Skip to main content

Part of the book series: Proteases in Biology and Disease ((PBAD,volume 6))

  • 274 Accesses

Abstract

Among the known intramembrane-cleaving proteases (I-CLiPs), the aspartate proteases are unique. Unlike I-CLiPs of the serine- and metalloprotease-type, which share their respective active site motifs with their classical counterparts, the aspartate protease I-CLiPs acquired a novel characteristic GxGD active site motif during evolution. These so-called GxGD-type proteases include the presenilin (PS), signal peptide peptidase (SPP), SPP-like protease (SPPL) families and the related type IV prepilin peptidase family, bacterial leader peptidases, which share the same active site motif, but which cleave their substrates directly at, rather than within, the membrane. PS, SPP and SPPLs adopt a similar, but inverted membrane topology with respect to their active site orientation. PS is the founding member of the GxGD-type I-CLiPs and has been identified as the catalytic subunit of Γ-secretase. The major function of this protease complex appears to be the clearance of the remnants of a large number of type I membrane proteins that have undergone shedding of their ectodomains. For some substrates of Γ-secretase, most prominently for the cell surface receptor Notch, Γ-secretase cleavage is coupled with signaling by the release of a nuclear-targeted intracellular domain (ICD). In the case of Notch, the ICD functions in the nucleus as a key transcriptional regulator for cell differentiation in development and adulthood. In addition, Γ-secretase is a pivotal enzyme in Alzheimer’s disease (AD), responsible for the liberation of the AD-causing amyloid β-peptide from its precursor protein. SPP and SPPLs exert similar functions, which, however, use type II membrane proteins as substrates consistent with their opposite topologies compared to PS. Thus, the major function of SPP is likely to be to clear the ER membrane of signal peptides of secretory proteins, whereas SPPL2a and b have recently been shown to cleave tumor necrosis factor UPalpha to release an ICD that triggers interleukin-12 signaling. Despite the similarities in their overall biological functions, the major difference is that PS requires partner proteins for its proteolytic function, whereas SPP and probably also the SPPLs do not

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Beher, D., Clarke, E.E., Wrigley, J.D., Martin, A.C., Nadin, A., Churcher, I., Shearman, M.S., 2004, Selected non-steroidal anti-inflammatory drugs and their derivatives target Γ-secretase at a novel site. Evidence for an allosteric mechanism. J. Biol. Chem. 279: 43419–43426.

    PubMed  CAS  Google Scholar 

  • Bray, S.J., 2006, Notch signalling: a simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 7: 678–689.

    PubMed  CAS  Google Scholar 

  • Brown, M.S., Ye, J., Rawson, R.B., Goldstein, J.L., 2000, Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100: 391–398.

    PubMed  CAS  Google Scholar 

  • Cai, X.D., Golde, T.E., Younkin, S.G., 1993, Release of excess amyloid β protein from a mutant amyloid β protein precursor. Science 259: 514–516.

    PubMed  CAS  Google Scholar 

  • Capell, A., Beher, D., Prokop, S., Steiner, H., Kaether, C., Shearman, M.S., Haass, C., 2005, Γ-Secretase complex assembly within the early secretory pathway. J. Biol. Chem. 280: 6471–6478.

    PubMed  CAS  Google Scholar 

  • Capell, A., Grünberg, J., Pesold, B., Diehlmann, A., Citron, M., Nixon, R., Beyreuther, K., Selkoe, D.J., Haass, C., 1998, The proteolytic fragments of the Alzheimer’s disease-associated presenilin-1 form heterodimers and occur as a 100–150-kDa molecular mass complex. J. Biol. Chem. 273: 3205–3211.

    PubMed  CAS  Google Scholar 

  • Casso, D.J., Tanda, S., Biehs, B., Martoglio, B., Kornberg, T.B., 2005, Drosophila signal peptide peptidase is an essential protease for larval development. Genetics 170: 139–148.

    PubMed  CAS  Google Scholar 

  • Chen, F., Hasegawa, H., Schmitt-Ulms, G., Kawarai, T., Bohm, C., Katayama, T., Gu, Y., Sanjo, N., Glista, M., Rogaeva, E., Wakutani, Y., Pardossi-Piquard, R., Ruan, X., Tandon, A., Checler, F., Marambaud, P., Hansen, K., Westaway, D., St George-Hyslop, P., Fraser, P., 2006, TMP21 is a presenilin complex component that modulates Γ-secretase but not UPvarepsilon-secretase activity. Nature 440: 1208–1212.

    PubMed  CAS  Google Scholar 

  • Chung, H.-M., Struhl, G., 2001, Nicastrin is required for presenilin-mediated transmembrane cleavage in Drosophila. Nat. Cell Biol. 3: 1129–1132.

    PubMed  CAS  Google Scholar 

  • Chyung, J.H., Raper, D.M., Selkoe, D.J., 2005, Γ-Secretase exists on the plasma membrane as an intact complex that accepts substrates and effects intramembrane cleavage. J. Biol. Chem 280: 4383–4392.

    PubMed  CAS  Google Scholar 

  • Citron, M., Oltersdorf, T., Haass, C., McConlogue, L., Hung, A.Y., Seubert, P., Vigo-Pelfrey, C., Lieberburg, I., Selkoe, D.J., 1992, Mutation of the β-amyloid precursor protein in familial Alzheimer’s disease increases β-protein production. Nature 360: 672–674.

