Skip to main content

Part of the book series: Proteases in Biology and Disease ((PBAD,volume 6))

Abstract

Intramembrane proteolysis catalyzed by rhomboid proteases plays key roles in such diverse cell communication events as receptor tyrosine kinase signalling during animal development, and quorum sensing during bacterial growth. In these contexts, rhomboid proteins act in the signal-sending cell to activate signal precursor proteins and initiate the signalling event. Recent biochemical advances have culminated in the first high-resolution crystal structures of an intramembrane protease, and a pure enzyme reconstitution system for studying rhomboid activity. Functional studies have expanded the cellular role of rhomboid proteins to broad biological processes, including host-cell invasion by malaria parasites, which is the first implication of these enzymes as possible therapeutic targets in human disease

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, D.L., Arastu-Kapur, S., Dubremetz, J.F., and Boothroyd, J.C. 2006. Plasmodium falciparum AMA1 Binds a Rhoptry Neck Protein Homologous to TgRON4, a Component of the Moving Junction in Toxoplasma gondii. Eukaryot Cell 5: 1169–1173.

    Article  PubMed  CAS  Google Scholar 

  • Baker, R.P., Wijetilaka, R., and Urban, S. 2006. Two Plasmodium Rhomboid Proteases Preferentially Cleave Different Adhesins Implicated in All Invasive Stages of Malaria. PLoS Pathog 2(10).

    Google Scholar 

  • Bang, A.G. and Kintner, C. 2000. Rhomboid and Star facilitate presentation and processing of the Drosophila TGF-alpha homolog Spitz. Genes Dev 14: 177–186.

    PubMed  CAS  Google Scholar 

  • Bassler, B.L. 1999. How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr Opin Microbiol 2: 582–587.

    Article  PubMed  CAS  Google Scholar 

  • Bier, E., Jan, L.Y., and Jan, Y.N. 1990. rhomboid, a gene required for dorsoventral axis establishment and peripheral nervous system development in Drosophila melanogaster. Genes Dev 4: 190–203.

    Article  PubMed  CAS  Google Scholar 

  • Blow, D.M., Birktoft, J.J., and Hartley, B.S. 1969. Role of a buried acid group in the mechanism of action of chymotrypsin. Nature 221: 337–340.

    Article  PubMed  CAS  Google Scholar 

  • Brossier, F., Jewett, T.J., Sibley, L.D., and Urban, S. 2005. A spatially localized rhomboid protease cleaves cell surface adhesins essential for invasion by Toxoplasma. Proc Natl Acad Sci U S A 102: 4146–4151.

    Article  PubMed  CAS  Google Scholar 

  • Brown, M.S., Ye, J., Rawson, R.B., and Goldstein, J.L. 2000. Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100: 391–398.

    Article  PubMed  CAS  Google Scholar 

  • Carruthers, V.B. 2002. Host cell invasion by the opportunistic pathogen Toxoplasma gondii. Acta Trop 81: 111–122.

    Article  PubMed  Google Scholar 

  • Carruthers, V.B., Giddings, O.K., and Sibley, L.D. 1999. Secretion of micronemal proteins is associated with Toxoplasma invasion of host cells. Cell Microbiol 1: 225–236.

    Article  PubMed  CAS  Google Scholar 

  • Carruthers, V.B., Sherman, G.D., and Sibley, L.D. 2000. The Toxoplasma adhesive protein MIC2 is proteolytically processed at multiple sites by two parasite-derived proteases. J Biol Chem 275: 14346–14353.

    Article  PubMed  CAS  Google Scholar 

  • Clemmer, K.M., Sturgill, G.M., Veenstra, A., and Rather, P.N. 2006. Functional characterization of Escherichia coli GlpG and additional rhomboid proteins using an aarA mutant of Providencia stuartii. J Bacteriol 188: 3415–3419.

    Article  PubMed  CAS  Google Scholar 

  • Dowse, T.J., Pascall, J.C., Brown, K.D., and Soldati, D. 2005. Apicomplexan rhomboids have a potential role in microneme protein cleavage during host cell invasion. Int J Parasitol 35: 747–756.

    Article  PubMed  CAS  Google Scholar 

  • Dowse, T.J. and Soldati, D. 2005. Rhomboid-like proteins in Apicomplexa: phylogeny and nomenclature. Trends Parasitol 21: 254–258.

