., Ostaszewski, B.L., Diehl, T.S., Kimberly, W.T. and Selkoe, D.J., 1999b, Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature, 398: 513–517.Google Scholar
  192. Wong, P.C., Zheng, H., Chen, H., Becher, M.W., Sirinathsinghji, D.J., Trumbauer, M.E., Chen, H.Y., Price, D.L., Van der Ploeg, L.H. and Sisodia, S.S., 1997, Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature, 387: 288–292.PubMedGoogle Scholar
  193. Wu, Z., Yan, N., Feng, L., Oberstein, A., Yan, H., Baker, R.P., Gu, L., Jeffrey, P.D., Urban, S. and Shi, Y., 2006, Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nat Struct Mol Biol, 13: 1084–1091.PubMedGoogle Scholar
  194. Ye, Y.H. and Fortini, M.E., 1999, Apoptotic activities of wild-type and Alzheimer’s disease-related mutant presenilins in Drosophila melanogaster. J Cell Biol, 146: 1351–1364.PubMedGoogle Scholar
  195. Zagouras, P., Stifani, S., Blaumueller, C.M., Carcangiu, M.L. and Artavanis, T.S., 1995, Alterations in Notch signaling in neoplastic lesions of the human cervix. Proc Natl Acad Sci U S A, 92: 6414–6418.PubMedGoogle Scholar
  196. Zhang, Z., Nadeau, P., Song, W., Donoviel, D., Yuan, M., Bernstein, A. and Yankner, B.A., 2000, Presenilins are required for g-secretase cleavage of b-APP and transmembrane cleavage of Notch-1. Nature Cell Biology, 2: 463–465.PubMedGoogle Scholar
  197. Zhao, G., Cui, M.Z., Mao, G., Dong, Y., Tan, J., Sun, L. and Xu, X., 2005, gamma-Cleavage is dependent on zeta-cleavage during the proteolytic processing of amyloid precursor protein within its transmembrane domain. J Biol Chem, 280: 37689–37697.PubMedGoogle Scholar
  198. Zhao, G., Mao, G., Tan, J., Dong, Y., Cui, M.Z., Kim, S.H. and Xu, X., 2004, Identification of a new presenilin-dependent zeta-cleavage site within the transmembrane domain of amyloid precursor protein. J Biol Chem, 279: 50647–50650.PubMedGoogle Scholar

Copyright information

© Springer 2007

Authors and Affiliations

  • Ma. Xenia G. Ilagan
    • 1
  • Dilip Chandu
    • 1
  • Raphael Kopan
    • 1
  1. 1.Department of Molecular Biology and PharmacologyWashington University School of MedicineSt. LouisUSA 63110

Personalised recommendations