    PubMed  CAS  Google Scholar 

  • Citron, M., Westaway, D., Xia, W., Carlson, G., Diehl, T., Levesque, G., Johnson-Wood, K., Lee, M., Seubert, P., Davis, A., Kholodenko, D., Motter, R., Sherrington, R., Perry, B., Yao, H., Strome, R., Lieberburg, I., Rommens, J., Kim, S., Schenk, D., Fraser, P., St George Hyslop, P., Selkoe, D.J., 1997, Mutant presenilins of Alzheimer’s disease increase production of 42-residue amyloid β-protein in both transfected cells and transgenic mice. Nat. Med. 3: 67–72.

    PubMed  CAS  Google Scholar 

  • De Strooper, B., Annaert, W., Cupers, P., Saftig, P., Craessaerts, K., Mumm, J.S., Schroeter, E.H., Schrijvers, V., Wolfe, M.S., Ray, W.J., Goate, A., Kopan, R., 1999, A presenilin-1-dependent h{Γ-secretase-like} protease mediates release of Notch intracellular domain. Nature 398: 518–522.

    PubMed  Google Scholar 

  • De Strooper, B., Saftig, P., Craessaerts, K., Vanderstichele, H., Guhde, G., Annaert, W., Von Figura, K., Van Leuven, F., 1998, Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391: 387–390.

    PubMed  Google Scholar 

  • Dovey, H.F., Suomensaari-Chrysler, S., Lieberburg, I., Sinha, S., Keim, P.S., 1993, Cells with a familial Alzheimer’s disease mutation produce authentic β-peptide. Neuroreport 4: 1039–1042.

    PubMed  CAS  Google Scholar 

  • Edbauer, D., Willem, M., Lammich, S., Steiner, H., Haass, C., 2002, Insulin-degrading enzyme rapidly removes the β-amyloid precursor protein intracellular domain (AICD). J. Biol. Chem. 277: 13389–13393.

    PubMed  CAS  Google Scholar 

  • Edbauer, D., Winkler, E., Regula, J.T., Pesold, B., Steiner, H., Haass, C., 2003, Reconstitution of Γ-secretase activity. Nat. Cell Biol. 5: 486–488.

    PubMed  CAS  Google Scholar 

  • Esler, W.P., Kimberly, W.T., Ostaszewski, B.L., Diehl, T.S., Moore, C.L., Tsai, J.-Y., Rahmati, T., Xia, W., Selkoe, D.J., Wolfe, M.S., 2000, Transition-state analogue inhibitors of Γ-secretase bind directly to presenilin-1. Nat. Cell Biol. 2: 428–433.

    PubMed  CAS  Google Scholar 

  • Farmery, M.R., Tjernberg, L.O., Pursglove, S.E., Bergman, A., Winblad, B., Naslund, J., 2003, Partial purification and characterization of Γ-secretase from post mortem human brain. J. Biol. Chem. 278: 24277–24284.

    PubMed  CAS  Google Scholar 

  • Fluhrer, R., Grammer, G., Israel, L., Condron, M.M., Haffner, C., Friedmann, E., Bohland, C., Imhof, A., Martoglio, B., Teplow, D.B., Haass, C., 2006, A Γ-secretase-like intramembrane cleavage of TNFUPalpha by the GxGD aspartyl protease SPPL2b. Nat. Cell Biol. 8: 894–896.

    PubMed  CAS  Google Scholar 

  • Francis, R., McGrath, G., Zhang, J., Ruddy, D.A., Sym, M., Apfeld, J., Nicoll, M., Maxwell, M., Hai, B., Ellis, M.C., Parks, A.L., Xu, W., Li, J., Gurney, M., Myers, R.L., Himes, C.S., Hiebsch, R.D., Ruble, C., Nye, J.S., Curtis, D., 2002, aph-1 and pen-2 are required for Notch pathway signaling, Γ-secretase cleavage of βAPP, and presenilin protein accumulation. Dev. Cell 3: 85–97.

    PubMed  CAS  Google Scholar 

  • Freeman, M., 2004, Proteolysis within the membrane: rhomboids revealed. Nat. Rev. Mol. Cell Biol. 5: 188–197.

    PubMed  CAS  Google Scholar 

  • Friedmann, E., Hauben, E., Maylandt, K., Schleeger, S., Vreugde, S., Lichtenthaler, S.F., Kuhn, P.H., Stauffer, D., Rovelli, G., Martoglio, B., 2006, SPPL2a and SPPL2b promote intramembrane proteolysis of TNFUPalpha in activated dendritic cells to trigger IL-12 production. Nat. Cell Biol. 8: 843–848.

    PubMed  CAS  Google Scholar 

  • Friedmann, E., Lemberg, M.K., Weihofen, A., Dev, K.K., Dengler, U., Rovelli, G., Martoglio, B., 2004, Consensus analysis of signal peptide peptidase and homologous human aspartic proteases reveals opposite topology of catalytic domains compared with presenilins. J. Biol. Chem. 279: 50790–50798.

    PubMed  CAS  Google Scholar 

  • Geling, A., Steiner, H., Willem, M., Bally-Cuif, L., Haass, C., 2002, A Γ-secretase inhibitor blocks Notch signaling in vivo and causes a severe neurogenic phenotype in zebrafish. EMBO Rep. 3: 688–694.

    PubMed  CAS  Google Scholar 

  • Goldstein, J.L., DeBose-Boyd, R.A., Brown, M.S., 2006, Protein sensors for membrane sterols. Cell 124: 35–46.

    PubMed  CAS  Google Scholar 

  • Goutte, C., Hepler, W., Mickey, K.M., Priess, J.R., 2000, aph-2 encodes a novel extracellular protein required for GLP-1-mediated signaling. Development 127: 2481–2492.