    Article  PubMed  CAS  Google Scholar 

  • Duraisingh, M.T., Triglia, T., Ralph, S.A., Rayner, J.C., Barnwell, J.W., McFadden, G.I., andbreak Cowman, A.F. 2003. Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes. EMBO J 22: 1047–1057.

    Article  PubMed  CAS  Google Scholar 

  • Dutt, A., Canevascini, S., Froehli-Hoier, E., and Hajnal, A. 2004. EGF signal propagation during C. elegans vulval development mediated by ROM-1 rhomboid. PLoS Biol 2: e334.

    Google Scholar 

  • Dvorak, J.A., Miller, L.H., Whitehouse, W.C., and Shiroishi, T. 1975. Invasion of erythrocytes by malaria merozoites. Science 187: 748–750.

    Article  PubMed  CAS  Google Scholar 

  • Edbauer, D., Winkler, E., Regula, J.T., Pesold, B., Steiner, H., and Haass, C. 2003. Reconstitution of gamma-secretase activity. Nat Cell Biol 5: 486–488.

    Article  PubMed  CAS  Google Scholar 

  • Fersht, A.R., Blow, D.M., and Fastrez, J. 1973. Leaving group specificity in the chymotrypsin-catalyzed hydrolysis of peptides. A stereochemical interpretation. Biochemistry 12: 2035–2041.

    CAS  Google Scholar 

  • Fersht, A.R. and Sperling, J. 1973. The charge relay system in chymotrypsin and chymotrypsinogen. J Mol Biol 74: 137–149.

    Article  PubMed  CAS  Google Scholar 

  • Gallio, M., Sturgill, G., Rather, P., and Kylsten, P. 2002. A conserved mechanism for extracellular signaling in eukaryotes and prokaryotes. Proc Natl Acad Sci U S A 99: 12208–12213.

    Article  PubMed  CAS  Google Scholar 

  • Gerhart, J. 1999. 1998 Warkany lecture: signaling pathways in development. Teratology 60: 226–239.

    Article  PubMed  CAS  Google Scholar 

  • Greenwood, B. and Mutabingwa, T. 2002. Malaria in 2002. Nature 415: 670–672.

    Article  PubMed  CAS  Google Scholar 

  • Guichard, A., Biehs, B., Sturtevant, M.A., Wickline, L., Chacko, J., Howard, K., and Bier, E. 1999. rhomboid and Star interact synergistically to promote EGFR/MAPK signaling during Drosophila wing vein development. Development 126: 2663–2676.

    PubMed  CAS  Google Scholar 

  • Hartley, B.S. 1960. Proteolytic enzymes. Annu Rev Biochem 29: 45.

    Google Scholar 

  • Hill, R.J. and Sternberg, P.W. 1992. The gene lin-3 encodes an inductive signal for vulval development in C. elegans. Nature 358: 470–476.

    Article  CAS  Google Scholar 

  • Howell, S.A., Hackett, F., Jongco, A.M., Withers-Martinez, C., Kim, K., Carruthers, V.B., and Blackman, M.J. 2005. Distinct mechanisms govern proteolytic shedding of a key invasion protein in apicomplexan pathogens. Mol Microbiol 57: 1342–1356.

    Article  PubMed  CAS  Google Scholar 

  • Jaszai, J. and Brand, M. 2002. Cloning and expression of Ventrhoid, a novel vertebrate homologue of the Drosophila EGF pathway gene rhomboid. Mech Dev 113: 73–77.

    Article  PubMed  CAS  Google Scholar 

  • Jewett, T.J. and Sibley, L.D. 2003. Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Mol Cell 11: 885–894.

    Article  PubMed  CAS  Google Scholar 

  • Jurgens, G., Wieschaus, E., Nusslein-Volhard, C., and Kluding, H. 1984. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster. Roux Arch Dev Biol 193: 267–282.

    Article  Google Scholar 

  • Kanaoka, M.M., Urban, S., Freeman, M., and Okada, K. 2005. An Arabidopsis Rhomboid homolog is an intramembrane protease in plants. FEBS Lett 579: 5723–5728.

    PubMed  CAS  Google Scholar 

  • Kimberly, W.T., LaVoie, M.J., Ostaszewski, B.L., Ye, W., Wolfe, M.S., and Selkoe, D.J. 2003. Gamma-secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc Natl Acad Sci U S A 100: 6382–6387.

    Google Scholar 

  • Koonin, E.V., Makarova, K.S., Rogozin, I.B., Davidovic, L., Letellier, M.C., and Pellegrini, L. 2003. The rhomboids: a nearly ubiquitous family of intramembrane serine proteases that probably evolved by multiple ancient horizontal gene transfers. Genome Biol 4: R19.