    PubMed  CAS  Google Scholar 

  • Goutte, C., Tsunozaki, M., Hale, V.A., Priess, J.R., 2002, APH-1 is a multipass membrane protein essential for the Notch signaling pathway in Caenorhabditis elegans embryos. Proc. Natl. Acad. Sci. USA 99: 775–779.

    PubMed  CAS  Google Scholar 

  • Grigorenko, A.P., Moliaka, Y.K., Korovaitseva, G.I., Rogaev, E.I., 2002, Novel class of polytopic proteins with domains associated with putative protease activity. Biochemistry (Mosc) 67: 826–835.

    CAS  Google Scholar 

  • Grigorenko, A.P., Moliaka, Y.K., Soto, M.C., Mello, C.C., Rogaev, E.I., 2004, The Caenorhabditis elegans IMPAS gene, imp-2, is essential for development and is functionally distinct from related presenilins. Proc. Natl. Acad. Sci. USA 101: 14955–14960.

    PubMed  CAS  Google Scholar 

  • Gu, Y., Misonou, H., Sato, T., Dohmae, N., Takio, K., Ihara, Y., 2001, Distinct intramembrane cleavage of the β-amyloid precursor protein family resembling Γ-secretase-like cleavage of Notch. J. Biol. Chem. 276: 35235–35238.

    PubMed  CAS  Google Scholar 

  • Haass, C., 2004, Take five–BACE and the Γ-secretase quartet conduct Alzheimer’s amyloid β-peptide generation. EMBO J. 23: 483–488.

    PubMed  CAS  Google Scholar 

  • Hardy, J., Selkoe, D.J., 2002, The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297: 353–356.

    PubMed  CAS  Google Scholar 

  • Hebert, S.S., Serneels, L., Dejaegere, T., Horre, K., Dabrowski, M., Baert, V., Annaert, W., Hartmann, D., De Strooper, B., 2004, Coordinated and widespread expression of Γ-secretase in vivo: evidence for size and molecular heterogeneity. Neurobiol. Dis. 17: 260–272.

    PubMed  CAS  Google Scholar 

  • Henricson, A., Kall, L., Sonnhammer, E.L., 2005, A novel transmembrane topology of presenilin based on reconciling experimental and computational evidence. FEBS J. 272: 2727–2733.

    PubMed  CAS  Google Scholar 

  • Herreman, A., Serneels, L., Annaert, W., Collen, D., Schoonjans, L., De Strooper, B., 2000, Total inactivation of Γ-secretase activity in presenilin-deficient embryonic stem cells. Nat. Cell Biol. 2: 461–462.

    PubMed  CAS  Google Scholar 

  • Hu, Y., Ye, Y., Fortini, M.E., 2002, Nicastrin is required for Γ-secretase cleavage of the Drosophila Notch receptor. Dev. Cell 2: 69–78.

    PubMed  CAS  Google Scholar 

  • Kaether, C., Lammich, S., Edbauer, D., Ertl, M., Rietdorf, J., Capell, A., Steiner, H., Haass, C., 2002, A presenilin-1/nicastrin complex is targeted to the plasma membrane and affects trafficking and processing of the β-amyloid precursor protein. J. Cell Biol. 158: 551–561.

    PubMed  CAS  Google Scholar 

  • Kaether, C., Schmitt, S., Willem, M., Haass, C., 2006, Amyloid precursor protein and Notch intracellular domains are generated after transport of their precursors to the cell surface. Traffic 7: 408–415.

    PubMed  CAS  Google Scholar 

  • Kim, S.H., Ikeuchi, T., Yu, C., Sisodia, S.S., 2003, Regulated hyperaccumulation of presenilin-1 and the “Γ-secretase” complex. Evidence for differential intramembranous processing of transmembrane subatrates. J. Biol. Chem. 278: 33992–34002.

    PubMed  CAS  Google Scholar 

  • Kim, S.H., Yin, Y.I., Li, Y.M., Sisodia, S.S., 2004, Evidence that assembly of an active Γ-secretase complex occurs in the early compartments of the secretory pathway. J. Biol. Chem. 279: 48615–48619.

    PubMed  CAS  Google Scholar 

  • Kimberly, W.T., LaVoie, M.J., Ostaszewski, B.L., Ye, W., Wolfe, M.S., Selkoe, D.J., 2003, Γ-Secretase is a membrane protein complex comprised of presenilin, nicastrin, Aph-1, and Pen-2. Proc. Natl. Acad. Sci. USA 100: 6382–6387.

    PubMed  CAS  Google Scholar 

  • Kimberly, W.T., Xia, W., Rahmati, T., Wolfe, M.S., Selkoe, D.J., 2000, The transmembrane aspartates in presenilin 1 and 2 are obligatory for Γ-secretase activity and amyloid β-protein generation. J. Biol. Chem. 275: 3173–3178.

    PubMed  CAS  Google Scholar 

  • Kopan, R., Ilagan, M.X., 2004, Γ-Secretase: proteasome of the membrane? Nat. Rev. Mol. Cell Biol. 5: 499–504.

    PubMed  CAS  Google Scholar 

  • Kornilova, A.Y., Bihel, F., Das, C., Wolfe, M.S., 2005, The initial substrate-binding site of Γ-secretase is located on presenilin near the active site. Proc. Natl. Acad. Sci. USA 102: 3230–3235.

    PubMed  CAS  Google Scholar 

  • Kornilova, A.Y., Das, C., Wolfe, M.S., 2003, Differential effects of inhibitors on the Γ-secretase complex. Mechanistic implications. J. Biol. Chem. 278: 16470–16473.