    Google Scholar 

  • Lee, J.R., Urban, S., Garvey, C.F., and Freeman, M. 2001. Regulated intracellular ligand transport and proteolysis control EGF signal activation in Drosophila. Cell 107: 161–171.

    Article  PubMed  CAS  Google Scholar 

  • Lemberg, M.K., Menendez, J., Misik, A., Garcia, M., Koth, C.M., and Freeman, M. 2005. Mechanism of intramembrane proteolysis investigated with purified rhomboid proteases. EMBO J 24: 464–472.

    Article  PubMed  CAS  Google Scholar 

  • Lohi, O., Urban, S., and Freeman, M. 2004. Diverse substrate recognition mechanisms for rhomboids; thrombomodulin is cleaved by Mammalian rhomboids. Curr Biol 14: 236–241.

    Article  PubMed  CAS  Google Scholar 

  • Maegawa, S., Ito, K., and Akiyama, Y. 2005. Proteolytic action of GlpG, a rhomboid protease in the Escherichia coli cytoplasmic membrane. Biochemistry 44: 13543–13552.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, U. and Nusslein-Volhard, C. 1988. A group of genes required for pattern formation in the ventral ectoderm of the Drosophila embryo. Genes Dev 2: 1496–1511.

    Article  PubMed  CAS  Google Scholar 

  • McQuibban, G.A., Lee, J.R., Zheng, L., Juusola, M., and Freeman, M. 2006. Normal mitochondrial dynamics requires rhomboid-7 and affects Drosophila lifespan and neuronal function. Curr Biol 16: 982–989.

    Article  PubMed  CAS  Google Scholar 

  • Mesak, L.R., Mesak, F.M., and Dahl, M.K. 2004. Expression of a novel gene, gluP, is essential for normal Bacillus subtilis cell division and contributes to glucose export. BMC Microbiol 4: 13.

    Google Scholar 

  • Meyerowitz, E.M. 2002. Plants compared to animals: the broadest comparative study of development. Science 295: 1482–1485.

    Article  PubMed  CAS  Google Scholar 

  • Miura, G.I., Buglino, J., Alvarado, D., Lemmon, M.A., Resh, M.D., and Treisman, J.E. 2006. Palmitoylation of the EGFR ligand Spitz by Rasp increases Spitz activity by restricting its diffusion. Dev Cell 10: 167–176.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa, T., Guichard, A., Castro, C.P., Xiao, Y., Rizen, M., Zhang, H.Z., Hu, D., Bang, A., Helms, J., Bier, E., and Derynck, R. 2005. Characterization of a human rhomboid homolog, p100hRho/ RHBDF1, which interacts with TGF-alpha family ligands. Dev Dyn 233: 1315–1331.

    Article  PubMed  CAS  Google Scholar 

  • Nusslein-Volhard, C., Wieschaus, E., and Kluding, H. 1984. Mutations affecting the pattern of the larval cuticle in Drosophila melanogaster: I. Zygotic loci on the second chromosome. Roux Arch Dev Biol 193: 267–282.

    Article  Google Scholar 

  • Nyborg, A.C., Kornilova, A.Y., Jansen, K., Ladd, T.B., Wolfe, M.S., and Golde, T.E. 2004. Signal peptide peptidase forms a homodimer that is labeled by an active site-directed gamma-secretase inhibitor. J Biol Chem 279: 15153–15160.

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell R, A., Hackett, F., Howell, S.A., Treeck, M., Struck, N., Krnajski, Z., Withers-Martinez, C., Gilberger, T.W., and Blackman, M.J. 2006. Intramembrane proteolysis mediates shedding of a key adhesin during erythrocyte invasion by the malaria parasite. J Cell Biol 174: 1023–1033.

    Article  PubMed  CAS  Google Scholar 

  • O’Donnell, R.A., Hackett, F., Howell, S.A., Treeck, M., Struck, N., Krnajski, Z., Withers-Martinez, C., Gilberger, T.W., and Blackman, M.J. 2006. Intramembrane proteolysis mediates shedding of a key adhesin during erythrocyte invasion by the malaria parasite. J Cell Biol 174: 1023–1033.

    Article  PubMed  CAS  Google Scholar 

  • Opitz, C., Di Cristina, M., Reiss, M., Ruppert, T., Crisanti, A., and Soldati, D. 2002. Intramembrane cleavage of microneme proteins at the surface of the apicomplexan parasite Toxoplasma gondii. EMBO J 21: 1577–1585.