    PubMed  CAS  Google Scholar 

  • Krawitz, P., Haffner, C., Fluhrer, R., Steiner, H., Schmid, B., Haass, C., 2005, Differential localization and identification of a critical aspartate suggest non-redundant proteolytic functions of the presenilin homologues SPPL2b and SPPL3. J. Biol. Chem. 280: 39515–39523.

    PubMed  CAS  Google Scholar 

  • Kukar, T., Murphy, M.P., Eriksen, J.L., Sagi, S.A., Weggen, S., Smith, T.E., Ladd, T., Khan, M.A., Kache, R., Beard, J., Dodson, M., Merit, S., Ozols, V.V., Anastasiadis, P.Z., Das, P., Fauq, A., Koo, E.H., Golde, T.E., 2005, Diverse compounds mimic Alzheimer disease-causing mutations by augmenting Aβ42 production. Nat. Med. 11: 545–550.

    PubMed  CAS  Google Scholar 

  • Lammich, S., Okochi, M., Takeda, M., Kaether, C., Capell, A., Zimmer, A.-K., Edbauer, D., Walter, J., Steiner, H., Haass, C., 2002, Presenilin-dependent intramembrane proteolysis of CD44 leads to the liberation of its intracellular domain and the secretion of an Aβ-like peptide. J. Biol. Chem. 277: 44754–44759.

    PubMed  CAS  Google Scholar 

  • LaPointe, C.F., Taylor, R.K., 2000, The type 4 prepilin peptidases comprise a novel family of aspartic acid proteases. J. Biol. Chem. 275: 1502–1510.

    PubMed  CAS  Google Scholar 

  • Laudon, H., Hansson, E.M., Melen, K., Bergman, A., Farmery, M.R., Winblad, B., Lendahl, U., von Heijne, G., Naslund, J., 2005, A nine-transmembrane domain topology for presenilin 1. J. Biol. Chem. 280: 35352–35360.

    PubMed  CAS  Google Scholar 

  • LaVoie, M.J., Fraering, P.C., Ostaszewski, B.L., Ye, W., Kimberly, W.T., Wolfe, M.S., Selkoe, D.J., 2003, Assembly of the Γ-secretase complex involves early formation of an intermediate sub-complex of Aph-1 and Nicastrin. J. Biol. Chem. 278: 37213–37222.

    PubMed  CAS  Google Scholar 

  • Lazarov, V.K., Fraering, P.C., Ye, W., Wolfe, M.S., Selkoe, D.J., Li, H., 2006, Electron microscopic structure of purified, active Γ-secretase reveals an aqueous intramembrane chamber and two pores. Proc. Natl. Acad. Sci. USA 103: 6889–6894.

    PubMed  CAS  Google Scholar 

  • Lee, S.F., Shah, S., Li, H., Yu, C., Han, W., Yu, G., 2002, Mammalian APH-1 interacts with presenilin and nicastrin and is required for intramembrane proteolysis of amyloid-β precursor protein and Notch. J. Biol. Chem. 277: 45013–45019.

    PubMed  CAS  Google Scholar 

  • Lemberg, M.K., Bland, F.A., Weihofen, A., Braud, V.M., Martoglio, B., 2001, Intramembrane proteolysis of signal peptides: an essential step in the generation of HLA-E epitopes. J. Immunol. 167: 6441–6446.

    PubMed  CAS  Google Scholar 

  • Lemberg, M.K., Martoglio, B., 2002, Requirements for signal peptide peptidase-catalyzed intramembrane proteolysis. Mol. Cell 10: 735–744.

    PubMed  CAS  Google Scholar 

  • Levitan, D., Greenwald, I., 1995, Facilitation of lin-12-mediated signalling by sel-12, a Caenorhabditis elegans S182 Alzheimer’s disease gene. Nature 377: 351–354.

    PubMed  CAS  Google Scholar 

  • Levitan, D., Yu, G., St George Hyslop, P., Goutte, C., 2001, Aph-2/nicastrin functions in lin-12/Notch signaling in the Caenorhabditis elegans somatic gonad. Dev. Biol. 240: 654–661.

    PubMed  CAS  Google Scholar 

  • Li, J., Fici, G.J., Mao, C.A., Myers, R.L., Shuang, R., Donoho, G.P., Pauley, A.M., Himes, C.S., Qin, W., Kola, I., Merchant, K.M., Nye, J.S., 2003, Positive and negative regulation of the Γ-secretase activity by nicastrin in a murine model. J. Biol. Chem. 278: 33445–33449.

    PubMed  CAS  Google Scholar 

  • Li, T., Ma, G., Cai, H., Price, D.L., Wong, P.C., 2003, Nicastrin is required for assembly of presenilin/ Γ-secretase complexes to mediate Notch signaling and for processing and trafficking of β-amyloid precursor protein in mammals. J. Neurosci. 23: 3272–3277.

    PubMed  CAS  Google Scholar 

  • Li, Y.M., Lai, M.T., Xu, M., Huang, Q., DiMuzio-Mower, J., Sardana, M.K., Shi, X.P., Yin, K.C., Shafer, J.A., Gardell, S.J., 2000, Presenilin 1 is linked with Γ-secretase activity in the detergent solubilized state. Proc. Natl. Acad. Sci. USA 97: 6138–6143.

    PubMed  CAS  Google Scholar 

  • Li, Y.M., Xu, M., Lai, M.T., Huang, Q., Castro, J.L., DiMuzio-Mower, J., Harrison, T., Lellis, C., Nadin, A., Neduvelli, J.G., Register, R.B., Sardana, M.K., Shearman, M.S., Smith, A.L., Shi, X.P., Yin, K.C., Shafer, J.A., Gardell, S.J., 2000, Photoactivated Γ-secretase inhibitors directed to the active site covalently label presenilin 1. Nature 405: 689–694.

    PubMed  CAS  Google Scholar 

  • Lopez-Schier, H., Johnston, D.S., 2002, Drosophila nicastrin is essential for the intramembranous cleavage of Notch. Dev. Cell 2: 79–89.

    PubMed  CAS  Google Scholar 

  • Ma, G., Li, T., Price, D.L., Wong, P.C., 2005, APH-1a is the principal mammalian APH-1 isoform present in Γ-secretase complexes during embryonic development. J. Neurosci. 25: 192–198.

    PubMed  CAS  Google Scholar 

  • McLauchlan, J., Lemberg, M.K., Hope, G., Martoglio, B., 2002, Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. EMBO J. 21: 3980–3988.

    PubMed  CAS  Google Scholar 

  • Micchelli, C.A., Esler, W.P., Kimberly, W.T., Jack, C., Berezovska, O., Kornilova, A., Hyman, B.T., Perrimon, N., Wolfe, M.S., 2003, Γ-Secretase/presenilin inhibitors for Alzheimer’s disease phenocopy Notch mutations in Drosophila. FASEB J. 17: 79–81.

    PubMed  CAS  Google Scholar 

  • Nyborg, A.C., Kornilova, A.Y., Jansen, K., Ladd, T.B., Wolfe, M.S., Golde, T.E., 2004, Signal peptide peptidase forms a homodimer that is labeled by an active site-directed Γ-secretase inhibitor. J. Biol. Chem. 279: 15153–15160.

    PubMed  CAS  Google Scholar 

  • Nyborg, A.C., Ladd, T.B., Jansen, K., Kukar, T., Golde, T.E., 2006, Intramembrane proteolytic cleavage by human signal peptide peptidase like 3 and malaria signal peptide peptidase. FASEB J. 20: 1671–1679.

    PubMed  CAS  Google Scholar 

  • Oh, Y.S., Turner, R.J., 2005, Topology of the C-terminal fragment of human presenilin 1. Biochemistry 44: 11821–11828.

    PubMed  CAS  Google Scholar 

  • Okochi, M., Steiner, H., Fukumori, A., Tanii, H., Tomita, T., Tanaka, T., Iwatsubo, T., Kudo, T., Takeda, M., Haass, C., 2002, Presenilins mediate a dual intramembraneous Γ-secretase cleavage of Notch-1. EMBO J. 21: 5408–5416.

    PubMed  CAS  Google Scholar 

  • Ponting, C.P., Hutton, M., Nyborg, A., Baker, M., Jansen, K., Golde, T.E., 2002, Identification of a novel family of presenilin homologues. Hum. Mol. Genet. 11: 1037–1044.

    PubMed  CAS  Google Scholar 

  • Qi-Takahara, Y., Morishima-Kawashima, M., Tanimura, Y., Dolios, G., Hirotani, N., Horikoshi, Y., Kametani, F., Maeda, M., Saido, T.C., Wang, R., Ihara, Y., 2005, Longer forms of amyloid β protein: implications for the mechanism of intramembrane cleavage by Γ-secretase. J. Neurosci. 25: 436–445.

    PubMed  CAS  Google Scholar 

  • Rawson, R.B., Zelenski, N.G., Nijhawan, D., Ye, J., Sakai, J., Hasan, M.T., Chang, T.Y., Brown, M.S., Goldstein, J.L., 1997, Complementation cloning of S2P, a gene encoding a putative metalloprotease required for intramembrane cleavage of SREBPs. Mol. Cell 1: 47–57.

    PubMed  CAS  Google Scholar 

  • Sakai, J., Duncan, E.A., Rawson, R.B., Hua, X., Brown, M.S., Goldstein, J.L., 1996, Sterol-regulated release of SREBP-2 from cell membranes requires two sequential cleavages, one within a transmembrane segment. Cell 85: 1037–1046.

    PubMed  CAS  Google Scholar 

  • Sastre, M., Steiner, H., Fuchs, K., Capell, A., Multhaup, G., Condron, M.M., Teplow, D.B., Haass, C., 2001, Presenilin-dependent Γ-secretase processing of β-amyloid precursor protein at a site corresponding to the S3 cleavage of Notch. EMBO Rep. 2: 835–841.

    PubMed  CAS  Google Scholar 

  • Sato, C., Morohashi, Y., Tomita, T., Iwatsubo, T., 2006, Structure of the catalytic pore of Γ-secretase probed by the accessibility of substituted cysteines. J. Neurosci. 26: 12081–12088.

    PubMed  CAS  Google Scholar 

  • Sato, T., Nyborg, A.C., Iwata, N., Diehl, T.S., Saido, T.C., Golde, T.E., Wolfe, M.S., 2006, Signal peptide peptidase: biochemical properties and modulation by nonsteroidal antiinflammatory drugs. Biochemistry 45: 8649–8656.

    PubMed  CAS  Google Scholar 

  • Scheuner, D., Eckman, C., Jensen, M., Song, X., Citron, M., Suzuki, N., Bird, T.D., Hardy, J., Hutton, M., Kukull, W., Larson, E., Levy-Lahad, E., Viitanen, M., Peskind, E., Poorkaj, P., Schellenberg, G., Tanzi, R., Wasco, W., Lannfelt, L., Selkoe, D., Younkin, S., 1996, Secreted amyloid β-protein similar to that in the senile plaques of Alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to familial Alzheimer’s disease. Nat. Med. 2: 864–870.