    Article  PubMed  CAS  Google Scholar 

  • Pascall, J.C. and Brown, K.D. 1998. Characterization of a mammalian cDNA encoding a protein with high sequence similarity to the Drosophila regulatory protein Rhomboid. FEBS Lett 429: 337–340.

    Article  PubMed  CAS  Google Scholar 

  • Pascall, J.C. and Brown, K.D. 2004. Intramembrane cleavage of ephrinB3 by the human rhomboid family protease, RHBDL2. Biochem Biophys Res Commun 317: 244–252.

    Article  PubMed  CAS  Google Scholar 

  • Peschon, J.J., Slack, J.L., Reddy, P., Stocking, K.L., Sunnarborg, S.W., Lee, D.C., Russell, W.E., Castner, B.J., Johnson, R.S., Fitzner, J.N., Boyce, R.W., Nelson, N., Kozlosky, C.J., Wolfson, M.F., Rauch, C.T., Cerretti, D.P., Paxton, R.J., March, C.J., and Black, R.A. 1998. An essential role for ectodomain shedding in mammalian development. Science 282: 1281–1284.

    Article  PubMed  CAS  Google Scholar 

  • Rather, P.N., Ding, X., Baca-DeLancey, R.R., and Siddiqui, S. 1999. Providencia stuartii genes activated by cell-to-cell signaling and identification of a gene required for production or activity of an extracellular factor. J Bacteriol 181: 7185–7191.

    PubMed  CAS  Google Scholar 

  • Rather, P.N. and Orosz, E. 1994. Characterization of aarA, a pleiotrophic negative regulator of the 2’-N-acetyltransferase in Providencia stuartii. J Bacteriol 176: 5140–5144.

    PubMed  CAS  Google Scholar 

  • Rutledge, B.J., Zhang, K., Bier, E., Jan, Y.N., and Perrimon, N. 1992. The Drosophila spitz gene encodes a putative EGF-like growth factor involved in dorsal-ventral axis formation and neurogenesis. Genes Dev 6: 1503–1517.

    Article  PubMed  CAS  Google Scholar 

  • Sahin, U., Weskamp, G., Kelly, K., Zhou, H.M., Higashiyama, S., Peschon, J., Hartmann, D., Saftig, P., and Blobel, C.P. 2004. Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol 164: 769–779.

    Article  PubMed  CAS  Google Scholar 

  • Schroeter, E.H., Ilagan, M.X., Brunkan, A.L., Hecimovic, S., Li, Y.M., Xu, M., Lewis, H.D., Saxena, M.T., De Strooper, B., Coonrod, A., Tomita, T., Iwatsubo, T., Moore, C.L., Goate, A., Wolfe, M.S., Shearman, M., and Kopan, R. 2003. A presenilin dimer at the core of the gamma-secretase enzyme: insights from parallel analysis of Notch 1 and APP proteolysis. Proc Natl Acad Sci U S A 100: 13075–13080.

    Article  PubMed  CAS  Google Scholar 

  • Schulz, C., Wood, C.G., Jones, D.L., Tazuke, S.I., and Fuller, M.T. 2002. Signaling from germ cells mediated by the rhomboid homolog stet organizes encapsulation by somatic support cells. Development 129: 4523–4534.

    PubMed  CAS  Google Scholar 

  • Sibley, L.D. 2004. Intracellular parasite invasion strategies. Science 304: 248–253.

    Article  PubMed  CAS  Google Scholar 

  • Snijder, H.J., Ubarretxena-Belandia, I., Blaauw, M., Kalk, K.H., Verheij, H.M., Egmond, M.R., Dekker, N., and Dijkstra, B.W. 1999. Structural evidence for dimerization-regulated activation of an integral membrane phospholipase. Nature 401: 717–721.

    Article  PubMed  CAS  Google Scholar 

  • Soldati, D., Foth, B.J., and Cowman, A.F. 2004. Molecular and functional aspects of parasite invasion. Trends Parasitol 20: 567–574.

    Article  PubMed  CAS  Google Scholar 

  • Stubbs, J., Simpson, K.M., Triglia, T., Plouffe, D., Tonkin, C.J., Duraisingh, M.T., Maier, A.G., Winzeler, E.A., and Cowman, A.F. 2005. Molecular mechanism for switching of P. falciparum invasion pathways into human erythrocytes. Science 309: 1384–1387.