    PubMed  CAS  Google Scholar 

  • Schroeter, E.H., Ilagan, M.X., Brunkan, A.L., Hecimovic, S., Li, Y.M., Xu, M., Lewis, H.D., Saxena, M.T., De Strooper, B., Coonrod, A., Tomita, T., Iwatsubo, T., Moore, C.L., Goate, A., Wolfe, M.S., Shearman, M., Kopan, R., 2003, A presenilin dimer at the core of the Γ-secretase enzyme: insights from parallel analysis of Notch 1 and APP proteolysis. Proc. Natl. Acad. Sci. USA 100: 13075–13080.

    PubMed  CAS  Google Scholar 

  • Schroeter, E.H., Kisslinger, J.A., Kopan, R., 1998, Notch-1 signalling requires ligand-induced proteolytic release of intracellular domain. Nature 393: 382–386.

    PubMed  CAS  Google Scholar 

  • Selkoe, D.J., 2002, Deciphering the genesis and fate of amyloid β-protein yields novel therapies for Alzheimer disease. J. Clin. Invest. 110: 1375–1381.

    PubMed  CAS  Google Scholar 

  • Serneels, L., Dejaegere, T., Craessaerts, K., Horre, K., Jorissen, E., Tousseyn, T., Hebert, S., Coolen, M., Martens, G., Zwijsen, A., Annaert, W., Hartmann, D., De Strooper, B., 2005, Differential contribution of the three Aph1 genes to Γ-secretase activity in vivo. Proc. Natl. Acad. Sci. USA 102: 1719–1724.

    PubMed  CAS  Google Scholar 

  • Shah, S., Lee, S.F., Tabuchi, K., Hao, Y.H., Yu, C., LaPlant, Q., Ball, H., Dann, C.E., 3rd, Sudhof, T., Yu, G., 2005, Nicastrin functions as a Γ-secretase-substrate receptor. Cell 122: 435–447.

    PubMed  CAS  Google Scholar 

  • Shearman, M.S., Beher, D., Clarke, E.E., Lewis, H.D., Harrison, T., Hunt, P., Nadin, A., Smith, A.L., Stevenson, G., Castro, J.L., 2000, L-685,458, an aspartyl protease transition state mimic, is a potent inhibitor of amyloid β-protein precursor Γ-secretase activity. Biochemistry 39: 8698–8704.

    PubMed  CAS  Google Scholar 

  • Shen, J., Bronson, R.T., Chen, D.F., Xia, W., Selkoe, D.J., Tonegawa, S., 1997, Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 89: 629–639.

    PubMed  CAS  Google Scholar 

  • Shirotani, K., Edbauer, D., Prokop, S., Haass, C., Steiner, H., 2004, Identification of distinct Γ-secretase complexes with different APH-1 variants. J. Biol. Chem. 279: 41340–41345.

    PubMed  CAS  Google Scholar 

  • Spasic, D., Tolia, A., Dillen, K., Baert, V., De Strooper, B., Vrijens, S., Annaert, W., 2006, Presenilin-1 maintains a nine-transmembrane topology throughout the secretory pathway. J. Biol. Chem. 281: 26569–26577.

    PubMed  CAS  Google Scholar 

  • Steiner, H., 2004, Uncovering Γ-secretase. Curr. Alzheimer Res. 1: 175–181.

    PubMed  CAS  Google Scholar 

  • Steiner, H., Duff, K., Capell, A., Romig, H., Grim, M.G., Lincoln, S., Hardy, J., Yu, X., Picciano, M., Fechteler, K., Citron, M., Kopan, R., Pesold, B., Keck, S., Baader, M., Tomita, T., Iwatsubo, T., Baumeister, R., Haass, C., 1999, A loss of function mutation of presenilin-2 interferes with amyloid β-peptide production and Notch signaling. J. Biol. Chem. 274: 28669–28673.

    PubMed  CAS  Google Scholar 

  • Steiner, H., Kostka, M., Romig, H., Basset, G., Pesold, B., Hardy, J., Capell, A., Meyn, L., Grim, M.G., Baumeister, R., Fechteler, K., Haass, C., 2000, Glycine 384 is required for presenilin-1 function and is conserved in polytopic bacterial aspartyl proteases. Nat. Cell Biol. 2: 848–851.

    PubMed  CAS  Google Scholar 

  • Steiner, H., Winkler, E., Edbauer, D., Prokop, S., Basset, G., Yamasaki, A., Kostka, M., Haass, C., 2002, PEN-2 is an integral component of the Γ-secretase complex required for coordinated expression of presenilin and nicastrin. J. Biol. Chem. 277: 39062–39065.

    PubMed  CAS  Google Scholar 

  • Struhl, G., Adachi, A., 1998, Nuclear access and action of Notch in vivo. Cell 93: 649–660.

    PubMed  CAS  Google Scholar 

  • Struhl, G., Adachi, A., 2000, Requirements for presenilin-dependent cleavage of Notch and other transmembrane proteins. Mol. Cell 6: 625–636.

    PubMed  CAS  Google Scholar 

  • Takahashi, Y., Hayashi, I., Tominari, Y., Rikimaru, K., Morohashi, Y., Kan, T., Natsugari, H., Fukuyama, T., Tomita, T., Iwatsubo, T., 2003, Sulindac sulfide is a noncompetitive Γ-secretase inhibitor that preferentially reduces Aβ42 generation. J. Biol. Chem. 278: 18664–18670.

    PubMed  CAS  Google Scholar 

  • Takasugi, N., Tomita, T., Hayashi, I., Tsuruoka, M., Niimura, M., Takahashi, Y., Thinakaran, G., Iwatsubo, T., 2003, The role of presenilin cofactors in the Γ-secretase complex. Nature 422: 438–441.

    PubMed  CAS  Google Scholar 

  • Targett-Adams, P., Schaller, T., Hope, G., Lanford, R.E., Lemon, S.M., Martin, A., McLauchlan, J., 2006, Signal peptide peptidase cleavage of GB virus B core protein is required for productive infection in vivo. J Biol Chem 281: 29221–29227.

    PubMed  CAS  Google Scholar 

  • Thinakaran, G., Borchelt, D.R., Lee, M.K., Slunt, H.H., Spitzer, L., Kim, G., Ratovitsky, T., Davenport, F., Nordstedt, C., Seeger, M., Hardy, J., Levey, A.I., Gandy, S.E., Jenkins, N.A., Copeland, N.G., Price, D.L., Sisodia, S.S., 1996, Endoproteolysis of presenilin 1 and accumulation of processed derivatives in vivo. Neuron 17: 181–190.

    PubMed  CAS  Google Scholar 

  • Thinakaran, G., Regard, J.B., Bouton, C.M., Harris, C.L., Price, D.L., Borchelt, D.R., Sisodia, S.S., 1998, Stable association of presenilin derivatives and absence of presenilin interactions with APP. Neurobiol. Dis. 4: 438–453.

    PubMed  CAS  Google Scholar 

  • Tolia, A., Chavez-Gutierrez, L., De Strooper, B., 2006, Contribution of presenilin transmembrane domains 6 and 7 to a water-containing cavity in the Γ-secretase complex. J. Biol. Chem 281: 27633–27642.

    PubMed  CAS  Google Scholar 

  • Urban, S., Lee, J.R., Freeman, M., 2001, Drosophila rhomboid-1 defines a family of putative intramembrane serine proteases. Cell 107: 173–182.

    PubMed  CAS  Google Scholar 

  • Vigo-Pelfrey, C., Lee, D., Keim, P., Lieberburg, I., Schenk, D.B., 1993, Characterization of β-amyloid peptide from human cerebrospinal fluid. J. Neurochem. 61: 1965–1968.

    PubMed  CAS  Google Scholar 

  • Wang, J., Beher, D., Nyborg, A.C., Shearman, M.S., Golde, T.E., Goate, A., 2006, C-terminal PAL motif of presenilin and presenilin homologues required for normal active site conformation. J. Neurochem. 96: 218–227.

    PubMed  CAS  Google Scholar 

  • Wang, R., Sweeney, D., Gandy, S.E., Sisodia, S.S., 1996, The profile of soluble amyloid β protein in cultured cell media. Detection and quantification of amyloid β protein and variants by immunoprecipitation-mass spectrometry. J. Biol. Chem. 271: 31894–31902.

    PubMed  CAS  Google Scholar 

  • Wang, Y., Zhang, Y., Ha, Y., 2006, Crystal structure of a rhomboid family intramembrane protease. Nature 444: 179–180.

    PubMed  CAS  Google Scholar 

  • Weggen, S., Eriksen, J.L., Das, P., Sagi, S.A., Wang, R., Pietrzik, C.U., Findlay, K.A., Smith, T.E., Murphy, M.P., Bulter, T., Kang, D.E., Marquez-Sterling, N., Golde, T.E., Koo, E.H., 2001, A subset of NSAIDs lower amyloidogenic Aβ42 independently of cyclooxygenase activity. Nature 414: 212–216.

    PubMed  CAS  Google Scholar 

  • Weggen, S., Eriksen, J.L., Sagi, S.A., Pietrzik, C.U., Ozols, V., Fauq, A., Golde, T.E., Koo, E.H., 2003, Evidence that nonsteroidal anti-inflammatory drugs decrease Aβ42 production by direct modulation of Γ-secretase activity. J. Biol. Chem. 278: 31831–31837.

    PubMed  CAS  Google Scholar 

  • Weidemann, A., Eggert, S., Reinhard, F.B., Vogel, M., Paliga, K., Baier, G., Masters, C.L., Beyreuther, K., Evin, G., 2002, A novel UPvarepsilon -cleavage within the transmembrane domain of the Alzheimer amyloid precursor protein demonstrates homology with Notch processing. Biochemistry 41: 2825–2835.

    PubMed  CAS  Google Scholar 

  • Weihofen, A., Binns, K., Lemberg, M.K., Ashman, K., Martoglio, B., 2002, Identification of signal peptide peptidase, a presenilin-type aspartic protease. Science 296: 2215–2218.

    PubMed  CAS  Google Scholar 

  • Weihofen, A., Lemberg, M.K., Friedmann, E., Rueeger, H., Schmitz, A., Paganetti, P., Rovelli, G., Martoglio, B., 2003, Targeting presenilin-type aspartic protease signal peptide peptidase with h{Γ-secretase} Inhibitors. J. Biol. Chem. 278: hbox{16528–16533}.

    PubMed  CAS  Google Scholar 

  • Weihofen, A., Lemberg, M.K., Ploegh, H.L., Bogyo, M., Martoglio, B., 2000, Release of signal peptide fragments into the cytosol requires cleavage in the transmembrane region by a protease activity that is specifically blocked by a novel cysteine protease inhibitor. J. Biol. Chem. 275: 30951–30956.

    PubMed  CAS  Google Scholar 

  • Weihofen, A., Martoglio, B., 2003, Intramembrane-cleaving proteases: controlled liberation of functional proteins and peptides from membranes. Trends Cell Biol. 13: 71–78.

    PubMed  CAS  Google Scholar 

  • Westlund, B., Parry, D., Clover, R., Basson, M., Johnson, C.D., 1999, Reverse genetic analysis of Caenorhabditis elegans presenilins reveals redundant but unequal roles for sel-12 and hop-1 in Notch-pathway signaling. Proc. Natl. Acad. Sci. USA 96: 2497–2502.