    Article  PubMed  CAS  Google Scholar 

  • Tsruya, R., Schlesinger, A., Reich, A., Gabay, L., Sapir, A., and Shilo, B.Z. 2002. Intracellular trafficking by Star regulates cleavage of the Drosophila EGF receptor ligand Spitz. Genes Dev 16: 222–234.

    Article  PubMed  CAS  Google Scholar 

  • Urban, S., Brown, G., and Freeman, M. 2004. EGF receptor signaling protects smooth-cuticle cells from apoptosis during Drosophila ventral epidermis development. Development 131: 1835–1845.

    Article  PubMed  CAS  Google Scholar 

  • Urban, S. and Freeman, M. 2002. Intramembrane proteolysis controls diverse signalling pathways throughout evolution. Curr Opin Genet Dev 12: 512–518.

    Article  PubMed  CAS  Google Scholar 

  • Urban, S. and Freeman, M. 2003. Substrate specificity of rhomboid intramembrane proteases is governed by helix-breaking residues in the substrate transmembrane domain. Mol Cell 11: 1425–1434.

    Article  PubMed  CAS  Google Scholar 

  • Urban, S., Lee, J.R., and Freeman, M. 2001. Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107: 173–182.

    Article  PubMed  CAS  Google Scholar 

  • Urban, S., Lee, J.R., and Freeman, M. 2002a. A family of Rhomboid intramembrane proteases activates all membrane-tether EGF ligands in Drosophila. EMBO J 21: 4277–4286.

    Google Scholar 

  • Urban, S., Schlieper, D., and Freeman, M. 2002b. Conservation of intramembrane proteolytic activity and substrate specificity in eukaryotic and prokaryotic Rhomboids. Curr Biol 12: 1507–1512.

    Google Scholar 

  • Urban, S. and Wolfe, M.S. 2005. Reconstitution of intramembrane proteolysis in vitro reveals that pure rhomboid is sufficient for catalysis and specificity. Proc Natl Acad Sci U S A 102: 1883–1888.

    Article  PubMed  CAS  Google Scholar 

  • Vernet, T., Tessier, D.C., Chatellier, J., Plouffe, C., Lee, T.S., Thomas, D.Y., Storer, A.C., and Menard, R. 1995. Structural and functional roles of asparagine 175 in the cysteine protease papain. J Biol Chem 270: 16645–16652.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Zhang, Y., and Ha, Y. 2006. Crystal structure of a rhomboid family intramembrane protease. Nature: advance online publication.

    Google Scholar 

  • Wasserman, J.D. and Freeman, M. 1997. Control of EGF receptor activation in Drosophila. Trends in Cell Biol 7: 431–436.

    Article  CAS  Google Scholar 

  • Wasserman, J.D., Urban, S., and Freeman, M. 2000. A family of rhomboid-like genes: Drosophila rhomboid-1 and roughoid/rhomboid-3 cooperate to activate EGF receptor signalling. Genes Dev 14: 1651–1663.

    Google Scholar 

  • Waters, C.M. and Bassler, B.L. 2005. Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21: 319–346.

    Article  PubMed  CAS  Google Scholar 

  • Wilmouth, R.C., Edman, K., Neutze, R., Wright, P.A., Clifton, I.J., Schneider, T.R., Schofield, C.J., and Hajdu, J. 2001. X-ray snapshots of serine protease catalysis reveal a tetrahedral intermediate. Nat Struct Biol 8: 689–694.

    Article  PubMed  CAS  Google Scholar 

  • Wolpert, L. 1998. Principles of Development. Oxford University Press, Oxford.

    Google Scholar 

  • Wu, Z., Yan, N., Feng, L., Oberstein, A., Yan, H., Baker, R.P., Gu, L., Jeffrey, P.D., Urban, S., and Shi, Y. 2006. Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nat Struct Mol Biol: in press.

    Google Scholar 

  • Zhou, X.W., Blackman, M.J., Howell, S.A., and Carruthers, V.B. 2004. Proteomic analysis of cleavage events reveals a dynamic two-step mechanism for proteolysis of a key parasite adhesive complex. Mol Cell Proteomics 3: 565–576.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Urban, S. (2007). Rhomboid Intramembrane Serine Proteases. In: Hooper, N.M., Lendeckel, U. (eds) Intramembrane-Cleaving Proteases (I-CLiPs). Proteases in Biology and Disease, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6311-4_4

Download citation

Publish with us

Policies and ethics