    PubMed  CAS  Google Scholar 

  • Wiltfang, J., Esselmann, H., Cupers, P., Neumann, M., Kretzschmar, H., Beyermann, M., Schleuder, D., Jahn, H., Ruther, E., Kornhuber, J., Annaert, W., De Strooper, B., Saftig, P., 2001, Elevation of β-amyloid peptide 2-42 in sporadic and familial Alzheimer’s disease and its generation in PS1 knockout cells. J. Biol. Chem. 276: 42645–42657.

    PubMed  CAS  Google Scholar 

  • Wolfe, M.S., Kopan, R., 2004, Intramembrane proteolysis: theme and variations. Science 305: 1119–1123.

    PubMed  CAS  Google Scholar 

  • Wolfe, M.S., Xia, W., Moore, C.L., Leatherwood, D.D., Ostaszewski, B., Rahmati, T., Donkor, I.O., Selkoe, D.J., 1999, Peptidomimetic probes and molecular modeling suggest that Alzheimer’s h{Γ-secretase} is an intramembrane-cleaving aspartyl protease. Biochemistry 38: 4720–4727.

    PubMed  CAS  Google Scholar 

  • Wolfe, M.S., Xia, W., Ostaszewski, B.L., Diehl, T.S., Kimberly, W.T., Selkoe, D.J., 1999, Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and Γ-secretase activity. Nature 398: 513–517.

    PubMed  CAS  Google Scholar 

  • Wong, P.C., Zheng, H., Chen, H., Becher, M.W., Sirinathsinghji, D.J., Trumbauer, M.E., Chen, H.Y., Price, D.L., Van der Ploeg, L.H., Sisodia, S.S., 1997, Presenilin 1 is required for Notch1 and DII1 expression in the paraxial mesoderm. Nature 387: 288–292.

    PubMed  CAS  Google Scholar 

  • Wu, Z., Yan, N., Feng, L., Oberstein, A., Yan, H., Baker, R.P., Gu, L., Jeffrey, P.D., Urban, S., Shi, Y., 2006, Structural analysis of a rhomboid family intramembrane protease reveals a gating mechanism for substrate entry. Nat. Struct. Mol. Biol. 13: 1084–1091.

    PubMed  CAS  Google Scholar 

  • Yamasaki, A., Eimer, S., Okochi, M., Smialowska, A., Kaether, C., Baumeister, R., Haass, C., Steiner, H., 2006, The GxGD motif of presenilin contributes to catalytic function and substrate identification of Γ-secretase. J. Neurosci. 26: 3821–3828.

    PubMed  CAS  Google Scholar 

  • Yu, C., Kim, S.H., Ikeuchi, T., Xu, H., Gasparini, L., Wang, R., Sisodia, S.S., 2001, Characterization of a presenilin-mediated APP carboxyl terminal fragment CTFΓ: evidence for distinct mechanisms involved in Γ-secretase processing of the APP and Notch1 transmembrane domains. J. Biol. Chem. 276: 43756–43760.

    PubMed  CAS  Google Scholar 

  • Yu, G., Chen, F., Levesque, G., Nishimura, M., Zhang, D.M., Levesque, L., Rogaeva, E., Xu, D., Liang, Y., Duthie, M., St George-Hyslop, P.H., Fraser, P.E., 1998, The presenilin 1 protein is a component of a high molecular weight intracellular complex that contains β-catenin. J. Biol. Chem. 273: 16470–16475.

    PubMed  CAS  Google Scholar 

  • Yu, G., Nishimura, M., Arawaka, S., Levitan, D., Zhang, L., Tandon, A., Song, Y.Q., Rogaeva, E., Chen, F., Kawarai, T., Supala, A., Levesque, L., Yu, H., Yang, D.S., Holmes, E., Milman, P., Liang, Y., Zhang, D.M., Xu, D.H., Sato, C., Rogaev, E., Smith, M., Janus, C., Zhang, Y., Aebersold, R., Farrer, L.S., Sorbi, S., Bruni, A., Fraser, P., St George-Hyslop, P., 2000, Nicastrin modulates presenilin-mediated notch/glp-1 signal transduction and βAPP processing. Nature 407: 48–54.

    PubMed  CAS  Google Scholar 

  • Zhang, Z., Nadeau, P., Song, W., Donoviel, D., Yuan, M., Bernstein, A., Yankner, B.A., 2000, Presenilins are required for Γ-secretase cleavage of βAPP and transmembrane cleavage of Notch-1. Nat. Cell Biol. 2: 463–465.

    PubMed  CAS  Google Scholar 

  • Zhao, G., Mao, G., Tan, J., Dong, Y., Cui, M.Z., Kim, S.H., Xu, X., 2004, Identification of a new presenilin-dependent UPzeta-cleavage site within the transmembrane domain of amyloid precursor protein. J. Biol. Chem. 279: 50647–50650.

    PubMed  CAS  Google Scholar 

  • Zhou, S., Zhou, H., Walian, P.J., Jap, B.K., 2005, CD147 is a regulatory subunit of the Γ-secretase complex in Alzheimer’s disease amyloid β-peptide production. Proc. Natl. Acad. Sci. USA 102: 7499–7504.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer

About this chapter

Cite this chapter

Steiner, H., Haass, C. (2007). GXGD-Type Intramembrane Proteases. In: Hooper, N.M., Lendeckel, U. (eds) Intramembrane-Cleaving Proteases (I-CLiPs). Proteases in Biology and Disease, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-1-4020-6311-4_3

Download citation

Publish with us

Policies and ethics